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1. Introduction 

Heat transfer is frequently dominated by Thermal Radiation (TR) in many scientific and 
engineering applications, especially at high temperature (Howell et al., 2010). Usually, three 
main fundamental approaches are supplemented to investigate TR problem, including 
analytical, experimental and numerical methods (Modest, 2003), however, among those TR 
problems, only quite a few of them can be analytically or experimentally solved. Recently, 
because of a rapid growth of computer and information techniques, numerical 
approximation has been eventually become the major simulating tool towards TR problems. 
The general equation to describe TR transport is the Radiative Transfer Equation (RTE), and 
several computational algorithms were proposed for solution of the RTE, which have 
achieved great advancement (Howell et al., 2010; Modest, 2003; Shih et al., 2010). 

The Finite Volume Method (FVM) has validated to be an efficient algorithm with satisfactory 
precision (Raithby & Chui, 1990), which has been applied to various problems. Besides, much 
innovation to improve its performance is also proposed. FTn method is used to predict TR 
characteristics for a 3D complex industrial boiler with non-gray media (Borjini et al., 2007). 
FVM is applied with Lattice Boltzmann method in a transient 2D coupled conduction-
radiation problem by an inverse analysis (Das et al., 2008). Combined mixed convection-
radiation heat transfer is dealt with by a FVM (Farzad & Shahini, 2009). Transient radiative 
heating characteristics of slabs in a walking beam type reheating furnace is predicted by FVM 
(Han et al., 2009). A complex axisymmetric enclosure with participating medium is 
investigated by using FVM with an implementation of the unstructured polygonal meshes 
(Kim et al., 2010). A particular procedure as a first-order skew, positive coefficient, upwind 
scheme was presented (Daniel & Fatmir, 2011), which is incorporated in FVM.  

Essentially, FVM can be categorized as a numerical method applied to investigate radiative 
heat transfer problems. Because algebraic equations for the FVM are determined through 
discretization of the RTE over user-selected control volumes and specific control solid 
angles, it will inevitably encounter various errors, which is an important and integral part in 
connection with the solution procedures. The most common discretization errors occurring 
in the FVM are called the ray effect and the false scattering, which were initially identified 
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by Chai et al. (Chai et al., 1993). Only the error caused by spatial discretization is discussed 
in this paper, and it is also referred to as numerical scattering or numerical smearing (Zhang 
& Tan, 2009), which is analogous to false diffusion in the context of computational fluid 
dynamics caused by discretization of spatial coordinates (Patankar, 1980). It has been shown 
that many factors can cause false scattering (Tan et al., 2004) influencing solution accuracy, 
including grid quality (Kallinderis & Kontzialis, 2009), spatial discretization schemes 
(Coelho, 2008), radiative properties and volumetric heat sources (Kamel et al., 2006). 
However, there are few effective routines for evaluating the spatial discretization error, and 
it is necessary to formulate an innovative framework to explore parameters or define 
indicator to analyze its uncertainty and accuracy.  

The concept and theory of entropy, based on the second law of thermodynamics, has been 
an innovative and effective approach to study computational errors within the fields of fluid 
flow and heat transfer (Naterer & Camberos, 2003). The entropy production is used to 
predict numerical errors for viscous compressible flow (Camberos, 2000). The concept of 
information entropy (Cover & Thomas, 2003) has been shown to be an appropriate method 
and has been widely applied to error analysis for Euler’s equations and the stability of 
numerical solution (Camberos, 2007). Although some work has been done based on 
radiation entropy generation (Caldas & Semiao, 2005; Liu & Chu, 2007), much work has 
been focused on error analysis in computational fluid dynamics, heat conduction and heat 
convection, instead of error analysis for TR. In the previous work, an entropy formula based 
on information theory is proposed to investigate uncertainty in FVM towards artificial 
benchmarks (Zhang et al. 2011), which show its adaptability in field of TR.  

In this chapter, an artificial benchmark model of central laser incidence on a two-
dimensional (2D) rectangle containing a semi-transparent medium is used as a framework 
to investigate the numerical scattering, using reference data from the Monte Carlo method 
(MCM), which has been proven to generate no false scattering (Tan et al., 2004). Based on 
the local entropy generation approach (Herwig & Kock, 2004) derived from the second law 
of thermodynamics, which is considered a very effective method to analyze the process of 
energy transfer, a discretization error indicator is defined. Within the framework of the 
current model, grid independence is first validated. The effects of the spatial differential 
scheme, the spatial grid number and the absorption coefficient deviation of the medium on 
numerical scattering in the FVM are presented.  

2. Mathematical model and artificial benchmark 

In an emitting, absorption and scattering medium, the RTE can be written as: 
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  (1) 

For an opaque, diffuse emitting and reflective boundary wall, the corresponding boundary 
condition can be written as: 

    
0

1
| |

b
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I I I n d
   




  

      Ω
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      (2) 
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When FVM is used to solve the RTE, hemispherical space of 4π steradians is divided to a 

solid angular grid, i.e., a limited number of directions. Along a specific angular direction 
l , a relationship is necessary to correlate the radiative intensities at the face of the control 

volume to the intensity at the centre of control volume. This yields a spatial differential 

scheme, which in general can be represented as: 

 
l l

pI f I 
    (3) 

where fǂ denotes different values for fx , fy and fz corresponding different types of differential 

schemes, and Iǃ means radiative intensities at different interfaces of a control volume, 

including Ie, Iw, In, Is, It and Ib. 

Frequently, the following three kinds of differencing schemes are selected, namely, the step 

scheme with fǂ = 1.0, the diamond scheme with fǂ = 0.5 and the exponential scheme with: 

    1 1

1 exp
l l

f   
 

       
  (4) 

where τ is the optical thickness.  

2.1 Numerical scattering 

It is generally considered that numerical scattering is a multi-dimensional problem caused 

by spatial coordinates discretization. When the first term of the truncation error is the 

second-order space derivative, its error is dissipative. The derivative term of radiative 

intensity is used as the first-order difference scheme in the solution of RTE and truncation 

error is the second-order space derivative. As a result, numerical scattering is caused. Its 

premise is that: intensity at certain grids is related to other grids by space deferential 

schemes, and these grids are not in the transfer direction. In a multi-dimensional problem, if 

a derivative is substituted by first-order difference, if the profile of radiative intensity is 

assumed by spatial differencing schemes and if the direction of transfer is intersected with 

grid and non-negative intensity gratitude exists in the direction perpendicular with 

transportation direction, numerical scattering is still generated (Tan et al., 2004).  

Because numerical scattering is a multi-dimensional problem, a 2D case is taken into 
account in the current study, without considering the scattering in the medium. 

The accurate solution for the spectral radiative intensity in a specific angular direction l  of 

the FVM is denoted by (s)

l

I , and the symbol  s , lL I 
  is defined as an operator for the 

differential process of (s)

l

I at a control volume of  , ls 


, where vector s


 denotes the spatial 

coordinates of the point, as shown in Eq. (5): 

   ,
,

l

l
s

s

I I
L I I S

x y
   



  
      




 (5) 

If the symbol  
l

s s
L I 

 
  

   is used for the difference operator for (s)

l

I , we then have: 
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  
11
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In Eq. (6),  
l

s s
L I 

 
  

   denotes the step scheme for a 2D differential equation. In this way, 

the cut-off for the discrete differential equations denotes the difference between the 

difference operators and the corresponding differential operators, which can be expressed 

using TE, i.e. 

    s ,

l

ls s
TE L I L I

 
    

     (7) 

Eq. (7) can be deduced using the Taylor expansion of the difference equation. For the case 

above, the Taylor expansions of (s)

l

I  and (s+ds)

l

I   in the space position  ,s s i j
 

 can be 

substituted into the difference equation and reorganized, and we then obtain the correlation 

function shown in Eq. (8): 

  2 2

,
,

l

ls
s

TE O x y S S



      
 

  (8) 

For a 2D problem, if the derivative is substituted for a first-order difference, if the radiative 
intensity profile is assumed by the space differential schemes, and if the transfer direction 
intersects with the grid and a non-negative radiative intensity gradient exists in the direction 
perpendicular to the transportation direction, numerical scattering is still generated. 

Generally, a relationship should be derived to correlate the radiative intensities in the face of 
the control volume and the intensities at the centre of the control volume, which constitute a 
kind of spatial differential scheme. In view of this, the numerical scattering is also related to 
the spatial differential factor, which is shown in Eq. (9): 

 
2

2

(1 2 )

2!

l ll l

xe w f xI II I
TE

x x x

        
    

  (9) 

In a multi-dimensional problem, the numerical scattering acts in a similar manner to the 
way it acted in one dimension. 

Also, the fact that the spatial discretization error can be reduced only by increasing the grid 

numbers is not a simple problem. From Eq. (5) to Eq. (9), the radiative intensity I varies with 

the wavelength λ, based on the assumption of spectral band consistency, which affects the 

radiative property, i.e.,   . Therefore, errors caused by the radiative property are also 

included in the numerical scattering within the scope. For the approximation complexity of 

the spectral absorption coefficient, a ratio Χ is applied to denote its deviation, which is 

shown in Eq. (10): 

 *
       (10) 

To summarize, the factors that affect TE can be implemented in a correlation, which is 
shown in Eq. (11), which can be similarly extended to a three-dimensional problem. 
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 *
,( , ), ,TE TE x y f         (11) 

For brevity, the detailed explanation of the reason towards its generation can be referred in 
the previous works (Zhang & Tan, 2009; Tan et al., 2004; Zhang et al. 2011).  

2.2 Artificial benchmark model 

Consider a 2D rectangle containing an absorbing-emitting grey medium without scattering; 
its refractive index is uniform, and is equal to that of the surroundings. In real cases, the 
medium may be gaseous, solid or liquid; however, in the current work, a generalized 
version of the participating medium is used.  

 

Fig. 1. Artificial benchmark model for central laser incidence to a two-dimensional rectangle 

The four interfaces of the medium are all diffusely reflective, opaque and grey. Its east and 
west interfaces are coated with a sheet of thin film, individually. At certain wavelength, the 
west interface shows to be a semitransparent and specularly reflective surface. While, at 
other wavelengths, it is shown to be a diffusely reflective, opaque and grey surface. The thin 
film in its east interface is opaque, which is a diffusely reflective surface, except for the 
wavelength 10.6 μm. A laser beam of wavelength 10.6 μm is projected to the centre the west 
interface (the shadowed area), which is shown in Figure 1.  

Detailed information on the current model selected can be referred in the previous works [12].  

2.3 Discretization error indicator by local entropy generation rate 

In case of steady state, the temperature can be determined by the following correlation, in 
which 
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According to the expression of the local radiative entropy generation rate in a participating 
medium (Caldas & Semiao, 2005; Liu & Chu, 2007), an error indicator can be defined as:  
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 (13) 

Since there is no scattering in the medium, and the refractive index is uniform, there is no 

refraction of the laser beam. Laser is projected from the normal direction of the west 

interface and when it arrives at the east interface, it is then specularly reflected to the inverse 

direction without angle variation. In other words, there is no scattering in the process of 

laser propagation through the semi-transparent in view of actual physical process; within 

finite time, temperature will increase only in the region where laser irradiated. When this 

process is simulated by numerical method and if scattering phenomenon happens, i.e., the 

entropy generation increasing in non-central region where the region is not irradiated by 

laser, numerical scattering is deemed to appear, and vise versa.  

In addition, to obtain local entropy generation rate, the RTE is first solved by FVM, then it can 
be derived. The radiative heat transfer process in the artificial model above and the detailed 
derivation of the governing equation can be found in the reference (Zhang & Tan, 2009). 

3. Simulation result and analysis 

Radiative properties and computing parameters are: geometry of the computing domain 

0.25mx yL L  ; refractive index of medium 1n  , spectral absorption coefficient 
11 ma  , spectral scattering coefficient 0s  , and therefore, optical thickness along x 

and y coordinates are 0.25x y   . Emissaries of the four interfaces ,k e , ,k w , ,k s  and 

,k n  are uniformly specified as 0.8 and reflectivity of the four interfaces ,k e , ,k w , ,k s  

and ,k s  are uniformly specified as 0.2；when 10.6 m  , , 0k w   and , 0.8k w  . 

Surrounding temperatures Te, Tw, Ts and Tn are uniformly specified as 1000 K; initial 

temperature of the rectangle medium is set as T0 = 1000 K. Moreover, the incident 

wavelength of the laser is set as la 10.6 m  , and the power flux density of the incident 

laser is specified as qla = 2 MW. Also, the thermal conductivity of this medium is specified to 

be extremely small to ensure that thermal radiation is the dominant heat transfer method. 

3.1 Verification of computation code 

To validate reliability and compare result of the algorithm, the following expression for 

temperature increment is defined as: 

     0, , , ,i j or m n i j or m nT T T     (14) 

An error indicator EILa,T is defined as the following, which is the maximum temperature 

increment where node is without laser incidence region to minimum temperature increment 

where node is within laser incidence region, i.e., 
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T m n

 


 
  (15) 

Based on local entropy generation rate expression, as in shown Eq. (8), an error indicator 
EILa,Sgen can be accordingly defined as: 

 La, Sgen

max[ ( , )] [( , ) Laser Incidence]

min[ ( , )][( , ) Laser Incidence]

gen

gen

S i j i j
EI

S m n m n

 


 


  (16) 

Both EILa,T and EILa,Sgen are used to evaluate numerical scattering for different situations. Since 
EILa,Sgen is an absolute value for every control volume, it supplies the information of energy 
dissipation of the solution process, i.e., numerical dissipation, not a physically real process.  

Although statistical error exists in MCM, the numerical scattering does not exist in the 
MCM, and its results can be used as benchmark solution to test accuracy. In MCM, the most 
important factor which affects its simulation accuracy is the random bundle number NM, 
and sensitivity of MCM with different random bundle numbers is tested, the result is shown 

in Tab.1, in which spatial grid number is set to 10 10NX NY   .  

NM EILa,T (％) EILa,Sgen (％)

102 2.13 0.11
103 1.78 0.08
104 0.17 0.01
105 0.16 0.0
106 0.14 0.0

Table 1. Sensitivity of MCM with different random bundle numbers 

From Tab.1, it can be seen that when NM is larger than 104, the results of MCM is stable and 
less accurate, so in the following calculation, NM = 106 is used in all simulations. Because 
numerical scattering does not exist in the MCM, the results of MCM can be used as a 
benchmark solution to test FVM accuracy. Furthermore, the advantage of EILa,Sgen over EILa,T 

is that, as error indicators, the value of EILa,T is affected by statistical error in MCM. 
Meanwhile, the value of EILa,Sgen is independent from the statistical error in MCM. 
Therefore, it is shown to be a better error indicator in the current framework.  

The next step is to validate the effect of solid angle discretization in FVM with several 
angular schemes presented, and the results are shown in Tab.2, in which spatial grid 
number is specified as 10 10NX NY   .  

In Tab.2, it can be seen that, when 16 20N N    , both results of EILa,T and EILa,Sgen is 
shown to be stable, and it denotes that the results of error indicator is independent from 
numbers of solid angle discretization grids. Therefore, in the following calculation, solid 
angle discretization number is set to =24 36N N   , which is also used in all the 
following simulations. 

Finally, it is necessary to test the grid independence of spatial discretization number in FVM 
to show the uncertainty of two categories of error indicator free from spatial grid numbers. 
The step scheme for FVM is used, and the results are shown in Tab. 3. 
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N N   EILa,T (％) EILa,Sgen (％) 

4 8  23.54 15.69 

10 12  8.96 7.94 

12 16  6.24 5.27 

16 20  5.72 2.73 

20 28  5.17 2.75 

24 36  5.18 2.76 

Table 2. Independence of solid angle discretization number’s test 

NX NY  EILa,T (％) EILa,Sgen (％) 

5 5  5.19 2.79 

10 10  5.18 2.76 

20 20  5.14 2.75 

Table 3. Independence of spatial discretization numbers for FVM (step scheme) 

In Tab.3, it can be seen that, when 5 5NX NY   , both results of EILa,T and EILa,Sgen is 

shown to be stable, which denotes that the results of error indicator is independent from 
numbers of spatial grids. 

3.2 Numerical scattering simulation and error indicator distribution 

For the case shown in Fig.1, to make the effect of numerical scattering more clear, the 
contours of temperature profile computed by MCM, FVM by step scheme (FVM1), FVM by 
diamond scheme (FVM2) and FVM by exponential scheme (FVM3) are shown in Fig.2-Fig.4.  
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Fig. 2. Temperature contour by MCM with grid number 20 20NX NY    
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Fig. 3. Temperature contour by FVM1 with grid number 20 20NX NY    
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Fig. 4. Temperature contour by FVM2 with grid number 20 20NX NY    

In those cases, grid number 20 20NX NY    is adopted, in which grid number of unit 

optical thickness is 80  .  

The temperature distribution of each scheme in the region of laser incidence is shown in Fig.6.  
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Fig. 5. Temperature contour by FVM3 with grid number 20 20NX NY    
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Fig. 6. Temperature profile of central laser incidence by MCM and FVM with different 

spatial differential schemes, 20 20NX NY    
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It can be seen that: among them, the accuracy of the diamond scheme is the highest, and the 
exponential scheme is a bit lower, the lowest accuracy of the three schemes is the step 
scheme. 

EILa,T for central laser incidence by MCM and FVM with different spatial differential 

schemes and different gird numbers is tabulated in Tab.4 .  

 FVM1 (%) FVM2 (%) FVM3 (%) MCM(%) 

La,T5 5NX NY Er    5.19 9.76 5.82 0.15 

La,T10 10NX NY Er   5.18 11.21 8.09 0.06 

La,T20 20NX NY Er   5.14 8.75 5.67 0.00 

Table 4. EILa,T for central laser incidence by MCM and FVM with different spatial differential 
schemes and different gird numbers 

EILa,Sgen for central laser incidence by MCM and FVM with different spatial differential 
schemes and different gird numbers is tabulated in Tab.5. 

 FVM1 (%) FVM2 (%) FVM3 (%) MCM(%) 

La,Sgen5 5NX NY Er    2.79 5.25 3.08 0.00 

La,Sgen10 10NX NY Er  

 
2.76 5.24 3.07 0.00 

La,Sgen20 20NX NY Er  

 
2.75 5.22 3.05 0.00 

Table 5. EILa,Sgen for central laser incidence by MCM and FVM with different spatial 
differential schemes and different gird numbers 

It is also interesting to see the distribution of numerical scattering. Choosing the x-axis 

position where the maximum temperature increment without laser incidence happens, in 

different height, the distribution of numerical scattering of different spatial differential 

schemes with grid numbers is shown in Fig. 7.  

From the Fig. 7, it is shown that, if we set the direction of laser incidence as central axis, it 

can be seen that numerical scattering distributed symmetry along the axis, which can be 

called as symmetrical cross-scattering. All of the three schemes show symmetrical cross-

scattering. 

It can be seen from the above tables and figures that, for grid number, when its number is 

increasing, numerical scattering will be reduced. This is the same tendency as in all other 

fields. However, on one aspect, the accuracy of FVM will also be affected by the spatial 

differential scheme and among them, the diamond scheme has the highest, and exponential 

scheme has less accuracy, while step scheme has the least accuracy of the three schemes. On 

the other aspect, the degree of numerical scattering is reverse, i.e., the step scheme produces 

minimum numerical scattering, and exponential scheme produces more, while the diamond 

scheme produces maximum among three methods. 
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Fig. 7. Distribution of numerical scattering of FVM with different spatial differential 

schemes, x=0.1063, 20 20NX NY    

3.3 Effect of absorption coefficients deviation 

The purpose to discuss numerical scattering is to examine how to constitute better 
differential scheme of the intensity to obtain solution with good accuracy without less 
oscillation. For this reason, the hypothesis of uniform property is also included in the false 
scattering. By considering the individual absorption coefficients *

   of 0.1, 1.0, 2.0 and 10.0, 
and the corresponding optical thicknesses τ = 0.025, 0.25, 0.5, and 2.5 individually. The 
numerical test results towards EILa,T and EILa,Sgen of grid numbers 5 5NX NY    and 

20 20NX NY    for the MCMs and FVM1s are shown in Tab. 6 and Tab. 7.  

NX NY    La, T /MCMEr (%) La, T /FVM1Er (%) 

5 5  

0.1 0.0 0.50 

1.0 0.15 5.17 

2.0 0.58 10.73 

10.0 23.37 65.56 

10 10  

0.1 0.0 0.35 

1.0 0.11 4.41 

2.0 0.49 9.51 

10.0 41.38 67.33 

Table 6. EILa,T for MCM and FVM of different absorption coefficients in central laser 
incidence 
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NX NY    La, Sgen /MCMEr (%) La, Sgen /FVM1Er (%) 

5 5  

0.1 0.0 0.02 

1.0 0.05 0.03 

2.0 0.26 9.63 

10.0 12.37 40.34 

10 10  

0.1 0.0 0.04 

1.0 0.03 0.12 

2.0 0.19 12.51 

10.0 9.27 59.52 

Table 7. EILa,Sgen for MCM and FVM of different absorption coefficients in central laser 
incidence 

It can be seen that when the absorption coefficient deviation is high, the numerical scattering 
cannot be eliminated, even with higher grid numbers.  

4. Conclusion 

Based on the theory of local entropy generation rate used in fluid flow and heat transfer, an 
error indicator is defined to evaluate and compare discretization errors caused by different 

factors in FVM for solving the RTE, which is proven to be an effective approach. In addition, 
since the discretization error is a quality generated in the solution process, while the theory 
of local entropy generation is focused on process evaluation, therefore, it is shown to be 

better, comparing with the former error indicator defined by temperature increasing. 

An artificial benchmark model of central laser incidence on a 2D rectangle containing a 
semi-transparent medium is proposed to investigate the numerical scattering in the FVM, 
along with the use of reference data from the MCM, which has been proven to generate no 

false scattering. Meanwhile, the value of new error indicator is independent from the 
statistical error in MCM. 

Within the framework of the current model, it is shown that numerical scattering for the 
FVM is affected by the spatial grid numbers and is also affected by the different spatial 
discretization schemes to a large degree, with the diamond scheme being best, then the 
exponential scheme and finally the step scheme, in ranked order. Numerical scattering also 
varies with the amount of absorption coefficient deviation. When the absorption deviation is 
large, the numerical scattering cannot be eliminated solely by increasing the grid number. 
Also, numerical scattering is distributed symmetrically along the laser incidence direction, 
and all of the schemes show symmetrical cross-scattering.  

5. Acknowledgment 

The work described herein is supported by the National Natural Science Foundation of 
China (nos. 51006026, 90916020), the Development Program for Outstanding Young 
Teachers in Harbin Institute of Technology (no. HITQNJS. 2009. 022) and the Fundamental 
Research Funds for the Central Universities (Grant No. HIT.NSRIF. 2012072), to whom 
grateful acknowledgment is expressed.  

www.intechopen.com



 
Finite Volume Method – Powerful Means of Engineering Design 

 

212 

6. Nomenclature 

f  = spatial differencing factor [-] 

H = information entropy indicator [bit] 

I  = spectral radiative intensity  2W m -sr- m 
   

bI   = blackbody spectral radiative intensity,  2W m -sr- m 
   

i, j = index of nodal point in the region without laser incidence [-] 

NX  = spatial discretization grid number along x axis [-] 

NY  = spatial discretization grid number along y axis [-] 

N  = angular discretization grid number along θ direction [-] 

N  = angular discretization grid number along φ direction [-] 

bn


 = normal vector of the boundary [-] 

p  = probability of temperature increasing due to numerical scattering [-] 

s


 = spatial position vector [m] 

T = temperature [K] 

Greek 

  = transmittance [-] 

  = emissivity [-] 

a  = spectral absorption coefficient of medium [m-1] 

s  = spectral scattering coefficient of medium [m-1] 

  = wavelength [ m ] 

  = optical thickness [-] 

  = scattering-phase function [-] 

Ω


 = solid angle ordinate direction [-] 

Ω


 = solid angle ordinate for scattering direction [-] 

Subscripts 

b = bottom boundary of control volume p 
e = east boundary of control volume p 

i, j = index of nodal point in the region without laser incidence 

n = north boundary of control volume p 

p = control volume p 

s = south boundary of control volume p 

t = top boundary of control volume p 

w = west boundary of control volume p 

x, y, z = coordinates directions 

  = spectrum (wavelength) 

0 = initial value 

Superscripts 

l  = a certain selected angular direction 
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