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1. Introduction  

Convection in a fluid close to its gas-liquid critical point (CP) has been a subject of 

growing interest since the exhibition of the piston-effect (PE), this thermo-acoustic effect 

responsible for the fast thermal equilibrium observed in such a fluid in the absence of 

convection. In 1987, under microgravity conditions, Nitsche and Straub observed a fast 

and homogeneous increase of the temperature inside a spherical cell containing SF6 

slightly above the CP when it was subjected to a heating impulse. This phenomenon was 

then explained theoretically (Zappoli et al., 1990; Onuki et al., 1990; Boukari et al., 1990) 

by the well-known critical anomalies, more precisely by the divergence of the thermal 

expansion coefficient and the vanishing of its thermal diffusivity when approaching the 

CP. Indeed, the heating of a cell containing a supercritical fluid (SCF) induces along the 

heated wall a thin thermal boundary layer in which density shows large variations 

because of the divergence of the thermal expansion coefficient; this thermal layer expands 

compressing adiabatically the rest of the fluid leading by thermo-acoustic effects (the so-

called PE) to a fast and homogeneous heating of the bulk of the cell. Several experiments 

were carried out subsequently, mainly in microgravity (Guenoun et al., 1993; Straub et al., 

1995; Garrabos et al., 1998) but also on Earth (Kogan & Meyer, 1998), and confirmed the 

existence of the PE. 

Since 1996, many experimental and numerical studies were devoted to the interaction 

between the PE and natural convection. The Rayleigh-Bénard configuration (bottom 

heating) received a particular attention (Kogan et al., 1999; Amiroudine et al., 2001; 

Furukawa & Onuki, 2002) because the hydrodynamic stability of the SCF in that case is 

governed by an interesting and non-common criterion. Owing to the PE, the thermal field 

exhibits a very specific structure in the vertical direction. A very thin hot thermal 

boundary layer is formed at the bottom, then a homogeneously heated bulk settles in the 

core at a lower temperature, and at the top, a cooler boundary layer is formed in order to 

continuously match the bulk temperature with the colder temperature of the upper wall. 

The linear analysis, carried out by Gitterman and Steinberg in 1970, showed that the 
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hydrodynamic stability of these thermal boundary layers, when subjected to a gravity 

field, depends on the interaction between two stability criteria which, for a normally 

compressible fluid, are separately available at very different space scales: on one hand, the 

classical Rayleigh criterion, derived from the Boussinesq approximation, hence available 

at small space scales, and on the other hand, the Schwarzschild criterion, usually 

encountered in atmospheric science, where the stabilizing effect of the hydrostatic 

pressure becomes appreciable. Indeed, because of the divergence of the isothermal 

compressibility of a SCF, the Schwarzschild criterion becomes available at small space 

scales; this was proven theoretically (Gitterman & Steinberg, 1970b; Carlès & Ugurtas, 

1999), experimentally (Kogan & Meyer, 2001), and numerically (Amiroudine et al., 2001). 

Taking advantage of the interaction between those two stability criteria, a numerical 

study (Accary et al., 2005a) showed that, in spite of convection onset in the thermal 

boundary layers according to the classical Rayleigh criterion, a reverse transition to 

stability through the Schwarzschild line is possible without any external intervention. The 

hydrodynamic stability of the thermal boundary layers developed in this configuration 

has been exhaustively investigated (Accary et al., 2005b), and recently a numerical study 

(Accary et al., 2009) focused on the convective regime of the flow. Because of the 

particular physical properties of the fluid in the vicinity of the CP, the convective regime 

of the Rayleigh-Bénard problem is turbulent for unusually low intensities of heating 

(~mK). In this last study, 3D direct numerical simulations are carried out for Rayleigh 

numbers varying from 2.68×106 up to 160×106. For a perfect gas (PG), this range of 

Rayleigh numbers corresponds to the transition between the soft and the hard turbulence; 

however, this is not always the case for the SCF because of its strong stratification induced 

by its high isothermal compressibility. 

In § 2, the problem under consideration is presented. In § 3, the mathematical model is 

described together with the acoustic filtering of the Navier-Stokes equations. The details of 

the numerical method are presented in § 4 and the simulation conditions are mentioned. In § 

5, several aspects of the Rayleigh-Bénard convection in a near-critical fluid are reported: the 

hydrodynamic stability of the thermal boundary layers, the convection onset and the 

beginning of the convective regime, the steady-state turbulent regime, details of the 

temperature and the dynamic fields, and the global thermal balance of the cavity. In § 6, a 

comparison with the case of the PG is presented at equal Rayleigh number. Finally, the 

chapter is concluded in § 7. 

2. The problem under consideration 

We consider a SCF in a cube-shaped cavity (of height H' = 10 mm) subjected to the earth 

gravity field g' = 9.81 m.s-2 (Fig. 1). The horizontal walls are isothermal while the sidewalls 

are insulated, and no-slip conditions are applied to all the walls. Initially the fluid is at rest, 

in thermodynamic equilibrium at a constant temperature T'i slightly above the critical 

temperature T'c, such that T'i = (1+)T'c, where  << 1 defines the non-dimensional 

proximity to the CP. Under the effect of its own weight, the fluid is stratified in density and 

in pressure, with a mean density equal to its critical value 'c. While maintaining the top 

wall at its initial temperature T'i, the temperature of the bottom wall is gradually increased 

(during one second) by T' (a few mK). 
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Fig. 1. Geometry of the cube-shaped cavity and the velocity and temperature conditions 
applied to the boundaries. The vertical axis z' is co-linear with the acceleration due to the 
earth gravity g'. Since the first seconds of heating, the temperature field is vertically 
stratified, divided in three distinct zones: two thermal boundary layers and the bulk of the 
cavity. 

3. The mathematical model 

3.1 Equations governing near-critical fluid buoyant flows 

The mathematical model for a SCF flow (Zappoli, 1992) is described by the Navier-Stokes 

and energy equations written for a Newtonian and highly conducting van der Waals fluid. 

 Continuity:   0.. 



v
t
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






'1
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b

Tr
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Where P' is the pressure, T' is the temperature, and ' is the density. v'(u',v',w') is the 

velocity, g' = (0,0,-g'), e' is the internal energy, and ' is the viscous energy dissipation. ’ is 

the dynamic viscosity, ’ is the thermal conductivity, r’ is the PG constant, a' and b' are 

respectively the energy parameter and the co-volume related to the critical coordinates T'c 

and 'c by: b' = 1/(3'c) and a' = 9r'T'c /(8'c). 
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In spite of its simplicity, the van der Waals’ equation of state gathers the required conditions 

for the existence of the CP and yields to a critical divergence1 as (T'/T'c -1)-1 of the thermal 

expansion coefficient 'P, of the isothermal compressibility 'T, and of the heat capacity at 

constant pressure C'P. The critical divergence of the thermal conductivity is described by: 

‘ = ‘0(1+Λ -½) where  = 0.75 and '0 is the thermal conductivity for a PG. The heat 

capacity at constant volume C'V and the dynamic viscosity are supposed to be constant and 

equal to those of a PG, C'V0 and '0 respectively. With the van der Waals’ equation of state, 

the expression of the internal energy is given by: δe’ = C'V δT’ - a’.δ’. 

In order to make the variables dimensionless, T'c, 'c, and r''cT'c are used respectively as 

representative scales of the thermodynamic variables T', ', and P'. The independent 

variables of length x'(x',y',z') and time t' are scaled respectively by the height of the cavity 

H' and the PE time-scale2 given by t'PE =  -1'c H' 2/'0 with  =  -1(-1+ -0.5) (Zappoli, 1992; 

Zappoli et al., 1999). Hence, the representative scale of velocity is V'PE = H'/t'PE. This scaling 

introduces the Reynolds numbers Re =, the Froude number Fr = (V'PE) 2/(g'H'), the Prandtl 

number based on the properties of the PG assumption (Pr0 = '0C'P0 /'0), and the Mach 

number Ma = V'PE/c'0 where c‘0 = (0 r’T‘c)½ is the speed of sound for a PG (with 

0 = C'P0 / C'V0). Note that the PE time-scale obtained by (Onuki et al., 1990) is given by 

t‘1 = H‘2/D’T( -1)2, where D'T is the thermal diffusivity and  = C'P /C'V is the specific-heat 

ratio. Adapted for a van der Waals’ gas 3 and in the assumption that  <<1, the PE time-scale 

t‘1 ≈ Pr/Λ0 (-1)×t'PE. 

3.2 The acoustic filtering of the governing equations 

Despite its high isothermal compressibility, the sound speed c' in a SCF, defined by 

c' 2 = C'P/ C'V'T-1, does not vanish at the CP according to the van der Waals’ equation of 

state, indeed C'P /C'V and 'T diverge with the same critical exponent of -1, which allows the 
acoustic filtering of the equations. In the basic assumption that Ma<< 1, all the primary 

dimensionless variables of the problem  = t(v, T, P, ) can be expanded in series of Ma2 

(Paolucci, 1982) as follows:  = (0) + 0 Ma2(1) +o(Ma2) where (0) and (1) are O(1). The O(1) 
and O(Ma2) parts of the governing equations resulting from this expansion that need to be 
solved are given by: 

 O(1) continuity:   0.. 



v
t

 (5) 

 O(1) momentum: 0 thP  (6) 

 O(Ma2) momentum: 
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
 e

vvvv
v

.
3

1

Re

1
. 2)1(  (7) 

                                                 
1 The real critical exponents (which are the same for all fluids) differ from those obtained from the van 
der Waals’ equation of state that remains a good approximation to carry out qualitative studies. 
2 The PE time-scale is the time necessary the PE to homogenize the temperature in the core of the cavity, 
this time-scale is between the acoustic time scale (H'/c') and the thermal diffusion one (H'2/D'T) where c’ 
is the sound velocity in the SCF and D'T is the thermal diffusivity. 
3 For a van der Waals’ gas,  /0 =CP /CP0 = 1+(1-1/0 ) -1. 

www.intechopen.com



 
Rayleigh–Bénard Convection in a Near-Critical Fluid Using 3D Direct Numerical Simulation 

 

177 
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 O(1) van der Waals: 2

1





a
b

T
PP hydth 


  (9) 

In these equations, v(u,v,w), T, P, and  refer to the O(1) of the dimensionless variables, the 
superscript (0) has been omitted for conciseness. Pth and Phyd are respectively the 
thermodynamic pressure (homogeneous in space but time varying according to the O(1) 
momentum equation) and the time independent hydrostatic pressure (P(0) = Pth+ Phyd). 
a = 9/8 and b = 1/3 are the dimensionless parameters of the van der Waals’ equation of state, 

eg = (0,0,-1). Before the heating begins, the initial dimensionless density distribution i, the 
initial thermodynamic pressure Pthi, and the hydrostatic pressure Phyd are obtained from the 
initial thermodynamic and static equilibrium with the constraint of a dimensionless mean 
density equal to 1. This results in: 

  1iT , Kz

Ki e
e

K

1
 , a

b
P

ith 




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1  ,  11  
iThydP    (10) 

where 
 

a
b

T 2
1

1
2

1 



   and 
Fr

Ma
K T

2
0  

This low Mach number approximation (adapted to SCF buoyant flows) differs from the 

classical one where i = 1 and consequently Phyd = 0. Indeed, owing to the divergence of the 
isothermal compressibility of the SCF, the hydrostatic pressure induces density variations 

(i - 1) comparable to those resulting from a weak heating. This has been done by keeping 

the buoyancy term (0Ma2/Fr)(0)eg in the leading order O(Ma2) of the momentum equation 
(Eq. 7) while in the classical low Mach number approximation, this term is shifted to the 
O(Ma4) order. It has been shown (see § 5.2) that this modification is essential for a correct 
prediction of the convection onset in the thermal boundary layers (Accary et al., 2005c). 

We consider the carbon dioxide critical coordinates (T'c= 304.13 K, 'c = 467.8 Kg.m-3) and 
physical properties (r' = 188 J.Kg-1.K -1, '0 = 3.4410-5 Pa.s, C'V0 = 658 J.Kg-1.K-1, Pr0 = 2.274, 
'0 = 0.01 W.m-1.K-1,). The simulations were carried out for T'i - T'c = 1K ( = 3.2910-3); in this 

case, t'PE = 0.256 s, V'PE = 3.9 cm.s-1, Re = 5710, Fr = 1.5510-2, K = (4/9)(0Ma2/(Fr) = 
2.3210-4, and the effective Prandtl number Pr = Pr0.-½ = 39.6. 

4. Numerical method 

In describing the numerical method used in this analysis, it is assumed that the reader is 
familiar with the basis of the standard finite volume method and with the velocity-pressure 
coupling algorithms extensively reported in (Patankar, 1980). In this section, we will draw 
the outlines of the method the space and the time accuracies, the velocity-pressure coupling, 
the linear systems solvers, and the solver performance. 

4.1 Space and time discretization 

The computational domain is subdivided into a number of cells using a wall refined mesh 
for a better description of the solution in the boundary layers, the mesh is refined in the 
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vicinity of the walls; as one moves away from the wall, the control volume size increases 
according to a geometric progression. If N is the number of cells in a direction (x for 
example), the dimensionless positions of the cells interfaces between the wall and the center 
of the computation domain (i.e. for 0 < x(i) ≤ 0.5) would be: 

 
q

N

i2

2

1
)i(x 






  for i = 1,...,N/2 (11) 

For 0.5 ≤ x(i) < 1, cells interfaces position are obtained by symmetry with respect to x = 
0.5. Depending on the value of q (q≥1), this mesh refinement is termed ‘power q law’ type; 
q=1 provides a uniform mesh, the simulations were carried out with q = 2. The variables 
location is staggered: the scalar variables are stored at the cells centers while the velocity 
components are defined at the midpoints of the cells faces perpendicular to the velocity 
direction. This staggering practice avoids the high-frequency noise in the solution 
resulting from the well-known problem of the zigzag pressure filed which would be made 
up of arbitrary values of pressure arranged in a checkerboard pattern (Patankar, 1980). In 
return, this staggering has no adverse consequences in the simple rectilinear domain 
considered here. 

The convection-diffusion transport equation of a variable  to be solved in computational 
fluid dynamics can be written as: 

      
S

t





.. v  (12) 

Where Γ is the diffusion coefficient and S is a source term. While integrating Eq. 12 over 

the control volume (CV) of a discrete variable p and over a time step, the value of a 

variable  and its gradients are assumed to be constant on its CV faces; therefore the space 
accuracy of the method is already limited to the second order, depending on the 
interpolation scheme in the direction perpendicular to the considered face used to 

approach the value of  and its derivative. 

The time integration is fully implicit providing the method a non-conditional stability as far 

as the time step is concerned; and to allow large time scale simulations, the unsteady terms 

are approached by a standard Euler time scheme with four time levels, leading to a third 

order truncation error in time. The time integration of Eq. 12 at the instant tn and for a 

uniform time step t is done as follows: 

             nnnnnnn S
t

 






   ..

3

1

2

3
3

6

111 321
v  (13) 

Careful space discretization and integration of the transport equation is needed to reach the 

second order space accuracy ceiling of the method particularly for a non-uniform mesh. This 

concerns the integration of the source and the unsteady terms, and the evaluation of the 

variable  and its gradients at the faces of a CV. A linear interpolation is used to evaluate the 

density at the faces of a CV, while a harmonic mean is considered for the thermal 

conductivity as recommended in (Patankar, 1980). Figure 2 shows the grid structure and the 

notations in one dimension. 
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Fig. 2. Mesh structure and notations in one-direction. 

For a second order space integration, the integrand should be localized in the centre of the CV; 
it is the case for the scalar variables (see Fig. 2), while for the velocity components a neighbor 

contribution must be considered when the grid is not uniform. For example, if  refers to a 

velocity component, its value *w at the centre of the velocity CV (Fig. 2) can be written as: 

  wp

p2

p3

ww
2

1
2

1
* 




 









  (14) 

*w =  w if δ3p = 2 δ2p (uniform mesh) 

A central difference (CD) scheme approaches the diffusion terms. For the velocity 
components, since CV faces are localized at midway between two consecutive velocity 
nodes (see Fig. 2), the standard two-point formulation provides a second order 
approximation of the velocity gradients at the faces of a CV. It is not the case for a scalar 
variable on non-uniform mesh, where a three-point scheme is necessary to reach the second 

order accuracy. For example, the gradient of a scalar  at the face p can be written as: 

         
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
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

  (15) 

In this scheme, a correction is added to the standard CD formulation, a correction 
depending on (δ2p – δ1p), hence that vanishes for a uniform mesh. 

A second order hybrid scheme (SHYBRID) is used for the convection terms (Li & Rudman, 
1995). It uses a four-point formulation to interpolate the values of a variable at the faces of 
its CV, and combines the QUICK, the second order upwind (SOU), and the CD schemes 
whose respective weights in the formulation depend on the local Peclet number which is the 

ratio of the convection flux to the diffusion one. The value p of a variable  at a face p is 
determined as follows: 

 
))1((q)1(,0vif

))1((q)1(,0vif

EPWpPWpp

WWWPpPWpp











 (16) 

where, 
p2p1

p2







 , 

p3

p2p1







 , 
p4

p2p1







  

The CD, SOU, and QUICK schemes fall into this formulation for appropriate choices of q -p 

and q +p; for the CD scheme q +p = q –p = 0, for the SOU scheme q –p =  and q +p = 1-, and for 

www.intechopen.com



 
Finite Volume Method – Powerful Means of Engineering Design 

 

180 

the QUICK one q –p = δ1p /(δ1p+δ2p+δ3p) and q +p = (1-)δ2p /(δ1p+δ2p+δ4p). The values of q -p and 
q +p are automatically adjusted during the simulation according to the local Peclet number 
(Pep) in order to minimize the potential oscillations by minimizing the remote-nodes 
contributions while maintaining positive neighbor-nodes coefficients (see Patankar, 1980, 2nd 
basic rule). This minimization (Li & Rudman, 1995) results in,  

 
 
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1
,0maxqand
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1
1,0maxq,0Peif

0qq,0Peif


 (17) 

A quick inspection of these choices shows that when the transport is diffusion-dominated 
(Pep very small) SHYBRID scheme becomes the CD, when the transport is convection-
dominated (Pep very large or infinity) SHYBRID approaches the SOU scheme, and between 
these two limits it may go through the QUICK scheme for certain values of Pep. Thus, 
SHYBRID is a stable second order accurate scheme for a wide range of the Peclet number. In 
order to suppress non-physical oscillations when predicting solutions with sharp gradients 
(Li & Rudman, 1995), a flux-correction transport was necessary; it was however useless for 
the gradient magnitudes encountered in our study. 

Integrating Eq. 12 for p, the discrete transport equation may be written after some 
manipulation (Patankar, 1980), as:  

 c

6

1nb

nbnbPP Saa 


  (18) 

where aP and anb are discretization coefficients, Sc is the discrete source term, and the 

subscript nb designates the six direct neighbors of the node P, any remote-node contribution 

resulting from second order space discretization is included in Sc. The linear system (Eq. 18) 

is solved using iterative methods (Barrett et al., 1994); the pressure symmetric equation is 

solved using the Conjugate Gradient method with Jacobi preconditioning, while the Bi-

Conjugate Gradient Stabilized with the same preconditioner is used for the other non-

symmetric transport equations. In addition, the pressure equation is preconditioned using a 

SCF equivalent of the artificial compressibility method proposed by (Chorin, 1997). In spite 

of the computational optimization of these solvers, most of the computation effort was spent 

on solving the linear systems and especially the pressure one. 

4.2 The coupling algorithm 

The pressure splitting in the low Mach number results into two more variables in the 

governing equations, the hydrostatic pressure Phyd and Pth the thermodynamic one. Phyd is 

time-independent and is given by the initial stratification (Eq. 10), while Pth (constant in 

space) can be determined at any moment using the conservation of the total mass whose 

dimensionless value is equal to 1.  

 1..  


Vdd i x  (19) 
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In order to determine Pth, one must provide the function  =  (Pth,T); thus at each time step 
and at each iteration k of the velocity-pressure coupling algorithm, after computing the 
temperature field, the density is linearized using the van der Waals’ equation as follows:  
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The thermodynamic pressure at iteration k is computed from the conservation of the total 
mass of the fluid, since:  
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Thus for each time step, a global iterative process (Fig. 3) consists first in solving the 

energy equation (since the flow is temperature driven), updating the thermodynamic 

pressure (Eq. 21) and the density (Eq. 20) using the linearized equation of state, and then 

solving the dynamic field. The global convergence is assumed obtained when the L-norm 

of all governing equations residuals (momentum, energy, and state) reach an imposed 

stopping criterion. The velocity-pressure coupling is treated by a PISO algorithm (Jang et 

al., 1986); at each sweep, a velocity prediction, a pressure prediction, and a velocity 

correction are performed; at this stage, a second correction of the dynamic field is useless 

since the density will be severely perturbed in the next iteration. PISO algorithm 

determines the pressure field using a pressure equation and requires no pressure 

correction that introduces instability into the convergence process of unsteady solutions. 

More details about the numerical method can be found in (Accary et al., 2006) where the 

code has been thoroughly validated using an artificial analytical solution and on several 

benchmark problems of natural convection. 

 

Fig. 3. Global iterative procedure at each time step. 

The dimensionless computational domain is a cube of unit length,  = [0,1]3. For the 
momentum equation, Dirichlet conditions (v = 0) are applied on all boundaries. For the 
energy equation, homogeneous Neumann conditions are applied on the vertical 
boundaries and Dirichlet conditions on the horizontal ones: T(z=1) = Ti and after one 

second of simulation T(z=0) = Ti+T, T = T'/T'c being the dimensionless intensity of 
heating. The mesh size and time step depend on the heating applied to the bottom plate; 
the mesh size varies between 1003 and 2003 computation points and the dimensionless 
time step varies between 0.01 and 0.1. At each time step, the converged solution is 
supposed to be obtained when the residuals of all transport equations reach 10-9 in non-
dimensional form. 
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5. Rayleigh-Bénard convection in a near critical fluid 

5.1 Hydrodynamic stability of the thermal boundary layers 

As mentioned earlier, because of the PE, the temperature field is stratified vertically with 

three distinct zones since the first seconds of heating: the hot boundary layer, the cold 

boundary layer and the bulk of the cavity. Regardless the considered heating, as long as the 

flow is dominated by the diffusion and by the PE, the thermal boundary layers grow as 

(D'T.t‘)½ with D'T = 5.1810-5 cm2.s-1. For T' = 1 mK, figure 4(a) shows the fast and 

homogeneous increase of the temperature in the bulk of the cavity by the PE and the growth 

of the thermal boundary layers. Figure 4(b) shows the corresponding density profiles; we 

notice that the density variations induced by the heating are comparable to those resulting 

from the hydrostatic pressure, which justifies the adaptation of the low Mach number 

approximation by including the fluid stratification in the model. 

 

Fig. 4. (a) Temperature profiles for T' = 1 mK showing the action of the PE and the growth 

of the thermal boundary layers before the convection onset. (b) The corresponding density 

profiles scaled by the density variation due to stratification in the dimensionless form 

s = K = (4/9)(0Ma2/(Fr). 

The thickness h' of the hot boundary layer was defined as the average distance from bottom 

wall where the local vertical temperature gradient becomes equal to the global one between 

the horizontal plates, T'/H'. The total temperature variation inside the hot boundary layer 

is denoted T'. The normalized variables h = h'/H' and T = T'/T'c are also defined. For 

T' = 1 mK, figure 5(a) shows the time evolution of h and of T until the beginning of the 

convective regime. T increases to reach a maximum after one second of heating, and then it 

decreases progressively according to the function et×erfc(t½) (Zappoli & Durand-Daubin, 

1994) as a result of the PE action that increases the temperature of the core. For a SCF 

diffusing-layer, the local Rayleigh number based on h and T is given by (Gitterman & 

Steinberg, 1970b; Carlès & Ugurtas, 1999):  
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To account for the high compressibility of the SCF, the classical expression of the Rayleigh 

number is modified in Eq. 22 by the adiabatic temperature gradient (T'a /H' = g''PT'i /C'P) 

obtained by moving a fluid particle along the hydrostatic pressure gradient. This term, that 

can be neglected for a normally compressible fluid, represents the stabilizing contribution of 

the Schwarzschild criterion commonly encountered for large air columns, and according to 

which the fluid layer is stable if:  
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 (23) 

In the considered model, the adiabatic temperature gradient T'a /H' = 0.34 mK/cm and 

does not depend on the proximity  to the CP since 'P and C'P have the same critical 

exponent of -1. To better estimate the interaction between natural convection and 

stratification, the normalized intensity of heating of the bottom wall T is henceforth 

expressed in terms of Ta = T'a/T'c. 

Figure 5(b) shows the time evolution of Racorr(h,T) for T = 3Ta. According to Eq. 22, 

Racorr(h,T) behaves as h3T ~ t3/2×et×erfc(t½); in fact, Racorr(h,T) can be very well fitted in 

Fig. 5(b) by the curve 180×t3/2×et×erfc(t½), and we can easily prove at long time scales that 

erfc(t½) ~ e-tt-½, which explains the linear time evolution of Racorr(h,T). When the local 

Rayleigh number exceeds the critical value of about 1100 (Chandrasekar, 1961), the hot 

boundary layer becomes unstable4. Convective cells start to get organized along the bottom 

plate; figure 6(b) enables the visualization of these vortical structures using the Q-criterion5 

(Dubief & Delcayre, 2000) along the bottom plate. Then, the intensity of these vortices rises 

exponentially with time; this can be easily seen on the time evolution of the mean enstrophy 

in the hot boundary layer shown in Fig. 5(b) and defined by:  
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The intensity of these convective cells keeps rising until producing enough amount of 

convective transport to deform the isotherms causing the collapse of the thermal boundary 

layers. For T = 3Ta, the collapse of the hot boundary layer occurs around t = 120 and 

corresponds to the symbol (□) in Figs. 5(a) and 5(b), afterwards the convective regime starts 

and the definition of the hot boundary layer holds no more. The cold boundary layer 

developed along the top plate is governed by the same mechanisms and its hydrodynamic 

                                                 
4 The considered critical Rayleigh number is that of fluid layer with mixed (solid-free) boundary 
conditions. However, because the hot boundary layer is connected to the bulk of the cavity, its upper 
boundary is not sharply defined, the real critical Rayleigh number should slightly defer from 1100; 
but this value, even though not very precise, remains the most suitable theoretical value for the 
considered configuration. 
5 Q = ½(Ωij Ωji - Sij Sji) where Sij and ij denote respectively the symmetric and anti-symmetric parts of v . 
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stability depends on the same criterion (Accary et al., 2005b); the same scenario occurs for 

the cold boundary layer. 

 

Fig. 5. (a) Time evolution of the hot boundary layer thickness h and of the temperature 

difference inside it T for T' = 1mK. The symbol (□) indicates the beginning of the 

convective regime. (b) Time evolution of the local Rayleigh number Racorr(h,T) related to the 
hot boundary layer by Eq. 22 and of the mean enstrophy in the hot boundary layer (Eq. 24) 
showing the exponential increase of the intensity of convection. 

 
           (a)         (b)   

Fig. 6. (a) A cut of the temperature field for T = 3Ta; the lower and upper shaded 

isotherms correspond respectively to T−Ti /T = 0.33 and 0.66. (b) A cut of the iso-surface 

Q = 210-8 (Qmin = -1.410-5, Qmax = 2.810-5) showing the vortical structures in the thermal 
boundary layers shown in subfigure (a). 

In Fig. 7, the critical value of T for the convection onset in the hot boundary layer is derived 
from Eq. 22 and plotted versus h (the thick solid line) defining the unstable zone. This 
neutral stability curve consists of two lines representing the limits of the convection-onset 
criterion depending on h. For small values of h, the fluid compressibility can be neglected 
and the stability of the hot boundary layer is governed by the classical Rayleigh criterion, 
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obtained from Eq. 22 by dropping the term g''PT'i /C'P, while for larger values of h, 
viscosity and thermal diffusion are neglected, and the stability depends on the 

Schwarzschild criterion obtained from Eq. 23. For several intensities of heating T, figure 7 

shows the evolution curves T(h) for the hot boundary layer (the solid blue lines) until the 
beginning of the convective regime, which corresponds to the symbol (□). Figure 7 shows 
also results obtained in a 2D approximation with periodic vertical boundaries (the dashed red 
lines) (Accary et al., 2005b). The boundary effects induced by the presence of the lateral walls 
in the 3D case accelerates the development of convection and, at equal intensity of heating, the 
convective regime is reached earlier in comparison with the 2D approximation with periodic 

vertical boundaries. For low intensities of heating, practically for T  0.72Ta, once the hot 
boundary layer has become unstable, the intensity of the convective cells rises exponentially 
with time until deforming the isotherms. However, this deformation is not large enough to 

induce the collapse of the hot boundary layer that keeps growing and the curve T(h) crosses 
the Schwarzschild line back into the stable zone again and a reverse transition to stability 
obtained without any external intervention (Accary et al., 2005a). This phenomenon requires 
that the thermal boundary layers grow enough without reaching the centre of the cavity (in 
order to avoid their interaction); a height of 1.5H' at least is needed in this case. 

 

Fig. 7. Evolution of the temperature difference T across the hot boundary layer as a function 
of its thickness h. Time evolves in the arrows’ direction and the symbols (□) correspond to the 
beginning of the convective regime. The neutral stability line was derived from Eq. 20. The 2D 
results were obtained using a cavity of height 1.5H' with periodic vertical boundaries; for 

T  0.72Ta, a reverse transition to stability is obtained though the Schwarzschild line. 
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5.2 Effect of the adapted low Mach number approximation on convection onset 

Figure 8 shows a comparison for the evolution curves T(h) between the low Mach number 

approximation adapted to the SCF flow (ALMN) described in § 3.2 and the classical one 

(CLMN) obtained from the model by setting i = 1 in Eq. 10. The simulations are carried-out 

in a 2D approximation but with periodic vertical boundaries in order to suppress the 

disturbance resulting from the side walls. The straight dashed line with a slop of (-3) 

represents the classical Rayleigh criterion obtained from Eq. 22 by removing the adiabatic 

temperature gradient term. We notice that for a relatively strong heating (T > 3Ta) the 

flows predicted with both models are similar but not identical and the collapse of the 

thermal boundary layers occur at about the same time; this is due to the fact that a strong 

heating covers the effects of stratification, but the weight of this latter becomes more 

significant as the heating decreases. 

 

Fig. 8. Comparison between the adapted low Mach number model (ALMN) and the classical 

one (CLMN) for the evolution of the temperature difference T across the hot boundary 

layer as a function of its thickness h. The symbols (□) and () correspond to the beginning of 
the convective regime and the neutral stability line was derived from Eq. 22. The 
simulations are carried-out in a 2D approximation with periodic vertical boundaries. 

If we consider for example the case T=0.9Ta, the collapse of the hot boundary layer is 

observed with about 90t'PE of time gap between the two models. For T=0.9Ta, figure 9 
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shows the temperature fields obtained 100t'PE after the collapse of the hot boundary layer. 

Compared to Fig. 9(a) (ALMN), the thermal plumes are much more developed in Fig. 9(b) 

(CLMN) since their motion is not hindered by the stratification which, when taken into 

account, prevents the free growth of the plumes. However for the considered heating 

intensity (T=0.9Ta), the thermal plumes manage to deform the temperature field giving 

rise the slowly moving structures. As the heating gets weaker (T < 0.6Ta for example), the 

buoyant force being not strong enough for pulling the fluid particles through the hydrostatic 

pressure gradient, the hot boundary layer predicted with the ALMN approximation remains 

stable. In return, not including the stratification, the CLMN model is unable to take account 

of this stabilizing effect and persists in predicting a convective instability (according to the 

classical Rayleigh criterion) provided that the height H’ of the cavity allows enough growth 

of the thermal boundary layers. 

  
 (a)    (b) 

Fig. 9. Comparison of the temperature fields obtained in a 2D approximation (with periodic 

vertical boundaries) for T=0.9Ta, 100t'PE after the collapse of the hot boundary layer. (a) 
Adapted low Mach number model (ALMN), (b) Classical low Mach number model (CLMN). 

5.3 The beginning of the convective regime 

The convective regime starts with several plumes rising from within the thermal boundary 

layers as shown in Fig. 10(a). These plumes are encircled by donut-shaped structures shown 

by the Q-criterion in Fig. 10(b). Convection improves the heat transfer between the 

isothermal walls and the bulk of the cavity, resulting into a faster thermal balance in the 

whole fluid volume. For all the heating cases that we considered, the hot boundary layer has 

always become unstable before the cold one. As the heating increases, convection is 

triggered earlier since the instability criterion (Racorr(h,T) > 1100) is satisfied earlier; 

consequently, the thickness of the thermal boundary layer is smaller when the convection 

arises and the size of the convective structures decreases as shown in Fig. 11. A detailed 

study of the size of the convective structures has been done in a 2D approximation in 

(Accary et al., 2005b). 
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(a)         (b)  

Fig. 10. (a) A cut of the temperature field for T = 3Ta showing the beginning of the 
convective regime; the lower and upper shaded isotherms correspond respectively to 

T−Ti /T = 0.33 and 0.66. (b) A cut of the corresponding iso-surface Q = 0.015 (Qmin = -0.15, 
Qmax = 0.15). 

 
(a)         (b)  

Fig. 11. Cuts of temperature fields for (a) T = 15Ta and (b) T = 30Ta showing the effect of 
the intensity of heating on the temperature field at the beginning of the convective regime. The 

lower and upper shaded isotherms correspond respectively to T−Ti /T = 0.33 and 0.66. 

5.4 Transition to turbulence 

In the convective regime of the flow that follows the convection onset, the Rayleigh number, 

based on the total height H' of the cavity and on the temperature difference T' between the 
isothermal walls (Eq. 25), becomes a better indicator of the regime of the flow. 
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For T < Ta, the Rayleigh number obtained from Eq. 25 is negative; this, however, does not 
prevent convection to arise in the thermal boundary layers when the local Rayleigh number 

(Eq. 22) exceeds 1100. But for T > Ta, for example for T = 1.5Ta, the term in front of the 

parentheses in Eq. 25, which diverges as -1.5, is very large and results in a Rayleigh number 

of 2.68×106, while for a PG, the Rayleigh number is directly proportional to T. 

The turbulent Rayleigh-Bénard convection is characterized by a statistically steady state of 
heat transfer. In the considered configuration, the settlement of the turbulent regime may 
be identified on the time evolution of the mean Nusselt numbers on the isothermal walls 
given by: 
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 (26) 

For T = 7.5Ta which corresponds to Racorr = 80×106 (Eq. 25), figure 12 shows the time 
evolution of the mean Nusselt numbers on the bottom wall and of the top one. The 
convection onset is easily identified by the improvement of the heat transfer 
corresponding to the increase in the mean Nusselt numbers that stabilize afterwards 
around almost the same value, which indicates the settlement of the turbulent flow. 
Figure 13(a) shows the temperature field obtained in the turbulent regime. We notice 
first the appearance of crest-like patterns defining on the isothermal walls flat regions 
where the temperature is almost homogeneous in the (x,y) plan, we notice also the 
spreading of the isotherms along the adiabatic walls. Figure 13(b) shows the chaotic flow 
that takes place in the turbulent regime. The vortical structures have no particular shape; 
the tubular and toroïdal structures obtained at the beginning of the convective flow have 
completely disappeared. 

 

Fig. 12. Time evolution of the mean Nusselt numbers (Eq. 26) on the bottom wall (Nuh, h 

for hot) and the top one (Nuc, c for cold) for T = 7.5Ta (Racorr = 80×106). 
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(a)         (b)  

Fig. 13. (a) A cut of the temperature field for T = 7.5Ta; the lower and upper shaded 

isotherms correspond respectively to T−Ti /T = 0.33 and 0.66. (b) A cut of the corresponding 
iso-surface Q = 0.015 (Qmin = -0.37, Qmax = 0.67). 

In order to better estimate the size of the vortical structures and its time evolution, a discrete 
Fourier transformation6 of the vertical velocity component w has been carried out in both x 
and y directions. Along the line (y = y0, z = z0) and for a wavelength H’/k associated to the 
mode k, the Fourier coefficient of w(x,y0,z0) is given by: 

      
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Once the coefficients Wx(k, y0, z0) are computed for all (y0, z0), the mean contribution of the 
mode k to the field of w is determined by: 
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Figure 14 shows the contribution of the different modes to the spectrum of the component w 
in the x and y directions at the beginning of the convective regime and in the turbulent one. 
We notice an important contribution of small wavelengths ranging between H'/11 and H'/4 
at the beginning of convection (at t = 89.25, see Fig. 12). But as time goes by, the spectra of w 
show a much higher contribution of large wavelengths exceeding sometimes half the of the 
cavity width. Similar results were obtained for the horizontal velocity components, u and v. 
Thus, the turbulent flow consists mainly of large vortical structures. 

Figure 15 shows cuts of the temperature field in the vertical median plans of the cavity with 
the corresponding velocity fields that confirm the presence of large convective structures in the 
steady-state turbulent regime. We notice that the temperature field consists mainly of two 
unstable thermal boundary layers exchanging heat and mass with the bulk of the cavity in  

                                                 
6 The operation required the fictive assumption of a periodic and odd distribution of w in the horizontal 
directions with a period of 2H'. 
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Fig. 14. The weights of the different wave-vectors k in the spectrum of the vertical velocity 

component w obtained in the directions x (a) and y (b) for T = 7.5Ta. In average, the 
convective structures are clearly larger in the steady-state turbulent regime (t = 290.6 and 
325.6) than at the beginning of convection (t = 89.25). 

 

Fig. 15. Vertical cuts at x = 0.5 and y = 0.5 of the normalized temperature field T−Ti /T 

shown in Fig. 13(a) (T = 7.5Ta, t = 290.6), with the corresponding velocity fields. 

which the convective activity induces a quasi-homogeneous temperature. Figure 16 shows the 
time evolution, along the vertical axis of the cavity (x = y = 0.5), of the velocity magnitude and 
of the temperature at the free boundaries of the thermal layers (z = 0.05 and z = 0.95)7 and at 
the centre of the cavity; the velocity components have the same order of magnitude. Figure 

                                                 
7 Despite convection, the thickness of the thermal boundary layers may be computed at each point of 
the horizontal walls using the same definition of section 5.1; the normalized values of the thermal 
boundary layers’ thicknesses (that were averaged in space and in time) are around 0.05. 
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16(a) underlines the chaotic convection that takes place in the whole fluid volume; the velocity 
has been monitored at 25 different points of the cavity and confirms that chaotic behavior. In 
the steady-state turbulent regime, figure 16(b) shows a slight difference of the time-averaged 
temperature between positions z = 0.05 et z = 0.95, which reveals the existence of a temperature 
gradient in the bulk of the cavity that will be investigated in § 5.5. 

 

Fig. 16. Time evolution of the local velocity magnitude (scaled by V'PE = H'/t'PE = 3.9 cm.s-1) 
(a) and the local normalized temperature (b) at three positions (z = 0.05, 0.5, and 0.95) along 

the line x = y = 0.5, for T = 7.5Ta. 

5.5 The global thermal balance of the cavity 

The steadiness of the mean Nusselt numbers on the isothermal walls (Fig. 12, turbulent 

regime) reflects the settlement of a statistically steady-state heat transfer across the cavity. 

However, figure 17 reveals the strong non-uniformity of the Nusselt numbers distributions 

on the isothermal walls. These patterns are directly related to those of the temperature field: 

the Nusselt number’s minima are reached under the crest-like patterns shown in Fig. 13(a), 

while the maxima are obtained inside the cells determined by those patterns. These cells are 

thus characterized by very thin thermal boundary layers; for the temperature field shown in 

Fig. 13(a), the minimal normalized thicknesses of the thermal boundary layer were about 

0.014 for the hot boundary layer and 0.012 for the cold one and were obtained where the 

distributions of the Nusselt numbers reach their maxima. Despite the strong non-uniform 

distributions of the Nusselt numbers, in the steady-state turbulent regime, the mean Nusselt 

numbers on both isothermal walls fluctuate around the same value. 

For different intensities of heating and hence Rayleigh numbers, figure 18(a) reports the 

mean Nusselt numbers (the filled circles). For a PG, the experimental results (Poche et al., 

2004) and those issued from a scaling theory (Siggia, 1994) show that Nusselt number 

behaves as Ra2/7. This behavior can be observed for the of the Nusselt number corrected by 

the adiabatic temperature gradient (Kogan & Meyer, 2001), given by: 
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For T >> Ta, Nucorr  Nu; but as the intensity of heating decreases, the corrected 
expression of the Nusselt number (the filled squares in Fig. 18(a)) enables the retrieval of the 
Ra2/7 law. However, it should be reminded that the effective heat transfer is described by the 
classical expression of the Nusselt number given by Eq. 26, not by the corrected one. 

 

Fig. 17. Distributions of the Nusselt number on the bottom (Nuh) and the top (Nuc) 

isothermal walls, corresponding to temperature field shown in Fig. 13(a) (T = 7.5Ta, 
t = 290.6). 

 

Fig. 18. In the steady state regime of the turbulent flow: (a) the classical (Eq. 26) and the 
corrected (Eq. 29) mean Nusselt numbers versus the corrected Rayleigh number (Eq. 25);  
(b) temperature profiles (averaged in the xy-plan) for different intensities of heating 
( T varies between 0 and 1), ATG stands for ‘adiabatic temperature gradient’. 
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At the global thermal balance of the cavity and for all intensities of heating, figure 18(b) 

reveals the existence of a mean temperature gradient in the bulk of the cavity equal to the 

adiabatic temperature one. This is a natural structure of the mean temperature field that 

ensures the minimal temperature gradients in the thermal boundary layers with the 

constraint of a globally stable bulk of the cavity. Indeed, if the mean temperature gradient in 

the bulk of the cavity were larger than the adiabatic temperature one, the bulk of the cavity 

would lose its hydrodynamic stability. In return, if the mean temperature gradient in the 

bulk of the cavity were smaller than the adiabatic temperature one, the bulk of the cavity 

would be ‘too’ stable, but this would increase the temperature gradients in the thermal 

boundary layers. 

6. Comparison between a SCF and a PG, effects of stratification 

The comparison between the Rayleigh-Bénard convection in a SCF and that in a PG is 

carried out here in the 3D case for a Rayleigh number of 2.68106 for which the density 

stratification of the SCF affects clearly the development of convection (T = 1.5Ta). The 

mathematical model described in § 3 was adapted to the PG case, mainly by setting a = b = 0, 

 = 0, and  = 0 in Eqs. 5 to 9, and by choosing reference values of temperature and density 

compatible with the PG assumption, these were set to 300 K and 1.8 Kg.m-3 respectively. An 

intensity of heating T' = 5 K was applied to bottom wall in the PG case and the height H' of 

the cavity, deduced from the classical expression of the Rayleigh number, is equal to 13.8 cm. 

A mesh of 1003 and a time step of 0.125s have been used. 

 

Fig. 19. Time evolution of the mean Nusselt numbers on the isothermal walls obtained in the 

3D case for a Rayleigh number of 2.68106 for a SCF (T = 1.5Ta) and for a PG. The curves 

were shifted by 2s for the PG to show prominently the first peak. For the SCF, the first peak 

of the mean Nusselt number on the bottom wall reaches the value of 370, and the beginning 

of convection at about 60 s is consistent with the result shown in Fig. 7, where the convective 

regime starts at t' = 120tPE = 58.9 s. 
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Figure 19 shows the time 8 evolution of the mean Nusselt numbers for the SCF and for the 

PG 9. The large temperature gradients obtained at the very first seconds of heating in the 

case of the SCF are responsible for the very high peak of the Nusselt number. For the SCF, 

figure 19 reports very similar evolutions of the mean Nusselt numbers on both isothermal 

walls. By contrast for the PG, while the mean Nusselt number on the bottom wall shows a 

similar behavior to that of the SCF during the diffusive regime, no heat transfer is detected 

on the top wall (Nuc = 0) until the beginning of convection. Because the PE is practically 

inexistent for the PG, the heat transfer is only activated on the top wall when the thermal 

plumes rising from the hot boundary layer reach it. Even though the Prandtl number is 

about 18 times smaller 10 (Verzicco & Camussi, 1999), convection in the PG is much more 

developed than in the SCF at the same Rayleigh number, as shown by Fig. 20. The 

fluctuating time evolution of the mean Nusselt numbers for the PG results from this intense 

convective activity. By contrast, the trace of the diffusion-dominated temperature field (Fig. 

20(a)) obtained for SCF due to its strong stratification is visible on the time evolution of the 

mean Nusselt numbers after the convection onset. Under these conditions, the global 

thermal balance of the cavity is mainly achieved by diffusion at long time scales because of 

the critical vanishing (as  ½) of the thermal diffusivity of the SCF. We notice finally that even 

though the temperature field of the SCF is diffusion dominated while it is convection-

dominated for the PG, the corrected mean Nusselt number at the global thermal balance of 

the cavity is the same in both cases. 

 
  (a)     (b)    

Fig. 20. Cuts of temperature fields for a Rayleigh number of 2.68106 (a) for a SCF 

(T = 1.5Ta) and (b) for a PG, showing how the strong stratification of the SCF holds back 

the development of convection. The lower and upper shaded isotherms correspond 

respectively to T−Ti /T = 0.33 and 0.66. 

                                                 
8
 Time is not scaled in this case because the PE does not exist for the PG. 

9
 The PG adiabatic temperature gradient is very small compared to T'/H', hence: Nucorr  Nu. 

10
 According to the model, the PG Prandtl number is about 2.27 against 39.6 for the SCF. 
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7. Conclusions 

In this chapter, the mathematical model for SCF buoyant flows with the appropriate acoustic 

filtering has been recalled, then a description of the different stages of the SCF flow in a cube-

shaped cavity heated from below were reported from the first seconds of heating until the 

settlement of a statistically steady-state of heat transfer, and this for Rayleigh numbers ranged 

from 2.68×106 up to 160×106. While the scenarios of the convection onset and disappearance 

(reverse transition to stability) can be observed in a 2D approximation, the convective regime 

and the transition to turbulence requires 3D simulations. At the beginning of convection, 

tubular convective structures appear inside the thermal boundary layers while the thermal 

plumes are encircled by toroïdal vortical structures; the size of these structures decreases as the 

intensity of heating increases. In the turbulent regime, the convective structures grow until 

their size exceeds half of the cavity, and create on the isothermal walls several cells where an 

intense heat transfer takes place. Despite the non-homogeneous heat transfer on the isothermal 

walls, the steadiness of the mean Nusselt numbers around the same value reflects the global 

thermal balance of the cavity. The relation between that equilibrium Nusselt number and the 

Rayleigh number obtained for a PG (Nu ~ Ra2/7) is applicable to the SCF, provided that the 

adiabatic temperature gradient is taken into account in the expressions of both numbers. In the 

turbulent regime, the temperature field consists mainly of two unstable thermal boundary 

layers and a bulk characterized by a mean temperature gradient equal to the adiabatic 

temperature one. For relatively high intensities of heating (T >> Ta), the global thermal 

balance of the cavity is achieved by a chaotic convection invading in the whole fluid volume. 

By contrast for weak intensities of heating (T ~ Ta), the strong density stratification, due to 

the high isothermal compressibility of the fluid, prevents the free development of convection 

whose penetrability is dramatically reduced; in this case, the thermal balance of the cavity is 

mainly achieved by diffusion and therefore on long time scales. Finally, the comparison 

between the SCF and the PG for the same Rayleigh number showed two major differences. 

The first, related to the PE, is the absence of heat transfer on the top wall for the PG until the 

beginning of convection; while for the SCF, the time evolutions of the mean Nusselt numbers 

on both isothermal walls are similar. The second, related to the stratification of the SCF and 

thus only encountered for T ~ Ta, is the diffusion-dominated thermal balance of the cavity 

for the SCF, while it is convection-dominated for PG. 
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