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1. Introduction

Conservation laws are ubiquitous in continuum physics, they occur in disciplines like fluid

mechanics, combustion theory, plasma physics, etc. These conservation laws are often

of advection-diffusion-reaction type, describing the interplay between different processes

such as advection or drift, diffusion or conduction and chemical reactions or ionization.

Examples are the conservation equations for reacting flow [8] or plasmas [9]. Sometimes,

these conservation laws hold in spherical or cylindrical geometries, and in such cases it is

convenient to reformulate the conservation laws in the corresponding coordinate system. In

combustion theory, for example, the study of spherical and cylindrical flames is useful for

finding parameters such as burning velocity or flame curvature [1].

For space discretization of these conservation laws we consider the finite volume method in

combination with the complete flux scheme to approximate the fluxes at the cell interfaces.

The complete flux scheme for Cartesian coordinates is introduced in [13]. The purpose of this

contribution is to generalize the complete flux scheme to conservation laws in spherical or

cylindrical coordinates.

The development of the complete flux scheme is inspired by papers by Thiart [10, 11]. The

basic idea of the complete flux scheme is to compute the numerical flux at a cell interface

from a local (one-dimensional) boundary value problem for the entire equation, including

the source term. As such, the scheme is a generalization of the exponential scheme, where

the flux is determined from a local, constant coefficient, homogeneous equation [4, 6]. Our

approach is to first derive an integral representation for the flux, and subsequently apply

suitable quadrature rules to obtain the numerical flux. As a consequence, the numerical

flux is the superposition of a homogeneous and inhomogeneous flux, corresponding to the

advection-diffusion operator and the source term, respectively. The resulting discretization

has a three-point coupling in each spatial direction, shows uniform second order convergence

and virtually never generates spurious oscillations [13]. The purpose of this chapter is

to extend this approach to conservation laws, where the advection-diffusion operation is

formulated in spherical or cylindrical coordinates. Another important issue is the extension

to time-dependent problems. The key idea is then to consider the time derivative as a source
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2 Will-be-set-by-IN-TECH

term, and to include it in the inhomogeneous flux. The resulting implicit ODE system often

has small dissipation and dispersion errors [15].

We have organised our paper as follows. The finite volume method for conservation laws in

spherical and cylindrical coordinates is outlined in Section 2. In Section 3 we briefly repeat

the complete flux scheme for stationary, one-dimensional conservation laws in Cartesian

coordinates. The extension to spherical coordinates is presented in Section 4, and the next

logical extension to cylindrical coordinates, is discussed in Section 5. How to deal with time

dependent conservation laws is demonstrated in Section 6 for spherical coordinates. As an

example, we present in Section 7 the numerical solution of a premixed, spherical flame, and

finally in Section 8, we give a summary and formulate conclusions.

2. Finite volume discretization

In this section we outline the finite volume method (FVM) for a generic conservation law of

advection-diffusion-reaction type, defined on a domain in Rd (d = 1, 2, 3). Therefore, consider

the following model equation

∂ϕ

∂t
+∇·(uϕ − ε∇ϕ) = s, (2.1)

where u is a mass flux or (drift) velocity, ε ≥ εmin > 0 a diffusion coefficient, and s a

source term describing, e.g., chemical reactions or ionization. The unknown ϕ is then the

mass fraction of one of the constituent species in a chemically reacting flow or a plasma.

The parameters ε and s are usually (complicated) functions of ϕ whereas the vector field u

has to be computed from (flow) equations corresponding to (2.1). However, for the sake of

discretization, we will consider these parameters as given functions of the spatial coordinates

x and the time t. Moreover, in the derivation of the numerical flux, we assume that the vector

field u is incompressible, i.e.,

∇·u = 0. (2.2)

Equation (2.1) is a prototype of a conservation law for a mixture, defining the mass balance

for ϕ, and equation (2.2) is a simplified version of the corresponding continuity equation,

describing conservation of mass or charge in the mixture.

Associated with equation (2.1) we introduce the flux vector f , defined by

f := uϕ − ε∇ϕ. (2.3)

Consequently, equation (2.1) can be concisely written as ∂ϕ/∂t +∇·f = s. Integrating this

equation over a fixed domain Ω ⊂ Rd and applying Gauss’ theorem we obtain the integral

form of the conservation law, i.e.,

d

dt

∫

Ω
ϕ dV +

∮

Γ
f ·ndS =

∫

Ω
s dV, (2.4)

where n is the outward unit normal on the boundary Γ = ∂Ω. This equation is the basic

conservation law, which reduces to (2.1) provided ϕ is smooth enough.
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The Complete Flux Scheme for Conservation Laws in Curvilinear Coordinates 3

In the FVM we cover the domain with a finite number of disjunct control volumes or cells

Ωj and impose the integral form (2.4) for each of these cells. The index j is an index vector

for multi-dimensional problems. We restrict ourselves to uniform tensor product grids for

an orthogonal, curvilinear coordinate system ξ =
(

ξ1, ξ2, ξ3
)

and adopt the vertex-centred

approach [16], i.e., we first choose the grid points ξj =
(

ξ1
j , ξ2

k , ξ3
l

)

with j = (j, k, l),

where the unknown ϕ has to be approximated and subsequently choose the control volume

Ωj =
[

ξ1
j−1/2, ξ1

j+1/2

]

×
[

ξ2
k−1/2, ξ2

k+1/2

]

×
[

ξ3
l−1/2, ξ3

l+1/2

]

with ξ1
j±1/2 := 1

2

(

ξ1
j + ξ1

j±1

)

etc.

The boundary Γj = ∂Ωj is then the union of six interface surfaces Γj,j±ei (i = 1, 2, 3)

where, e.g., Γj,j+e1 := {ξ1
j+1/2} ×

[

ξ2
k−1/2, ξ2

k+1/2

]

×
[

ξ3
l−1/2, ξ3

l+1/2

]

is the interface through
(

ξ1
j+1/2, ξ2

k , ξ3
l

)

and perpendicular to the line segment connecting ξj and ξj+e1 . The (integral)

conservation law for such a control volume reads

d

dt

∫

Ωj

ϕ dV + ∑
k∈N (j)

∫

Γj,k

f ·ndS =
∫

Ωj

s dV, (2.5)

where N (j) = {j± ei | i = 1, 2, 3} is the index set of neighbouring grid points of ξj and

where Γj,k is the face of the boundary Γj connecting the adjacent cells Ωj and Ωk. The unit

normal n on Γj,k is directed from ξj to ξk. Obviously, the volume element dV and the surface

elements dS have to be expressed in terms of the curvilinear coordinates ξ. Approximating

the volume and surface integrals in (2.5) by the midpoint rule, we obtain the following

semi-discrete conservation law for ϕj(t) ≈ ϕ(ξj, t), i.e.,

ϕ̇j(t)Vj + ∑
k∈N (j)

(F ·n)j,k Aj,k = sj(t)Vj, (2.6)

where Vj is the volume of Ωj, Aj,k the area of Γj,k, ϕ̇j(t) ≈ ∂ϕ/∂t(ξj, t) and sj(t) = s(ξj, t).
Furthermore, (F ·n)j,k is the normal component on Γj,k, at the interface point ξj,k := 1

2

(

ξj +
ξk

)

of the numerical flux vector F , approximating (f ·n)
(

ξj,k, t
)

. Obviously, for stationary

problems the time derivatives in (2.5) and (2.6) can be discarded.

In this paper we consider the formulation of the conservation law (2.1) in terms of the

spherical coordinates (r, φ, θ) and the cylindrical coordinates (r, θ, z). In the first case, we

assume spherical symmetry, i.e., ϕ = ϕ(r, t) and f = f (r, t)er. As a typical example we

mention a spherical flame; see Section 7. A control volume is then given by the spherical shell

Ωj = [rj−1/2, rj+1/2]× [0, π]× [0, 2π) and the surface integral over Γj = ∂Ωj can be written as

∮

Γj

f ·ndS =
∫

r=rj+1/2

f ·er dS −
∫

r=rj−1/2

f ·er dS

= 4π
(

r2
j+1/2 f (rj+1/2, t)− r2

j−1/2 f (rj−1/2, t)
)

,

(2.7)

where we used the shorthand notation r = rj+1/2 to denote the sphere {rj+1/2} ×
[

0, π
]

×
[

0, 2π
)

. Note that this expression for the surface integral of the flux is exact and replaces the

second term in (2.5). For the approximation of the volume integrals in (2.5) we apply the

midpoint rule, so we find

∫

Ωj

s dV
.
= 4

3 π
(

r3
j+1/2 − r3

j−1/2

)

sj(t). (2.8)
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4 Will-be-set-by-IN-TECH

Combining (2.5), (2.7) and (2.8) and using the relation x3 − y3 = (x − y)(x2 + xy + y2) we
obtain the semidiscrete conservation law

∆r
(

r2
j +

1
12 ∆r2

)

ϕ̇j(t) + r2
j+1/2Fj+1/2(t)− r2

j−1/2Fj−1/2(t) = ∆r
(

r2
j +

1
12 ∆r2

)

sj(t), (2.9)

where Fj+1/2(t) denotes the numerical flux approximating f (rj+1/2, t) etc..

Next, for cylindrical coordinates, we assume cylindrical symmetry, i.e., ϕ = ϕ(r, z, t) and
f = fr(r, z, t)er + fz(r, z, t)ez. In this case a control volume is the cylindrical shell Ωj,l =
[rj−1/2, rj+1/2]× [0, 2π)× [zl−1/2, zl+1/2]. The surface integral of the flux over the boundary
Γj,l = ∂Ωj,l contains four terms and is given by

∮

Γj,l

f ·ndS =
∫

r=rj+1/2

fr dS −
∫

r=rj−1/2

fr dS +
∫

z=zl+1/2

fz dS −
∫

z=zl−1/2

fz dS

.
= 2π∆z

(

rj+1/2 fr,j+1/2,l(t)− rj−1/2 fr,j−1/2,l(t)
)

+

2π∆r rj

(

fz,j,l+1/2(t)− fz,j,l−1/2(t)
)

,

(2.10)

where for example r = rj+1/2 denotes the interface {rj+1/2} ×
[

0, 2π
)

×
[

zl−1/2, zl+1/2

]

, and
likewise for all other interfaces. For the approximation of the volume integrals in (2.5) we use
once more the midpoint rule, giving the approximation

∫

Ωj,l

s dV
.
= 2π∆r∆z rjsj,l(t). (2.11)

Analogous to the previous case, combining (2.5), (2.10) and (2.11) we obtain the semidiscrete
conservation law

∆r∆z rj ϕ̇j,l(t) + ∆z
(

rj+1/2Fr,j+1/2,l(t)− rj−1/2Fr,j−1/2,l(t)
)

+

∆r rj

(

Fz,j,l+1/2(t)− Fz,j,l−1/2(t)
)

= ∆r∆z rj sj,l(t),
(2.12)

where Fr,j+1/2,l(t) is the numerical flux approximating fr(rj+1/2, zl , t) and likewise for
Fz,j,l+1/2(t). In the following we suppress the explicit dependence on t.

The FVM has to be completed with expressions for the numerical flux. We require that (F ·

n)j,k depends on ϕ and a modified source term s̃ in the neighbouring grid points xj and xk,
i.e., we are looking for an expression of the form

(F ·n)j,k = αj,kϕj − βj,kϕk + dj,k
(

γj,k s̃j + δj,k s̃k
)

, (2.13)

where dj,k := |xj − xk|. The variable s̃ includes the source term and an additional terms
like the cross flux or time derivative, when appropriate. The derivation of expressions for the
numerical flux is detailed in the next sections.

3. Numerical flux for Cartesian coordinates

In this section we outline the derivation of the complete flux scheme for the steady,
one-dimensional conservation laws in Cartesian coordinates, which is based on the integral
representation of the flux. The derivation is a summary of the theory in [3, 13].
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Fig. 1. The Bernoulli function B (left) and the function W (right).

The conservation law can be written as d f /dx = s with f = uϕ − ε dϕ/dx. The integral
representation of the flux f j+1/2 := f (xj+1/2) at the cell edge xj+1/2 located between the grid
points xj and xj+1 is based on the following model boundary value problem (BVP) for the
variable ϕ:

d

dx

(

uϕ − ε
dϕ

dx

)

= s, xj < x < xj+1, (3.1a)

ϕ(xj) = ϕj, ϕ(xj+1) = ϕj+1. (3.1b)

In accordance with (2.13), we derive an expression for the flux f j+1/2 corresponding to the
solution of the inhomogeneous BVP (3.1), implying that f j+1/2 not only depends on u and ε,
but also on the source term s. It is convenient to introduce the variables a, P, A and S for
x ∈ (xj, xj+1) by

a :=
u

ε
, P := a∆x, A(x) :=

∫ x

xj+1/2

a(ξ)dξ, S(x) :=
∫ x

xj+1/2

s(ξ) dξ. (3.2)

Here, P and A are the Peclet function and Peclet integral, respectively, generalizing the
well-known (numerical) Peclet number. Integrating the differential equation d f /dx = s from
xj+1/2 to x ∈ (xj, xj+1) we get the integral balance f (x)− f j+1/2 = S(x). Using the definition

of A in (3.2), it is clear that the flux can be rewritten as f = −ε eA d
(

e−A ϕ
)

/dx. Substituting

this into the integral balance, isolating the derivative d
(

e−A ϕ
)

/dx, and integrating from xj to
xj+1 we obtain the following expressions for the flux:

f j+1/2 = f h
j+1/2 + f i

j+1/2, (3.3a)

f h
j+1/2 =

(

e−Aj ϕj − e−Aj+1 ϕj+1

) /

∫ xj+1

xj

ε−1e−A dx, (3.3b)

f i
j+1/2 = −

∫ xj+1

xj

ε−1e−AS dx
/

∫ xj+1

xj

ε−1e−A dx, (3.3c)

where f h
j+1/2 and f i

j+1/2 are the homogeneous and inhomogeneous part, corresponding to the

homogeneous and particular solution of (3.1), respectively.

In the following we assume that u and ε are constant; extension to variable coefficients
is discussed in [3, 13]. In this case we can determine all integrals involved. Moreover,

87The Complete Flux Scheme for Conservation Laws in Curvilinear Coordinates

www.intechopen.com



6 Will-be-set-by-IN-TECH

substituting the expression for S(x) in (3.3c) and changing the order of integration, we can
derive an alternative expression for the inhomogeneous flux. This way we obtain

f h
j+1/2 =

ε

∆x

(

B(−P)ϕj − B(P)ϕj+1

)

, (3.4a)

f i
j+1/2 = ∆x

∫ 1

0
G(σ; P, σj+1/2)s(x(σ))dσ, x(σ) = xj + σ∆x. (3.4b)

Here B(z) := z/
(

ez − 1
)

is the generating function of the Bernoulli numbers, in short Bernoulli
function, see Figure 1, P := u∆x/ε is the Peclet number, and G = G(σ; P, σb) is the Green’s
function for the flux, given by

G(σ; P, σb) :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1 − e−Pσ

1 − e−P
for 0 ≤ σ ≤ σb,

−
1 − eP(1−σ)

1 − eP
for σb < σ ≤ 1,

(3.5)

see Figure 2. Note that G relates the flux to the source term and is different from the
usual Green’s function, which relates the solution to the source term. G is a function of the
normalized coordinate σ = (x − xj)/∆x (0 ≤ σ ≤ 1) between xj and xj+1 and depends on the

parameters P and σb, the σ-coordinate of the cell boundary. Obviously, σj+1/2 = σ
(

xj+1/2

)

=
1
2 . For the constant coefficient homogeneous flux we introduce the function

f h
j+1/2 = Fh

(

ε/∆x, P; ϕj, ϕj+1

)

:=
ε

∆x

(

B(−P)ϕj − B(P)ϕj+1

)

, (3.6)

to denote the dependence of f h
j+1/2 on the parameter values ε/∆x and P and on the function

values ϕj and ϕj+1; cf. (2.13). The homogeneous flux (3.6) is the well-known exponential flux
[7].

Next, we give the numerical flux Fj+1/2. For the homogeneous component Fh
j+1/2 we

obviously take (3.6), i.e., Fh
j+1/2 = Fh

(

ε/∆x, P; ϕj, ϕj+1

)

. The approximation of the

inhomogeneous component f i
j+1/2 depends on P. For dominant diffusion (|P| ≪ 1) the

average value of G(σ; P) is small, which implies that the inhomogeneous flux is of little
importance. On the contrary, for dominant advection (|P| ≫ 1), the average value of G(σ; P)
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Fig. 2. Green’s function for the flux for P > 0 (left) and P < 0 (right).
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The Complete Flux Scheme for Conservation Laws in Curvilinear Coordinates 7

on the half interval upwind of σ = 1
2 , i.e., the interval [0, 1

2 ] for u > 0 and [ 1
2 , 1] for u < 0,

is much larger than the average value on the downwind half. This means that for dominant
advection the upwind value of s is the relevant one, and therefore we replace s(x(σ)) in (3.4b)
by its upwind value su,j+1/2, i.e., su,j+1/2 = sj if u ≥ 0 and su,j+1/2 = sj+1 if u < 0, and
evaluate the resulting integral exactly. This way we obtain

Fj+1/2 = Fh
(

ε/∆x, P; ϕj, ϕj+1

)

+ ∆x
(

1
2 − W(P)

)

su,j+1/2, (3.7)

where W(z) :=
(

ez − 1 − z
)

/
(

z
(

ez − 1
))

; see Figure 1. From this expression it is once more
clear that the inhomogeneous component is only of importance for dominant advection. We
refer to (3.7) as the complete flux (CF) scheme, as opposed to the homogeneous flux (HF)
scheme for which we omit the inhomogeneous component.

4. Numerical flux for spherical coordinates

Our objective in this section is to extend the derivation in the previous section to spherical
coordinates, assuming spherical symmetry.

The stationary conservation law can be written as d
(

r2 f
)

/dr = r2s with f = uϕ − εdϕ/dr.
The expression for the flux f j+1/2 := f (rj+1/2) at the cell boundary rj+1/2 is based on the
following model BVP for the unknown ϕ:

1

r2

d

dr

(

r2
(

uϕ − ε
dϕ

dr

))

= s, rj < r < rj+1, (4.1a)

ϕ(rj) = ϕj, ϕ(rj+1) = ϕj+1, (4.1b)

where ε and s are sufficiently smooth functions of r. Moreover, we assume that u > 0 and, in
view of (2.2), u satisfies the relation

U := r2u = Const for r ∈ (rj, rj+1). (4.2)

Analogous to the flux in Cartesian coordinates, we derive an integral relation for the flux
that is the superposition of the homogeneous flux, depending on the advection-diffusion
operator, and the inhomogeneous flux, taking into account the effect of the source term s.
Approximating all integrals involved gives us the expression for the numerical flux Fj+1/2.

Analogous to (3.2) we introduce the variables D, a, P, A and S, defined by

D := r2 ε, a :=
U

D
, P := a∆r,

A(r) :=
∫ r

rj+1/2

a(η)dη, S(r) :=
∫ r

rj+1/2

η2s(η)dη.

(4.3)

We refer to P and A as the Peclet function and Peclet integral, respectively. Integrating the
conservation law from rj+1/2 to r ∈ (rj, rj+1), we obtain the relation

r2 f (r)−
(

r2 f
)

(rj+1/2) = S(r). (4.4)
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Using the definitions of D and A in (4.3), it is clear that the expression for the flux can be
rewritten as

r2 f = Uϕ − D
dϕ

dr
= −D eA d

dr

(

ϕ e−A
)

. (4.5)

Inserting this expression in (4.4), isolating the derivative d
(

ϕ e−A
)

/dr, and integrating the
resulting equation from rj to rj+1 we obtain the following expressions for the flux:

(

r2 f
)

j+1/2
=

(

r2 f h
)

j+1/2
+

(

r2 f i
)

j+1/2
, (4.6a)

(

r2 f h
)

j+1/2
=

(

e−Aj ϕj − e−Aj+1 ϕj+1

) /

∫ rj+1

rj

D−1e−A dr, (4.6b)

(

r2 f i
)

j+1/2
= −

∫ rj+1

rj

D−1e−A S dr
/

∫ rj+1

rj

D−1e−A dr, (4.6c)

where
(

r2 f h
)

j+1/2
and

(

r2 f i
)

j+1/2
are the homogeneous and inhomogeneous part of

(

r2 f
)

j+1/2
, corresponding to the homogeneous and particular solution of (4.1), respectively;

cf. (3.3).

To elaborate the expressions in (4.6) we introduce some notation. 〈a, b〉 denotes the usual inner
product of two functions a and b defined on (rj, rj+1), i.e.,

〈a, b〉 :=
∫ rj+1

rj

a(r)b(r)dr. (4.7)

For a generic variable v > 0 defined on (rj, rj+1) we indicate the average, geometric average
(of vj and vj+1) and the harmonic average by v̄j+1/2, ṽj+1/2 and v̂j+1/2, respectively, i.e.,

v̄j+1/2 := 1
2

(

vj + vj+1

)

,

ṽj+1/2 :=
√

vjvj+1,

1

v̂j+1/2
:=

〈v−1, 1〉

∆r
.

(4.8)

Consider the expression for the homogeneous flux. Assume first that ε(r) = Const on
(rj, rj+1). In this case expression (4.6b) can be evaluated as

(r2 f h)j+1/2 = Fh
(

D̃j+1/2/∆r, P̃j+1/2; ϕj, ϕj+1

)

, P̃j+1/2 :=
U∆r

D̃j+1/2
, (4.9)

with Fh defined in (3.6) and P̃j+1/2 the geometric average of P, which we refer to as the

constant coefficient homogeneous flux, i.e., U = r2u = Const and ε = Const. In general,
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The Complete Flux Scheme for Conservation Laws in Curvilinear Coordinates 9

when ε is an arbitrary function of r, we can derive the following expression

(

r2 f h
)

j+1/2
= Fh

(

D̂j+1/2/∆r, 〈a, 1〉; ϕj, ϕj+1

)

. (4.10)

In the derivation we used that D−1 = A′/U to evaluate the integral in (4.6b). Thus, the flux
can be written as the constant coefficient flux (4.9) with D̃j+1/2 and P̃j+1/2 replaced by D̂j+1/2

and 〈a, 1〉, respectively. Note that 〈a, 1〉 can be interpreted as the average value of the Peclet
function P over (rj, rj+1).

We consider next the expression for the inhomogeneous flux, and first take ε(r) = Const on
(rj, rj+1). Substituting the expression for S(r) in (4.6c) and changing the order of integration,
we can derive the representation

(

r2 f i
)

j+1/2
= ∆r

∫ 1

0
G(σ; P̃j+1/2, σj+1/2) r2(σ)s(r(σ))

( r(σ)

r̃j+1/2

)2
dσ, (4.11a)

with P̃j+1/2 defined in (4.9) and with G the Green’s function for the flux defined in (3.5),
provided the normalized coordinate σ(r) and the coordinate of the cell boundary σj+1/2 are
chosen as

σ(r) =
r − rj

∆r

rj+1

r
, σj+1/2 = σ(rj+1/2). (4.11b)

For arbitrary ε we can generalize (4.11) as follows

(

r2 f i
)

j+1/2
= ∆r

∫ 1

0
G(σ; 〈a, 1〉, σj+1/2) r2(σ)s(r(σ))

D(r(σ))

D̂j+1/2

dσ, (4.12a)

σ(r) =
∫ r

rj

a(η)dη/〈a, 1〉, (4.12b)

where the correction factor D(r(σ))/D̂j+1/2 in (4.12a) is a consequence of the relation

D̂j+1/2dr = ∆r D(r(σ))dσ. Note that a(r) > 0 implies that σ(r) defined in (4.12b) is
monotonically increasing from 0 to 1 on the interval (rj, rj+1). Summarizing, the flux f j+1/2 is
the superposition of the homogeneous and inhomogeneous flux, defined in (4.10) and (4.12),
respectively.

To derive expressions for the numerical flux, we need approximations for D̂j+1/2, 〈a, 1〉, and
σj+1/2 = σ(rj+1/2) with σ(r) defined in (4.12b). Moreover, we need to evaluate the integral in

(4.12a). A straightforward evaluation gives 〈a, 1〉 = U∆r/D̂j+1/2. To determine the harmonic

average D̂j+1/2 from (4.8) we replace ε in the integrand by its average ε̄ j+1/2 and evaluate

the resulting integral exactly. This way we obtain the approximation D̂j+1/2 ≈ ǭj+1/2r̃2
j+1/2.

Using the same approximation for ε in the evaluation of the integral in (4.12b) we obtain
σj+1/2 = rj+1/(2rj+1/2). Since D(r(σ))/D̂j+1/2 = 1 +O

(

∆r
)

, we omit the term altogether

in (4.12a), resulting in an O(∆r2
)

error for the inhomogeneous flux. Moreover, since for
dominant advection G has a distinct bias toward the upwind end of (rj, rj+1), we replace
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r2(σ)s(r(σ)) by its upwind value r2
j sj. The resulting integral can be evaluated as

∫ 1

0
G(σ; 〈a, 1〉, σj+1/2)dσ = σj+1/2 − W(〈a, 1〉).

Then, applying all approximations mentioned above, we obtain the numerical flux

(

r2F
)

j+1/2
=

(

r2Fh
)

j+1/2
+

(

r2Fi
)

j+1/2
, (4.13a)

(

r2Fh
)

j+1/2
= Fh

(

Dj+1/2/∆r, Pj+1/2; ϕj, ϕj+1

)

, (4.13b)
(

r2Fi
)

j+1/2
= ∆r

(

σj+1/2 − W
(

Pj+1/2

))

r2
j sj, (4.13c)

with coefficients Dj+1/2, Pj+1/2 and σj+1/2 given by

Dj+1/2 := r̃2
j+1/2 ε̄ j+1/2,

Pj+1/2 :=
U∆r

Dj+1/2
,

σj+1/2 =
rj+1

2rj+1/2
.

(4.13d)

We refer to (4.13) as the complete flux (CF) scheme for spherical coordinates, with as special
case the homogeneous flux (HF) scheme (4.13b).

5. Numerical flux for cylindrical coordinates

In this section we present the complete flux scheme for conservation laws in cylindrical
coordinates, assuming rotational symmetry about the z-axis. Consequently, the problem does
not depend on the azimuthal coordinate θ. We proceed in two steps. First, we derive the
r-component of the flux in polar coordinates, so we solve an essentially one-dimensional
problem, and second, we extend the scheme by including the z-component, to derive the
full two-dimensional scheme.

The stationary, rotationally symmetric conservation law in polar coordinates reads
d(r f )/dr = rs with f = uϕ − εdϕ/dr. We give a very concise derivation of the CF scheme,
since it is quite similar to the CF scheme in spherical coordinates. To determine the integral
relation for the flux f j+1/2 := f (rj+1/2), we consider the one-dimensional model BVP:

1

r

d

dr

(

r
(

uϕ − ε
dϕ

dr

))

= s, rj < r < rj+1, (5.1a)

ϕ(rj) = ϕj, ϕ(rj+1) = ϕj+1, (5.1b)

where ε and s are sufficiently smooth functions of r and where, because of (2.2), u satisfies
the relation U := ru = Const. The definitions of the variables a, P and A in (4.3) still hold,
whereas the definitions of D and S change to

D := εr, S(r) :=
∫ r

rj+1/2

ηs(η)dη. (5.2)
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We can essentially repeat the derivation in the previous section: integrate the conservation
law from the cell boundary rj+1/2 to r ∈ (rj, rj+1), rewrite the flux in terms of its integrating
factor, substitute the flux in the integral relation and subsequently integrate over the interval
(rj, rj+1), to arrive at the following expressions:

(

r f
)

j+1/2
=

(

r f h
)

j+1/2
+

(

r f i
)

j+1/2
, (5.3a)

(

r f h
)

j+1/2
=

(

e−Aj ϕj − e−Aj+1 ϕj+1

) /

∫ rj+1

rj

D−1e−A dr, (5.3b)

(

r f i
)

j+1/2
= −

∫ rj+1

rj

D−1e−A S dr
/

∫ rj+1

rj

D−1e−A dr, (5.3c)

thus, as anticipated, the flux f j+1/2 is the superposition of the homogeneous flux f h
j+1/2 and

the inhomogeneous flux f i
j+1/2; cf. (4.6).

Next, we have to elaborate (5.3b) and (5.3c). Evaluating all integrals involved, we recover
relation (4.10) for the homogeneous flux. Substituting the expression for S in (5.3c) and
changing the order of integration, we obtain the expression

(

r f i
)

j+1/2
= ∆r

∫ 1

0
G(σ; 〈a, 1〉, σj+1/2) r(σ)s(r(σ))

D(r(σ))

D̂j+1/2

dσ, (5.4)

where the normalized coordinate σ is defined in (4.12b). Finally, to derive expressions for the
numerical flux, we need approximations for D̂j+1/2, 〈a, 1〉, σj+1/2 and for the integral in the
right hand side of (5.4). For the latter, we replace the term r s(r) in the integrand by its upwind
value

(

r s(r)
)

u,j+1/2
, i.e.,

(

r s(r)
)

u,j+1/2
= rj sj if ūj+1/2 ≥ 0 and

(

r s(r)
)

u,j+1/2
= rj+1 sj+1 if

ūj+1/2 < 0. Approximating ε by its average ε̄ j+1/2, we obtain similar results as in Section 4,

except that the harmonic average D̂j+1/2 is now approximated as

D̂j+1/2 ≈ ε̄ j+1/2r̂j+1/2, r̂j+1/2 =
rj+1 − rj

ln
(

rj+1/rj

) .

From straightforward Taylor expansions we conclude that r̂j+1/2 = rj+1/2 +O
(

∆r2
)

. Putting
everything together, we obtain the following version of the complete flux scheme:

(

rF
)

j+1/2
=

(

rFh
)

j+1/2
+

(

rFi
)

j+1/2
, (5.5a)

(

rFh
)

j+1/2
= Fh

(

Dj+1/2/∆r, Pj+1/2; ϕj, ϕj+1

)

, (5.5b)
(

rFi
)

j+1/2
= ∆r

(

σj+1/2 − W
(

Pj+1/2

))(

r s
)

u,j+1/2
, (5.5c)

where the coefficients Dj+1/2, Pj+1/2 and σj+1/2 are given by

Dj+1/2 := rj+1/2 ε̄ j+1/2, Pj+1/2 :=
U∆r

Dj+1/2
, σj+1/2 =

ln
(

rj+1/2/rj

)

ln
(

rj+1/rj

) ; (5.5d)

cf. (4.13). Note that Pj+1/2 is the average of the Peclet function P over the interval (rj, rj+1).
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Fig. 3. Control volume ΩC and corresponding stencil.

Next, we extend the derivation to two-dimensional conservation laws, including the
z-component of the flux. In particular, we derive the expression for the r-component of the
numerical flux. For ease of notation, we use both index notation and the compass notation;
see Figure 3. Thus, ϕC should be undersood as ϕj,l and fr,e as fr,j+1/2,l etc.

The flux corresponding to equation (2.1) is given by

f = frer + fzez =
(

ur ϕ − ε
∂ϕ

∂r

)

er +
(

uz ϕ − ε
∂ϕ

∂z

)

ez. (5.6)

We outline the derivation of the r-component of the numerical flux Fr,j+1/2,l at the eastern
edge of the control volume Ωj,l ; see Figure 3. The derivation of the z-component Fz,j,l+1/2 of
the numerical flux at the northern edge is completely analogous and is therefore omitted. The
key idea is to include the cross flux term ∂ fz/∂z in the evaluation of the flux. Therefore we
determine the numerical flux Fr,j+1/2,l from the quasi-one-dimensional BVP:

1

r

∂

∂r

(

r
(

ur ϕ − ε
∂ϕ

∂r

))

= sr, rj < r < rj+1, z = zl , (5.7a)

ϕ(xj,l) = ϕj,l , ϕ(xj+1,l) = ϕj+1,l , (5.7b)

where the modified source term sr is defined by

sr := s −
∂ fz

∂z
. (5.7c)

The derivation of the expression for the numerical flux is essentially the same as for (5.5),
the main difference being the inclusion of the cross flux term ∂ fz/∂z in the source term. In the
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computation of sr we replace ∂ fz/∂z by its central difference approximation and for fz we take
the homogeneous numerical flux. A similar procedure applies to the z-component of the flux,
which is actually the Cartesian flux from Section 3, albeit with nonconstant coefficients, [13].
Putting everything together, we obtain the following two-dimensional complete flux scheme.

two-dimensional CF scheme

Peclet function

Pr := Ur∆r/D Pz := uz∆z/ε

Ur = rur, D := rε

(weighted) average

v̄e := 1
2 (vC + vE) v̄n := 1

2 (vC + vN)

v∗n := W(−P̄z,n)vC + W(P̄z,n)vN

homogeneous flux
(

rFh
r

)

e
= Fh

(

De/∆r, Pr,e; ϕC, ϕE

)

Fh
z,n = Fh

(

En/∆z, P̄z,n; ϕC, ϕN

)

De = re ε̄e, Pr,e = Ūr,e∆r/De En = P∗
z,nε∗n/P̄z,n

source term with cross wind diffusion

sr,C = sC −
1

∆z

(

Fh
z,n − Fh

z,s

)

sz,C = sC −
1

rC

1

∆r

((

rFh
r

)

e
−

(

rFh
r

)

w

)

upwinded source term

sr,u,e =

{

sr,C if ūr,e ≥ 0

sr,E if ūr,e < 0
sz,u,n =

{

sz,C if ūz,n ≥ 0

sz,N if ūz,n < 0

inhomogeneous flux
(

rFi
r

)

e
= ∆r

(

σe − W(Pr,e)
)(

rsr
)

u,e
Fi

z,n = ∆z
(

1
2 − W(P̄z,n)

)

sz,u,n

σe =
ln

(

re/rC

)

ln
(

rE/rC

)

complete flux
(

rFr
)

e
=

(

rFh
r

)

e
+

(

rFi
r

)

e
Fz,n = Fh

z,n + Fi
z,n.

The stencil of the flux approximation for Fr,e is depicted in Figure 3. Assume first that ūr,e > 0.
Then Fr,e depends on ϕ in the grid points xC and xE, on s in the central point xC and on
the homogeneous fluxes Fh

z,n and Fh
z,s and through these fluxes again on ϕ in xN and xS.

For ūr,e < 0, Fr,e again depends on ϕC and ϕE, but this time on the source term sE and the
homogeneous fluxes Fh

z,En and Fh
z,Es, inducing a further dependency on ϕNS and ϕSE. Thus, in
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addition to the direct neighbours, Fr,e depends on a few other values of ϕ, determined by the
local upwind direction.

6. Aspects of time integration

Next, we extend the derivation to time-dependent conservation laws, restricting ourselves to
spherically symmetric conservation laws; for Cartesian coordinates see [13, 15].

The semidiscrete conservation law for ϕj(t) ≈ ϕ(rj, t) can be written as

(

r2F
)

j+1/2
(t)−

(

r2F
)

j−1/2
(t) = ∆r

(

r2
j +

1
12 ∆r2

)(

sj(t)− ϕ̇j(t)
)

, (6.1)

where ϕ̇j(t) ≈ ∂ϕ/∂t(rj, t) and sj(t) = s(rj, t). In the following we shall omit the explicit
dependence on the variable t.

For the numerical flux Fj+1/2 in (6.1) we have two options. We can simply take the flux
(4.13) derived from the corresponding BVP (4.1), and henceforth referred to as the stationary
complete flux (SCF) scheme. Alternatively, we can include ∂ϕ/∂t in the numerical flux, if we
determine

(

r2F
)

j+1/2
from the quasi-stationary BVP:

1

r2

∂

∂r

(

r2
(

uϕ − ε
∂ϕ

∂r

))

= s −
∂ϕ

∂t
, rj < r < rj+1, (6.2a)

ϕ(rj) = ϕj, ϕ(rj+1) = ϕj+1, (6.2b)

thus subtracting the time derivative from the source term. We can repeat the derivation in
Section 4, to arrive at the following expression for the numerical flux

(

r2F
)

j+1/2
=

Dj+1/2

∆r

(

B
(

− Pj+1/2

)

ϕj − B
(

Pj+1/2

)

ϕj+1

)

+∆r
(

σj+1/2 −W
(

Pj+1/2

))

r2
j (sj − ϕ̇j),

(6.3)
referred to as the transient complete flux (TCF) scheme; cf. (4.13). This numerical flux can be
written in the desired form (2.13) as

(

r2F
)

j+1/2
= αj+1/2 ϕj − β j+1/2 ϕj+1 + ∆r

(

γj+1/2 s̃j + δj+1/2 s̃j+1

)

, (6.4a)

with s̃ := s − ∂ϕ/∂t and where the coefficient αj+1/2 etc. are defined by

αj+1/2 :=
Dj+1/2

∆r
B−

j+1/2,

β j+1/2 :=
Dj+1/2

∆r
B+

j+1/2,

B±
j+1/2 := B(±Pj+1/2), (6.4b)

γj+1/2 := σj+1/2 − W
(

Pj+1/2

)

,

δj+1/2 := 0.
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A similar expression holds for the numerical flux Fj−1/2. Substituting the TCF approximations
in (6.1) we obtain the finite volume TCF semidiscretisation, given by

bW,j ϕ̇j−1 + bC,j ϕ̇j − aW,j ϕj−1 + aC,j ϕj − aE,j ϕj+1 = bW,jsj−1 + bC,jsj, (6.5a)

where the coefficients aW,j etc. are defined by

aW,j := αj−1/2, aE,j := β j+1/2, aC,j := αj+1/2 + β j−1/2,

bW,j := ∆r γj−1/2, bC,j := ∆r
(

r2
j +

1
12 ∆r2 − γj+1/2

)

. (6.5b)

The semidiscretization in (6.5) defines an implicit ODE system, for which we require an
A-stable, one-step time integrator. Our choise is the trapezoidal rule. In [15] we have shown
that the Cartesian TCF scheme has usually much smaller dissipation and dispersion errors
than the corresponding SCF scheme, provided the solution is smooth.

7. Numerical example

In this section we apply the complete flux scheme to a model problem, describing a premixed
spherical flame stabilized by a point source of combustible mixture.

A point source at the origin issues a mass flux of 4πU of combustible mixture. After ignition, a
stable spherical flame is formed, provided the value of U is in the proper range. The governing
equations for this system are given by [2, 12]:

∂C

∂t
+

1

r2

∂

∂r

(

UC − r2 1

Le

∂C

∂r

)

= ω, r > 0, t > 0, (7.1a)

∂T

∂t
+

1

r2

∂

∂r

(

UT − r2 ∂T

∂r

)

= ω, (7.1b)

where C and T are the dimensionless concentration of combustion product and temperature,
respectively, and where ω is the (dimensionless) reaction rate. The radial coordinate r and the
time t are dimensionless as well. Parameters in (7.1) are the mass flux (per solid angle) U and
the Lewis number Le. The reaction rate ω depends on C and T as follows

ω =
1

2Le
β2(1 − Y)eβ(T−1), (7.2)

with β the dimensionless activation energy. In the unburnt gas mixture, far ahead of the
flame front, there is no combustion product and the temperature equals the temperature of
the unburnt gas. In the burnt gas, beyond the flame, we assume that the reaction is completed,
and consequently the combustion product is the only species and the temperature is equal to
the adiabatic temperature of the burnt gas mixture. These conditions lead to the following
boundary conditions

C(0, t) = T(0, t) = 0, C(∞, t) = T(∞, t) = 1, t > 0. (7.3)

As initial conditions, we take the linear profiles C(r, 0) = r/rmax and T(r, 0) = r/rmax on the
truncated domain (0, rmax) and let the solution evolve to its steady state. We take rmax = 120.
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Fig. 4. Numerical solutions of the thermo-diffusive model (7.1) for β = 10 (left) and β = 8
(right). Other parameters are: U = 1.0475 × 104 and Le = 1.

For space discretisation of (7.1) we employ the TCF scheme (6.4a) in combination with the
θ-method for time integration [5]. The resulting nonlinear system at each time step is solved
applying one Newton iteration step. Moreover, to enhance the robustness of the method, we
bound the numerical solutions according to 0 ≤ Cj, Tj ≤ 1, followed by a smoothing step as

follows: Cj := 1
4

(

Cj−1 + 2Cj + Cj+1), and likewise for Tj.

As an example, the numerical solutions at t = 100 for U = 1.0475 × 104, Le = 1 and β = 10, 8
are shown in Figure 4, computed with grid size ∆r = 0.4 and time step ∆t = 0.25. The
solutions exhibit a steep interior layer, the so-called flame front, connecting the (virtually)
constant unburnt and burnt states. Since Le = 1, the numerical solutions for C and T are
identical. The solution for β = 10 is very close to the asymptotic solution [12]

C(r, 0) =

⎧

⎨

⎩

exp
(

LeU
(

1
rf
− 1

r

))

if r ≤ rf,

1 if r ≥ rf

,

T(r, 0) =

⎧

⎨

⎩

exp
(

U
(

1
rf
− 1

r

))

if r ≤ rf,

1 if r ≥ rf,
,

with rf = 93.4 the radius of the flame. For decreasing β the reaction slows down, resulting
in a slightly wider flame front and a location of the flame front closer to the source. We

define eC :=
∣

∣

∣

∣

(

Cn+1 −Cn
)

/∆t
∣

∣

∣

∣

1
/N with Cn =

(

Cn
j

)T
and N the number of grid points,

and likewise eT . The time histories of eC and eT corresponding to the numerical solutions in
Figure 4 are shown in Figure 5. We observe a regular convergence to the steady state. Finally,
in order to study the effect of preferential diffusion, the numerical simulations are repeated
for Le = 0.3, and the results are shown in Figure 6. As expected, the interior layer for C is
slightly wider than for T.

8. Conclusions and future research

In this paper we have derived complete flux schemes for spherically or cylindrically
symmetric conservation laws of advection-diffusion-reaction type. An integral relation for
the flux is derived from a local one-dimensional BVP for the entire equation, including
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Fig. 5. Time history of the (discrete) time derivatives. Parameter values are: β = 10 (left),
β = 8 (right), U = 1.04754 and Le = 1.
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Fig. 6. Numerical solutions of the thermo-diffusive model (7.1) for β = 10 (left) and β = 8
(right). Other parameters are: U = 1.0475 × 104 and Le = 0.3.

the source term. Applying suitable quadrature rules, we derived expressions for the
numerical flux. As a result of this procedure, we obtained a numerical flux that is the
superposition of a homogeneous flux, corresponding to the advection-diffusion operator, and
an inhomogeneous flux, corresponding to the reaction term. For time-dependent conservation
laws, we included the time derivative in the inhomogeneous flux, resulting in an implicit ODE
system. The CF-scheme has been applied to a thermo-diffusive model for a spherical flame.

Possible directions of future research are the following: first, a rigourous convergence analysis
of the (stationary) CF-schemes for spherical and cylindrical coordinates, and second, a
dispersion analysis of time-dependent CF scheme; cf. [15] where such analysis is presented
for Cartesian coordinates. Finally, from a more fundamental point of view, it would
be very interesting to base the derivation of the time-dependent CF scheme on a local
initial-boundary-value problem for a truly time-dependent equation, rather than computing
the flux from a quasi-stationary BVP.
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