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1. Introduction 

The Euler and Navier-Stokes (NS) equations are derived by applying Newton's second law 
to an infinitely small inviscid and viscous control volume respectively, and with the 
extension of the mass and energy conservation laws, they provide the highest level of 
approximations for the flow physics within approaching of continuum-mechanics based 
flow regime. The mentioned governing equations1 are the system of the nonlinear partial 
differential equations and they do not have general closed form solution as yet. However, in 
consideration of increasing expectations arisen from the industry and the high level 
evolution of the computer technology, the different numerical and optimization methods 
are developed and implemented in the complex framework of CFD (Computational Fluid 
Dynamics) programs. These software are widely spread in the engineering practice and they 
provide efficient solutions for different industrial problems. Beside the advantages of the 
virtual prototyping, the wide range of visualization tools and optimization, significant 
number of measurements can be replaced by the validated numerical analyses, which 
reduce time, capacity, cost and strongly contribute to the benefit of the company. Hence, 
followed by the short overview of different numerical methods generally used in CFD, a 
complete physical and mathematical interpretation is presented for a compressible NS and 
Euler solvers with validation and extension for coupling of inviscid flow solver with inverse 
design based optimization algorithm in a framework of the finite volume method. 

1.1 Numerical methods for fluid flow 

The continuum mechanics based NS equations describe flow physics in continuum and slip 
flow regime defined by Knudsen number as Kn<0.01 and 0.01<Kn<0.1 respectively (Zucrow 
& Hoffman, 1976). In case of Euler equations, in which the viscous (diffusion) effects are not 
considered, Re→∞ and Kn→0. The continuum approach does not count the individual 
molecules and instead, considers the substance of interest as being continuously distributed 
in space (Wassgren, 2010). The continuum based method requires that the smallest length 

                                                 
1 In modern fluid dynamics literature, the NS or Euler equations refer to the complete system of 
equations beside momentum, including both mass and energy conservation laws. 
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scale to be much larger than the microscopic length scale, typically the mean free path of a 
molecule (for gases). The Knudsen number for a generic engineering flow, in which the 
mean free path (λ) is around 1*10E-5 cm and the macroscopic length of interest (L) is 1 mm, 
is Kn=λ/L=0.0001 (Wassgren, 2010). The other expectation is that the highest length scale of 
the spatial resolution must be small enough to accurately capture the parameters (e.g. 
density) to be approximately constant in the control volume and do not be affected by the 
physics or geometry. The continuum assumption is valid in the vast majority of the 
industrial applications and so the NS (and Euler) equations can be used in the most of the 
industrial applications. However, in general, they do not have closed form solution till now. 
Hence, different discretization methods were developed from the second part of the last 
century till now to have approximate results for the nonlinear partial differential system of 
the equations in each point of the temporal (in case of transient problem) and spatial 
discretization. Beside fulfilling consistency, stability and convergence characteristics as a 
measure of the mathematical correctness of the discretization methods, the final results of 
the numerical analyses are evoluted as a function of the applied governing equations, 
boundary conditions and the geometry. 

The three most frequent discretization methods (in the percent of the available commercial 
CFD codes) are the finite difference (FDM) (~ 2 %), finite element (FEM) (~ 15 %) and finite 
volume (FVM) (~ 80 %) methods. The rest 3 % are consist mostly of Spectral, Boundary 
element, Vorticity type and Lattice gas or Lattice Boltzmann methods. 

The most traditional and oldest methods applied for numerical solution of partial 
differential equations are the FDM. They are essentially based upon the properties of the 
Taylor series expansion and the method is only applicable to structured grids in practice 
(Manna, 1992). The accuracy of FDM method strongly depends upon the mesh size and its 
properties as stretch ratio, aspect ratio and skewness for example. Although the increasing 
number of mesh point improves the accuracy, it can lead to difficulties in solution 
procedures due to the matrix inversion at the algebraic system of the equations (Manna, 
1992). 

The FEM historically originated from structural mechanics. The physical domain is divided 
by cells or elements, they form the numerical mesh, which can be structured or unstructured 
providing higher flexibility for handling complex geometry than FDM (Manna, 1992). The 
field variables are approximated by linear combinations of known basis functions, which 
can be quite general with varying degrees of continuity at the inter-element boundaries 
(Hirsch, 2007). Its mathematical rigor and elegance makes the FEM algorithms very 
attractive and widely researched area in the CFD community (Manna, 1992). 

The FVM is originally introduced by McDonald 1971 and they are based on the observation 
that the conservation laws have to be interpreted in integral form to preserve discontinuous 
solution as vortex sheets, contact discontinuities or shock waves. Similarly to the FEM, the 
physical domain is subdivided by cells. The flow field variables are evaluated in some 
discrete points on each cell and they are interpreted as average value over the finite 
volumes. The finite volumes are constructed as parts of one or more cells, which can, 
moreover, be either overlapped or non-overlapped. The conservation laws are then applied 
to the finite volumes to obtain the discrete equations. The possibility of modifying the shape 
and location of the control volumes associated to a given mesh allows large freedom in the 
choice of the function representation of the flow field. This property is not shared by either 
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the FDM or FEM and it is mostly the reason of higher popularity of the FVM in the 
engineering applications (all paragraph from Manna, 1992).  

Turn back to the physical interpretations of modelling, there are two main approaches can be 
distinguished. The Pressure- and the Density-based classes of methods have evolved distinct 
strategies for the discretization, non-linear relaxation and linear solution aspects underlying 
the computational schemes. Historically, the pressure-based approach was developed for low-
speed incompressible flows, while the density-based approach was mainly used for high-
speed compressible flows. However, recently both methods have been extended and 
reformulated to solve and operate for a wide range of flow conditions beyond their traditional 
or original intent. In the Pressure-based methods the velocity is obtained from the momentum 
equations. The pressure field is extracted by solving a pressure or pressure correction 
equation, which is derived by manipulating continuity and momentum equations. The one of 
the most widespread methods is the SIMPLE (Semi-Implicit Pressure Linked Equations) 
family of schemes. Karki and Patankar developed the SIMPLER method for compressible 
flows, applicable for a wide range of speeds (Karki, Patankar 1989). Munz et al. extended the 
SIMPLE scheme for low Mach number flow employing multiple pressure variables, each being 
associated with different physical response (Munz et al. 2003). The time marching Density-

based methods represent a large class of schemes adopted for compressible flows and applied 
widely in computational fluid dynamics for modelling steady and transient, transonic, 
supersonic and hypersonic flows. The continuity equation is used to determine the density 
field while the pressure distribution is obtained from the equation of state. The velocity field is 
computed also from the momentum equations. Both approaches are now applicable to a broad 
range of flows (from incompressible to highly compressible), but the origins of the density-
based formulation may give it an accuracy (i.e. shock resolution) advantage over the pressure-
based solver for high-speed compressible flows (ANSYS, Inc. 2010). Hence, this method is 
used in followings due to the high speed aeronautical applications.  

1.2 Turbulence modelling 

Concerning the physical level of modelling turbulent flows in CFD, the three most frequent 
approaches are the DNS (Direct Numerical Simulation), LES (Large Eddy Simulation) and 
RANS (Reynolds-averaged Navier-Stokes equations) based simulations, meanwhile for 
modelling laminar flows, there are no special treatment of the original NS equations are 
required. The closest model to the real phenomenon is the DNS, in which the Navier-Stokes 
equations are numerically solved without any turbulence model. It means that the whole 
range of spatial and temporal scales of the turbulence is resolved. The computational cost is 
extremely high, it is proportional to Re3 (Pope, 2000). This method can not be used in the 
most part of the engineering practice due to the economical aspects. In case of LES, the large 
scales of turbulence are resolved directly providing more accurate results compared with 
RANS, meanwhile the geometry-independent, small scales and expensive structures are 
modelled. Although this approach is less computationally expensive compared with DNS, 
the industrial use is confined to low Reynolds number from purely computational 
consideration. The RANS based methods are the highest feasible level of approximation for 
the turbulent flows in general engineering applications. In this case, the parameters in the 
governing equations are averaged over a characteristic time interval in order to eliminate 
the influence of the turbulent fluctuations, meanwhile the unsteadiness of the other physical 
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phenomenon are preserved (Manna, 1992). The resulting equations are formally identical to 
the laminar Navier-Stokes equation, except for some extra terms, so called Reynolds 
stresses, which results from the non linear terms of the governing equations (Manna, 1992). 
The main goal of the different turbulence modelling is to provide functional relations, 
expressions and/or closure equations related with these new terms in order to couple and 
so make definite the governing equations (in discretized form). In the last forty years several 
turbulence models have been developed. Following the Boussinesq approximation (which 
expects the similarity of the mechanism of laminar and turbulent stresses) the Reynolds 
stresses can be expressed in terms of eddy viscosity, which is considered as the turbulent 
counterpart of the laminar molecular viscosity. Opposite to the molecular viscosity, which is 
a fluid property, the eddy viscosity is a function of the flow properties (Manna, 1992). The 
direct aim of the turbulence models is to identify the functional relations between the flow 
properties and the turbulent eddy viscosity. At the lowest level, they are based upon the 
mixing length concept, introduced by Prandtl in 1925, which effectively relates the turbulent 
shear stresses to the mean velocity gradients. These algebraic turbulence models are often 
called zero equation models. A higher degree of approximation is reached by solving 
additional equations written for the turbulence variables, as the transport equations for the 
turbulent kinetic energy and its rate of dissipation. This class of turbulence models is 
usually classified according to the number of additional equations applied for the 
turbulence variables, i.e. one equations models, two equation models or higher order closure 
like the Reynolds stress models (Manna, 1992). The two-equation models, especially the k-ε 
and k-ω based models, are the widest spread applications in the industry due to the best 
compromise of the physical accuracy and computational cost. However, beside the 
advantages, they have disadvantages also.  

The first low Reynolds number k-ε model has been developed by Jones and Launder (1973) 
and suppose that the flow is fully turbulent. It is a computationally cheap and provides 
reasonable accuracy for a wide range of flows. However, the k-ε model performs poorly for 
complex flows involving severe pressure gradient, separation and strong streamline 
curvature. From the standpoint of aerodynamics, the most disturbing problem is the lack of 
sensitivity to adverse pressure-gradients. Under those conditions, the model predicts 
significantly too high shear-stress levels and thereby delays (or completely prevents) 
separation. Furthermore, it requires the application of damping mechanism for stabilization 
when the equations are integrated through the viscous sublayer (Menter, 1994). The 
standard k-ε model has been modified by many authors. 

There are a significant number of alternative models that have been developed to overcome 
the shortcomings of the k-ε model. One of the most successful, with respect to the accuracy 
and the robustness, is the k-ω model of Wilcox (1988). It solves one equation for the 
turbulent kinetic energy k and a second equation for the specific turbulent dissipation rate 
ω. The most prominent advantages is that the equations can be integrated without 
additional terms through the viscous sublayer, which makes them y+ insensitive and 
provides straightforward application of the boundary conditions. This leads to significant 
advantages in numerical stability. The model performs significantly better under adverse 
pressure-gradient conditions and separation than the k-ε model and suitable for the complex 
boundary layer flows (e.g. external aerodynamics and turbomachinery). However, the k-ω 
model also has some shortcomings. The model depends strongly on the free stream values 
of ω that are specified outside the shear-layer. Another point of concern is that the model 
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predicts spreading rates that are too low for free shear-layers, if the correct values are 
specified for ω (Menter, 1994). 

In order to improve both the k-ε and the k-ω models Menter (1994) suggested to combine the 
two models called the SST (Shear Stress Transport) k-ω turbulence model. The use of a k-ω 
formulation in the inner parts of the boundary layer makes the model directly usable all the 
way down to the wall through the viscous sub-layer, hence the SST k-ω model can be used 
as a Low-Re turbulence model without any extra damping functions. The SST formulation 
also switches to the k-ε behaviour in the free-stream and thereby avoids the common k-ω 
problem that the model is too sensitive to the free-stream value of the turbulence variables 
(in particular ω). The further distinct of the SST turbulence model is the modified turbulence 
eddy-viscosity function. The purpose is to improve the accuracy of prediction of flows with 
strong adverse pressure gradients and pressure-induced boundary layer separation. The 
modification accounts for the transport of the turbulent shear stress, which is based on 
Bradshaw's assumption that the principal shear stress is proportional to the turbulent 
kinetic energy (Blazek, 2005). Due to the above mentioned characteristics, the Menter model 
has gained significant popularity in the aeronautical community and can be regarded as one 
of the standard approaches today. Despite of the improvements of the original SST model as 
SST-2003, SST-sust, SST-Vsust variants for example, there are also some complaints. The one 
of them is that the distance to the nearest wall has to be known explicitly. This requires 
special provisions on multiblock structured or on unstructured grids (Blazek, 2005). Also, 
the k-ε to k-ω switch can produce some unrealistic effective viscosity, which may not affect 
the results. Meanwhile the SST turbulence model provides similar benefits as standard k–ω 
(except for the free stream sensitivity), the dependency on wall distance can make it less 
suitable for the free shear flows compared to standard k-ω and it requires mesh resolution 
near to the wall (CFD Online Discussion Forum, 2010).  

The Wilcox’s improved k–ω model (Wilcox, 1998) predicts free shear flow spreading rates 
more accurately than version 1988. The results of the benchmark simulations are in close 
agreement with flow measurements on far wakes, mixing layers, and plane, round, and 
radial jets, and it thus applicable to wall-bounded flows and free shear flows (ANSYS, 2010). 
Hence, this turbulence model has been implemented.  

2. Finite volume method based compressible flow solver 

Nowadays, in spite of disadvantages of turbulence closure models for RANS (Reynolds 
Averaged Navier-Stokes equations), they are at present the only tools available for the 
computation of complex turbulent flows of practical relevance. Their popularity comes from 
high efficiency in terms of accuracy and computational cost, which makes them widely used 
in commercial codes and related multidisciplinary applications. Hence, a detailed 
description of the physical and mathematical aspects of a RANS based compressible flow 
solver is presented in followings.  

The governing equations in conservative form are derived by using density weighted 
averaging coupled with the time averaging of RANS. The code is based on structured, 
density-based cell centered finite volume method, in which the convective terms are 
discretized by Roe approximated Riemann method. The method of Roe is highly non-
dissipative and closely linked to the concept of characteristic transport. It is one of the most 
powerful linear Riemann solvers due to the excellent discontinuity-capturing property 
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including shear waves. However, it is well-known that flux function mentioned above can 
produce non-physical expansion shocks that violate the entropy condition. This can be 
avoided by modifying the modulus of the eigenvalues for the non-linear fields. The method 
of Yee is used and discussed at the present case to cure the problem. Central discretization is 
applied for diffusive terms on a shifted mesh. MUSCL (Monotone Upstream Schemes for 
Conservation Laws) approach is implemented for higher order spatial reconstruction with 
Mulder limiter for monotonicity preserving. Wilcox k-ω two equations turbulence model is 
adopted and used (Wilcox, 1998). The explicit system of the equations is solved by the 4th 
order Runge-Kutta method. The numerical boundary conditions are determined by the 
extrapolation technique for the NS solver and by the method of characteristics at the Euler 
solver. The interest is mostly in high speed industrial and aeronautical applications hence, 
the validation is completed for test cases are in the transonic, supersonic and subsonic flow 
regime as circular bump in the transonic channel and compression corner for the NS solver 
and flow over a wing profile and cascade for the Euler solver. The description of the 
benchmarks and the results are presented in Chapter 3. 

2.1 Governing equations 

In absence of external forces, heat addition, mass diffusion and finite rate chemical reaction, 
the unsteady two dimensional Navier-Stokes equations coupled with k-ω turbulence model-
equations (Wilcox, 1998) in conservative, divergence and dimensional form are next: 
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in  yx,  of the Cartesian coordinate system, where x, y Є R and t Є R+. The conservative 
variables and convective fluxes are given by 
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while the viscous fluxes and source terms are following: 
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The bar over variables represents the Reynolds averaging over the characteristic time scale 
in order to separate and filter the small sized phenomena as turbulence fluctuation:  

 dt
t
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0

0
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 (4) 

For a supersonic or hypersonic compressible flow the local density is not constant and in 
case of turbulent flow it fluctuates also due to the pressure diffusion, dilatation, work and 
turbulent transport/molecular diffusion of turbulent energy. Hence, the instantaneous 
density can also be separated by averaging and fluctuating part, which requires the 
introduction of Favre averaging given by (5).  
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The F in superscripts and tides (~) over the parameters in (2) and (3) and in followings mean 
the Favre averaged parameters. Other relationships in (2) and (3) are given by (6)-(9), 
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in which p  is the static pressure,   is the density, k  is the turbulent kinetic energy, e  is 
the internal energy u  and v  are the Cartesian components of velocity vector, vc  is the 
specific heat at constant volume, T  is the static temperature,   is the dynamic molecular 
viscosity, t  is the dynamic turbulent or eddy viscosity, ij  is the Kronecker’s delta, pc  is 
the specific heat at constant pressure,  720.Pr   and  90.Prt   (for air) are the Prandtl 
number and turbulent Prandtl number respectively, Kkg/m/s/6-10E*1.458C 1  and 

K 110.4C 2  are the constants in the Sutherland’s formula to count the effect of temperature 
on dynamic viscosity and   is the specific turbulent dissipation rate. The terms in the 
expressions, which are related to values of j,i  and k  in indexes, range from 1 to 2. The 
closure expression of the NS equations is the ideal gas law (10).  

 T~Rp   (10) 

The not mentioned parameters and expressions in the turbulence model equations are given 
by (11)-(18) (Wilcox, 1998), 
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where H is the Heaviside step function and c is the sound speed. The system of the 
nonlinear partial differential equations is already coupled. After discretization the system of 
algebraic equations can easily be solved. 

Assuming a frictionless and isentropic flow, the NS equations – neglecting viscous and heat 
conducting terms – can be reduced to the Euler equations, which are the highest level 
approximation of the inviscid flow. 

2.2 Boundary conditions 

The numerical treatment of the boundary conditions strongly influences not only the 
convergence properties but the accuracy of the results in solving partial differential system 
of the equations. The physical boundary conditions secure the existence and uniqueness of 
the exact solution and numerical boundary conditions are supposed to ensure that various 
perturbations generated in the interior of the computational domain leave it without being 
reflected at the boundaries. Due to the convection dominated problem, the method of 
characteristic is used to determine the number and the exact values of the numerical 
boundary conditions in case of Euler equations, meanwhile extrapolation technique is 
applied for the NS equations. The direction of wave propagation (Vn, Vn, Vn+c and Vn-c) 
depends not only on the sign of the cell face normal velocity Vn but also on the local speed 
of sound c. At the boundary, the number of physical boundary condition to be imposed 
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equals the number of negative eigenvalues, which correspond to the incoming 
characteristics from the outside (boundary) to the computational domain. The need for 
numerical boundary conditions comes from the fact that the actual problem to be solved is 
formulated in terms of the conservative variables rather than Riemann invariants. Therefore, 
it is hard to impose the Dirichlet boundary conditions in the usual way. It is common 
practice to recover the boundary values by switching to the characteristic variables, 
evaluating the incoming Riemann invariants from the physical boundary conditions and 
extrapolating the outgoing ones from the interior of the computational domain (Kuzmin & 
Möller, 2004).  

Concerning the inlet, it is examined whether the flow is supersonic or subsonic. First, 
consider the supersonic case, at which only incoming characteristics are available. Hence, 
total pressure, static pressure, total temperature and flow angle are imposed as physical 
boundary conditions and no numerical boundary conditions are required for the Euler 
equations. If the flow is subsonic, one outgoing characteristic is appeared (Vn-c), so the two 
dimensional local Riemann problem belongs to that characteristic curve is solved by using 
physical and computed (existing) parameters and the total pressure, total temperature and 
flow angle are imposed as physical boundary conditions. The temperature and the 
components of the velocity vector are recovered by using ideal gas law and inlet flow angle, 
while the tangential velocity component is kept to be constant. Concerning the NS 
equations, additionally to the above mentioned specifications, the turbulent kinetic energy 
(k) and specific dissipation rate (ω) are imposed as physical boundary conditions and the 
static pressure is extrapolated from the computational domain in case of subsonic inlet.  

If the outcoming flow is supersonic, there is no incoming characteristic hence, no physical 
boundary conditions are specified. If the flow is subsonic, there is one incoming 
characteristic hence, one parameter (static pressure) is imposed as physical boundary 
condition. The numerical boundary conditions are calculated by using characteristic 
variables (compatibility equations) in case of Euler equations, or they are extrapolated from 
the interior as the NS equations are implemented for viscous flow modelling. The static 
temperature is calculated by ideal gas law. 

Concerning the Euler equations, the solid wall boundary conditions are considered as an 
outlet with the restriction of normal velocity is set to be zero across the wall. Hence, the 
numerical boundary conditions are calculated by using characteristic variables 
(compatibility equations) belongs to characteristic curves Vn, Vn and Vn+c. The static 
temperature is calculated by ideal gas law also. In case of NS equations, the no-slip 
boundary condition is implemented at the solid walls, the velocity vectors are set to be zero. 
Assuming zero pressure gradients, the pressure is set equal to the one at the cell centre 
nearest to the wall. Adiabatic wall condition is used to determine temperature. The 
turbulent kinetic energy is zero at the wall and the specific dissipation rate is computed by 
suggestion of (Wilcox, 1998) assuming a rough wall. 

If the flow field has any kind of periodicity, the calculation time can be reduced significantly 
by using periodic boundary condition, by which the rotationally or translationally shifted 
parameters are used in the cells at the boundaries. Periodic boundary condition is used 
before and after the profile to recover infinite blade number in cascades.  
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Meanwhile the expected pressure distribution is imposed at the solid wall boundary in the 
inverse mode of the inviscid solver, the opening boundary is used instead of solid wall to 
allocate the local flow direction – determined by the pressure difference between the boundary 
and computational domain – and its velocity Vn (see Fig. 11.). The main outcome of the present 
mode is to have velocity profile over the geometry, which will be used for modifying mesh 
points in the wall modification module of the inverse design method (see Chapter 4.).  

The detailed description of the presented boundary conditions for the Euler equations is 
found in (Veress et al., 2011). 

2.3 Finite volume discretization 

The finite volume method is a technique to handle the spatial derivatives that are appeared 
in the governing equations. The method is based on the integration of the equations over a 
finite volume. Then the integrals are transformed using the Gauss’ divergence theorem 
where applicable. The physical meaning of the method is that fluxes flow through the faces 
of the finite volume while flux balance over the volume is satisfied. In the finite volume 
approach the first issue consists in evaluating the contour integral of the inviscid and 
viscous flux vectors in (1), hence the numerical flux functions are written in vector form 
given by (19). The xe

  and ye
  are the unit vectors in x and y directions. 

       yx eUGeUFUH


  and       yvxvv eUGeUFUH


  (19) 

It is convenient to define total fluxes normal to the boundary of elementary control volumes 
rather than making use of the individual Cartesians components, using the rotational 
invariance of the governing equations. Integrating system eq. (1) over a control volume  , 
which is bounded by interface   and applying the Gauss’ divergence theorem gives (20) 
and (21) (Manna, 1992), 

          





 dUSdnUHdnUHUd
t

v


 (20) 

         





 dUSdUHUHUd
t

nvn  (21) 

where  yx n,nn   is the local outward pointing unit normal vector of the cell interface. The 
variables in conservative form, inviscid fluxes, source terms and viscous fluxes are the 
followings: 
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where 

     yxyyxxyxn vnuneneneveunVV   . (24) 

By means of finite volume discretization, in order to pass from a continuous to a discrete 
form, the unknown in a general finite volume of the partitioned computational domain is 
defined by (25), 

 





UdU
j,i

j,i

1
 (25) 

which corresponds to cell centre discretization. The vector j,iU  has been interpreted as a 
mean value over the control volume. The fluxes are computed across quadrilateral cells in a 
structured grid, which can be seen in Fig. 1. The computational domain is divided by finite 
number of non overlapping finite surfaces or cells and the (21) is applied for each cell 
separately. It means that the second integral in (21) is replaced by summation over the all 
boundaries bN  of the cell j,i  and so eq. (21) can be written in the general form of the semi-
discrete expression over cell j,i  as it is shown in (26). 

     j,ij,ik,ij
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j,i SHHU
dt

d
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









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Fig. 1. Cell centred quadrilateral finite volume 
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 
k,ijnH  is the inviscid and  

k,ijvnH  is the viscous flux function normal to the cell boundary of 

cell interface k and j,iU  is the vector of conservative variables (2). In present case, in 2D, j,i  

is the area of the cell surface and k,ij  is the length of a cell boundary k of j,i . 

The one of the key point in the convergence and the accuracy point of view is the correct 
determination of numerical flux function. It is especially true for the convective flux 
function, as it is expressed in the function of the left (L) and the right (R) side parameters of 
the cell interface (see Fig. 1.). In case of upstream differencing (or upwind) schemes, the 
quantity  

k,ijnH  are characterized by a flux function  RL
n U,UH , which takes into account 

the sign of the Jacobian matrices, or in other words the relevant propagation directions 
between the L and R states (Manna, 1992). The  RL

n U,UĤ  can be evaluated by linear wave 
decomposition where an unique average state (which is denoted by a hat) of the left and 
right states exist (Roe, 1981): 

         LRRL

n

R

n

L

n

RL

n UUU,UD̂UHUHU,UĤ 
2
1

. (27) 

For the ideal gas, Roe has shown that the matrix nD̂  is equal to the Jacobian nD  when it is 
expressed as a function of the variables ̂ , û , v̂ , and 0ĥ , which are weighted variables of 
the square root of density. 0h  is the total enthalpy. Detailed information about the Roe’s 
method of the approximate Riemann solver is found in (Roe, 1981). The method of Roe is 
highly non-dissipative and closely linked to the concept of characteristic transport. It is one 
of the most powerful linear Riemann solvers due to the excellent discontinuity-capturing 
property including shear waves. However, it is well-known that flux function mentioned 
above can produce non-physical expansion shocks that violate the entropy condition. This 
can be avoided, by modifying the modulus of the eigenvalues for the non-linear fields. The 
method of Yee (1989) is used at the present case.  

MUSCL (Monotone Upstream Schemes for Conservation Laws) approach is implemented 
for higher order spatial extension, by which the piece-wise constant distribution of the initial 
variables over the cell can be replaced by a piecewise linear or quadratic one. The 
mathematical deduction starts with the introduction of Taylor series expansion around 
point i. The results are found at (28) after discretization and integration. 

     
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i
UU  ,         


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
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
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
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1
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i
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UU   (28) 

1
2
1 


 ii

i
UU , ii

i
UU  


1

2
1 , 12

2
3 


 ii

i
UU  and the new left and right states next to the 

cell boundary 21i  (between points i and i+1) are denoted by LU  and RU . The 31  in 

equation (28) corresponds to a third order accurate space discretization in one dimensional 
problem (Manna, 1992). The spurious oscillations (wiggles) can occur with high order 
spatial discretization schemes due to shocks, discontinuities or sharp changes in the solution 
domain. Hence, in this case, Mulder limiter is implemented in the high resolution schemes 
for monotonicity preserving (Manna, 1992): 
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where 
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L     and    57 1010    . (30) 

The same method was used for NS and for the turbulence model equations, however they 
were handled separately. 

A simple central scheme is applied for the space discretization of the diffusive terms in (26) 
as follows: 

     R

vn

L

vnvn UHUHH 
2
1

 (31) 

LU  and RU  are the conservative variables at the cell centres. The derivatives in the diffusive 
terms are determined at the centre of the cell interface. Hence, two new types of cells are 
formed, which are shifted by 21i  and 21j  directions respectively. The centres of the 
boundary of such cells are coincident with the centres and vertices of the original cells. In 
case of former situation, the parameters are known, because they are stored at the cell centre 
of the original cells. If the centres of the boundaries of the new cells are coincident with cell 
vertex of the original cells, the flow variables at the new cell boundary centre are the simple 
averages of the four neighbouring cell centre values of the original cells in case of 
quadrilateral mesh. Then, the derivatives into the x and y directions of the viscous flux 
function (23) can be obtained by using Green-Gauss theorem: 

  
''

dnd



    →   
'j,i

dn
'





 1   → (32) 

 →   

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
 bN
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k,ijk,ijkx
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''n
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1 


    and    




 bN

k

k,ijk,ijky

j,i

''n
'y

1

1 


 , (33) 

where   is an arbitrary flow variable, 'j,i  is the area of the shifted cell i,j, k runs through 
the number of the boundaries of the shifted cell till the bN , which is the number of maximal 
boundary, kx'n  and ky'n  is the x and y components of the cell boundary normal unit vector 
of the interface k, k,ij  is the value of the flow variable at the given interface centre of the 
shifted cell i,j and k,ij'  is the length of the face k. At the boundaries of the computational 
domain, a series of the ghost cells are applied and filled with values, so no special treatment 
is necessary to determine the derivatives. The geometry of the ghost cells are extrapolated 
from the last two cells. 

The integral of the source term in (21) are approximated as follows: 

       j,ij,i "USdUS 


  (34) 
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where    j,iUS  is an average value over the cell j,i" . Derivatives in the expressions are 
determined at the cell centres by using similar treatment as in case of diffusive term 
discretization.  

A widely used class of non linear multi-stage time integration techniques is given by the 
Runge-Kutta (RK) schemes. They are usually designed to obtain higher order temporal 
accuracy with minimum computational storage and the large stability range with the 
specific coefficients, even though it has been often used for steady state calculations as 
herein. The 4 stages RK method (RK4) is used to solve the time derivatives of the 
conservative variables in (26) with j,iUU   and j,i  for simplicity in each cell given  

by: 

  
4

1

10

0

3

412

1

UU:step

,...,k,UtUU:step

UU:step

n

kkk

n









  (35) 

where 411  , 312  , 213  , 14   for the NS equations and 811  , 30602 . , 

58703 .  and 14   for the Euler equations are the coefficients of RK4, n represents the 

parameters at previous time step and n+1 at the next time step over a cell. The RK4 index is 
denoted by k and it runs from 1 to m with its maximum value of 4 in step 2 (35). Due to the 
steady state assumption, the time accuracy is not required hence, the RK4 coefficients are 
applied to have high stability and smoothing properties of the upwind scheme with MUSCL 
reconstruction. In order to optimize the time step behind the stability criterion, the local time 
stepping has been used for every cells j,i  as follows (Lefebvre, Arts, 1997): 

 

  k,ij

N

k

k,ijn

j,i

j,i b

cV

t













1

 (36) 

where j,i  is the area of the cell i,j,   is the Courant number, k,ij  is the length of the cell 
boundary k  of j,i , nV  is the cell face normal velocity, bN  is the number of cell boundaries 
and c is the sound speed. 

3. Validation of the flow solver 

The goal of the validation – in case of any calculation methods – is to provide information 
about the correct mathematical and physical operation of the simulation by means of 
comparing the results with real tests or other benchmarks especially referring to the 
application of flow physics under investigation. 

3.1 Validation of the viscous flow solver 

In the following sections, the numerical results are presented for transonic channel over 
circular bump and compression corner for validating frictional and heat conducted flow 
simulations. 
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The first test case is transonic channel over circular bump, in which the flow enters into the 
channel with Mach number 0.85 and a shockwave develops over the circular bump. The bump 
has 4.2 % maximum thickness. At the inlet, the total pressure, total temperature, and flow 
angles are specified as physical boundary conditions. The static pressure corresponds to the 
isentropic flow at Mach=0.85 is imposed at the outlet. Under these conditions the flow 
expands in the rear part of the bump up to a Mach number 1.2 and ends up into a week shock 
wave to allow the recovery of the free stream conditions. The results of FLUENT and own 
code are compared to each other at the same solver settings however, the k-ε turbulence model 
was used in the commercial program. The Mach number iso-lines show reasonable deflections 
(see Fig. 2.), the present method predicts the shockwave earlier. 

 
Fig. 2. Mach number distribution in transonic channel over circular bump test case (dotted 
line: FLUENT, continuous line: recent solver) 

The shape of the geometry and the thickness of the boundary layer have a dominant effect 
on the shock wave evolution. Different numerical methods and turbulence models have 
different inherent mechanism to model boundary layer and shock wave–boundary layer 
interaction. The one of the criticisms against the k-ε turbulence is the lack of sensitivity to 
adverse pressure-gradients (see Subchapter 1.2.). The boundary layer seems to be thinner at 
the downstream of the circular bump in case of the commercial code compared to the own 
one. Hence, the shockwave triggered earlier in case of the present model. However, the 
differences between the two approaches in the entire computational domain are less than   

 
Fig. 3. Configuration and Schlieren photograph about compression corner at inlet Mach 
number 3 and with slope 18 ° (left side) (Settles, 1975) and Mach number distribution by the 
recent solver at inlet Mach number 2.85 and with slope 20 ° (right side) 
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5 % hence, based on the strongly validated commercial code, the accuracy of the in-house 
software can be accepted for this benchmark. 

In the second test case a ramp with 20 degrees slope angle is located in a flow channel. The 
air enters into a channel with Mach number 2.85. Before the ramp an oblique shockwave 
develops. The geometry and Mach number distribution can be found in Fig. 3. The 
comparison of the measured and simulated results shows similar shock wave pattern, 
however they can not be compared with each other directly due to slight difference between 
the inlet conditions and slope values. The reason why the presented condition is used in the 
simulation is the available measured quantitative parameters found in the Gerolymos’ 
publication (Gerolymos et al., 2003). The locations and directions of the coordinate systems, 
along which velocity distributions are measured is shown in Fig. 4.  

 
Fig. 4. Locations and directions of the coordinate systems, along which the velocity 
distributions of the measurements are compared with the results of simulation 

yEXP is the distance from the wall. The velocity profiles of the recent viscous flow solver with 
k-ω model and the experiments are found in Figs. 5-7. for comparison. The velocity profiles 
in Fig. 5 and 6. are even quantitatively agreed with each other, but the results shown in Fig. 
7. are slightly far from the experiments. The reason of that can be caused by the fact, that the 
error, which is generated by the velocity profile at the beginning of the computational 
domain is growing along with the flow and so the small difference becomes larger at 
downstream. The other problem can be the free-stream sensitivity of the k-ω model 
described in Subchapter 1.2. The solution could be improved by further adjusting boundary 
layer at upstream and the ω.  
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Fig. 5. Validation of the viscous flow solver. Velocity profiles at s = -0.0508 m (see Fig. 4.) 
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Fig. 6. Validation of the viscous flow solver. Velocity profiles at s = 0 m (see Fig. 4.) 
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Fig. 7. Validation of the viscous flow solver. Velocity profiles at s = 0.09525 m (see Fig. 4.) 

3.2 Validation of the inviscid flow solver 

The compressible viscous flow solver presented in Chapter 2. requires relative high 
computational time due to the significant number of equations and fine mesh especially in 
the boundary layer. Hence, this approach can not be used economically for coupling with 
optimization methods in the explicit time marching manner. However, assuming a 
frictionless and convection dominated problems, the NS equations can be reduced to the 
Euler equations, which are the highest level approximation of inviscid flows. The Euler 
equations are valid for modelling compressible high speed flows outside of the boundary 
layer without separation. As most of the industrial process under the interest, as well as 
significant number of flow situations encountered in nature, are dominated by convective 
effects, and therefore, they are well approximated by the Euler equations as it will be seen in 
the validation also (Manna, 1992). Furthermore, the number of equations and the desired 
cell number are significantly reduced compared with NS based solver, hence it is more 
suitable for applying them in the optimization methods. 

Although the mathematical characteristics of the presented numerical method for the Euler 
equations are investigated in many articles (e.g. Barth et al., 2004), a measurement of the 
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wing profile NACA 65-410 has been used in the first case to check the accuracy of the 
calculation. The measurements are performed by Abbott et al. in 1945 and they include the 
experimental analysis of the lift, drag, pitching moment, etc. of the NACA 6 series airfoils. 

 

            
 

Fig. 8. Mach number and pressure distribution over the profile NACA 65-410 at α=4 degrees 
angle of attack 

Most of the data on airfoil section characteristics were obtained in the Langley two-
dimensional low-turbulence pressure tunnel with a rectangular test section (0.9144 meters 
wide and 2.286 meters high), in which usually 0.6 meters chord models were tested. The test 
models completely span the width of the tunnel has a maximum speed of about 70 m/s. 
More information about the experiments is found in (Abbott, 1945). The Mach number and 
pressure distribution around the profile is found in Fig. 8. as a result of the computation at 
α=4 degrees angle of attack (angle between the up stream flow and chord). The boundary 
conditions are the following: inlet total pressure: ptot,in=112800 [Pa]; inlet total temperature: 
Ttot,in=293.15 [K]; outlet static pressure: pstat,out=101325 [Pa]. The mesh size is 87×120. The 
result of the analysis and measurements are compared with each other and they are shown 
in Fig. 9. in the plot of the lift coefficient in the function of angle of attack. The results of the 
analysis are accepted in engineering point of view, the overall deviation is less then 5 % at 
the investigated range. However, it must be considered that the results depend on the mesh 
resolution and the mesh sensitivity analyses are indispensable to have. 

The second test case for the validation is a compressor cascade analysis2 based on the 
technical report by (Emery et al., 1958). The cascade has been constructed by using NACA 
65-410 profile also with: 

 
g

c
  (37) 

                                                 
2 The original and full version of the present investigation is found in (Veress et al., 2010) 
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Fig. 9. Lift coefficient in the function of angle of attack at the profile NACA 65-410 

where 5.1  is the solidity, cmc 7.12  is the chord and the g  is the tangential spacing. The 

1  and   represents the angle between flow direction and the rotation of axis and the flow 
direction and chord (angle of attack) respectively in following. The boundary conditions are 
set to provide the same Reynolds number as in the experiment. The total inlet pressure is 
ptot,in=101750 [Pa], the total inlet temperature is Ttot,in=293.15 [K] and the static outlet pressure is 
pstat,out=101325 [Pa] over the H-type mesh (110×60). The pressure coefficients (38) along the 
profile are considered in the validation, where totp  is the upstream total pressure, 1q  and 

,1statp  are the dynamic and static pressure respectively at wall surface position 1. 

 ,1

1

C tot stat
P

p p

q


  (38) 

The measured parameters and the results of the simulation are compared with each other 
and the quantitative parameters of the pressure coefficients are shown in Fig. 10. The 
investigated variables of the calculation, at different angle of attack, are in a good correlation 
with the measurements (Emery et al., 1958). The difference between them is under the limit 
of the acceptance, the overall deviation is less then 8 %. The Cp values show higher 
dispersions near to the leading edge due to the geometrical inaccuracy (sharp edge). 

Although the mathematical aspects of the applied methods as consistency, stability and 
convergence characteristics are strongly investigated and published in many articles (e.g. 
Barth et al., 2004), the validation of the Euler based CFD solver was completed in the present 
subchapter. The results of the analysis and measurements are compared with each other, for 
a 2D NACA 65-410 wing profile and its low speed cascade. The resembling shows 
acceptable agreement in engineering point of view. The average deviation between the real 
tests and the analyses is less then 8 % in both investigated cases, the accuracy of the 
numerical tool is reasonable, it can be used for further applications.  
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Fig. 10. Pressure coefficient distribution over the NACA 65-410 compressor cascade profile 
at different  (angle of attack) =30o, Re=2.45E5, and vinf, inlet=29 m/s The experimental 
data are from (Emery et al., 1958) 
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4. Finite volume method based optimization and inverse design for 
aeronautical applications 

Today, beside the developments of the central core of the fluid dynamics solvers, the 
different optimization techniques, related with CFD, are also under intensive research. In 
case of direct optimization techniques, an attempt has been made to find the optimal 
solution. They typically utilize some sort of search technique (e.g. gradient-based 
optimizer), stochastic based algorithms (e.g. evolutionary strategies, genetic algorithms), 
artificial neural networks or some other optimization methods. These procedures can be 
computationally expensive because several flow solutions must be calculated to specify the 
direction of deepest descent, fitness of individuals in the population, etc. in order to 
determine the shape changes (Lane, 2010). Furthermore, the required number of flow 
solutions increases dramatically with the number of design variables. 

In case of a specific set of the inverse design-type methods, the geometry modification is based 
on the prescribed set of the pre-defined variables at the wall by simple, fast and robust 
algorithms, which makes them especially attractive amongst other optimization techniques 
(Lane, 2010). The wall modification can be completed within much less flow solutions for 
inverse design techniques than for direct optimization methods. Hence, the inverse design 
methods typically being much more computationally efficient and they are very innovative to 
be used in practice. The main drawback of inverse design methods is that the designer should 
create target (optimum in a specific sense) pressure or velocity distributions that should 
correspond to the design goals and meet the required aerodynamic characteristics. However, it 
can be difficult to specify the expected pressure or velocity distribution that satisfies all design 
goals. Also, one cannot guarantee that an arbitrarily prescribed pressure/velocity distribution 
will provide mechanically correct surfaces or bodies (airfoils without trailing edge open or 
cross over for example). Hence, the one of the main goals of the following subchapters is to 
provide solutions for the above mention complaints. 

The calculation process of the developed iterative type inverse design method is shown in 
Fig. 11. The procedure, first of all, requires an initial geometry and a required pressure 
distribution (preq) along the wall to be modified. The prescribed distribution can be the goal 
function of an optimization method or it can come from the industrial experiences and/or 
theory. The iterative cycle starts with the direct solution of the inviscid Euler solver. 
Completing the convergence criteria, if the target conditions are not reached, a new 
(opening) boundary condition is applied at the solid boundary to be redesigned or 
optimized. The required pressure distribution (preq) is imposed at the solid wall boundary, 
which is become locally opening as inlet or outlet, depends upon the evolved pressure 
differences between the boundary and computational domain. The outcome of this analysis 
is a velocity distribution along the wall, which is not necessarily parallel with it. The final 
step of the cycle is the wall modification. The wall becomes parallel with the local velocity 
vector corresponds to a new streamline of the flow field. The mentioned steps are repeated 
until the target distribution is reached by the direct analysis and so the new geometry is 
available (Leonard & Van den Braembussche, 1990).  

All the contributions of the above presented procedure has been described in Chapter 2. 
except for the wall modification algorithm and the determination of the required pressure 
distribution (preq in Fig. 11.), which are the topic of the following paragraph and subchapter 
respectively. 

www.intechopen.com



 
Finite Volume Method – Powerful Means of Engineering Design 

 

24

 
Fig. 11. Flowchart of the computational procedure of the iterative inverse design calculation 

While the incoming and out coming velocity distribution (see Vn in Fig. 11.) is given at the 
solid wall, based on the inverse mode of the inviscid solver (see Subchapter 2.2 at opening 
wall boundary), the last step of the iterative design cycle is the modification of the geometry. 
The new position of the solid boundary coordinates is calculated by setting the wall to be 
parallel with the local velocity vector of the cell centre: 

 












i

Lek

k

k

k
ii x

u

v
xy  )(  (39) 

where u  and v  are the Cartesian component of the velocity vector at the wall. The 
geometry modification starts from the leading edge or inlet stagnation point till the trailing 
edge or the outlet stagnation point and completed in vertical directions (see Fig. 12.). 

 
Fig. 12. Schematic view of the wall modification process based on the local velocity vector  
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In the following two subchapters, two case studies of the application of the inverse design 
method have been presented. In the first one, the lift force is a goal function of an 
optimization procedure over the NACA 65-410 profile in external flow, meanwhile the 
increased static pressure ratio is the target condition of redesigning NACA 65-410 cascade 
geometry in the second case. The pressure distribution should be as low as possible over the 
solid surface of the suction side at given operational conditions for maximal profile loading. 
However, in order to reach the downstream conditions, the pressure must increase after the 
location of the maximum velocity. Stratford’s limiting flow theory is used and coupled with 
the SQP (Sequential Quadratic Programming) nonlinear constraint optimization to provide 
the target pressure distribution represents the maximum lift force close but certain distance 
far from the separation in case of external flow. Stratford’s limiting flow theory is 
implemented also in case of redesigning cascade geometry. The presented inverse design 
method is used to complete wall surface modification till the previously defined target 
pressure distributions are reached by means of the corresponding sequence of the inverse, 
wall modification and direct algorithms. The Euler equations are used for modelling basic 
physics for both cases. The standard cell centred finite volume method has been applied 
with Roe’s approximated Riemann solver, MUSCL approach and Mulder limiter, which are 
described in Chapter 2. The validation of the Euler solver is found in Subchapter 3.2.  

4.1 Airfoil optimization for maximal lift force by means of inviscid inverse design 

method3 

It has been pointed out in the introduction of the Chapter 4. that the inverse design methods 
require optimal pressure or velocity distributions to determine the adherent geometry. In 
order to maximise the lift force of the suction side of a profile at given and constant 
operational (boundary) conditions, the pressure distribution should be minimized. 
However, the adverse pressure gradient is appeared after the location of the maximum 
velocity (and minimum pressure) in order to recover downstream conditions. The adverse 
pressure gradient till the trailing edge should have limited in each discretized points to be 
just below the condition of causing separation. The maximum area bounded by the suction 
and the pressure side distributions in conjunction with the mentioned limited values of 
pressure gradients will provide the optimum solution as a target distribution to be specified 
for the inverse design method. 

There are several existing methods for predicting separation as Goldschmied, Stratford, 
Head, and Cebeci-Smith for example (Smith, 1975). The accuracy these methods were 
examined several times. One of the output of these investigation shows that the operation of 
Goldschmied's method is unreliable. The other three are in reasonable agreement and 
Stratford's method tended to predict separation slightly early. The Cebeci-Smith method is 
appeared to be best and the Head method is a strong second one (Smith, 1975). Due to the 
good accuracy, simple expressions and conservative characteristics for predicting 
separation, Stratford’s method has been used in followings (Veress et al., 2011). 

Stratford has derived an empirical formula for predicting the point of separation in an 
arbitrary decelerating flow at the order of Re=10E6 (Stratford, 1959), 

                                                 
3 The original and full version of the subchapter is found in (Veress et al., 2011). 
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where the canonical pressure distribution is 
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and if 022 dxpd  then S = 0.39 or if 022 dxpd  then S =0.35. Additionally, 7/4pC . The 

flows under investigations consist first of a flat-plate flow. Hence, x is distance measured 
from the leading edge of the plate and xu0Re  . If the flows begin the pressure rise at a 

point 0x  (it is the position of minimum pressure, 0p  and maximum velocity, 0u ), left-hand 

side of eq. (40) starts from a zero value. The left-hand side then grows. When it reaches the 
limiting value of S, separation is said to occur. If S is held at its limiting value of 0.39 for 

022 dxpd  eq. (40) amounts to an ordinary differential equation for )(xCp . It is evident 

from eq. (40) that the equation describes a flow that is ready everywhere to separate. 
Stratford presents the following solutions (Stratford, 1959),  
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and 
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Fig. 13. Stratford limiting flows at two values of unit Reynolds number (Smith, 1975) 

 

eq. (42) 

eq. (43) 
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In that two-part solution, 0x  is the start of pressure rise, 000Re xu , x is the distance 
measured from the very start of the flow, which begins as flat-plate, turbulent flow. The 
number n is a constant that Stratford finds to be about 6. The quantities a and b are arbitrary 
constants used in matching values and slopes in the two equations at the joining point, 

   12  nnCp . Of course, eq. (42) describes the beginning of the flow and eq. (43) the 
final part. The flow is an equilibrium flow that always has the same margin, if any, against 
separation. Two families of such flows have been computed; they are shown in Fig. 13. The 
features of the presented diagram, together with eq. (42) and (43) are found in (Smith, 1975). 

The method presented above is included in determining the pressure distribution at 
maximum lift force and at the limit of separation on the suction side for given far field 
conditions: 

          
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where p is the static pressure at the given wall location and the other primitive variables 
correspond to free stream condition denoted by ∞ (downstream conditions are used in case of 
cascade design). The connection between  xCp  and  xCp  (pressure coefficient) is given by: 
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The objective function is to 

 minimize 
  xCp

1
 (46) 

 subject to 0 TE
init

TE
opt pp  (47) 

The reason of the constraint to be specified at the presented way is to fix trailing edge (TE) 
condition of Stratford’s method and to minimize the disturbances of the optimal pressure 
distribution of the computational domain respect to the initial flow field. The posterior 
numerical test shows that the latter condition is not required, it can differ from zero. 

The optimization procedure is divided by two sub steps. In the first sub step the physical 
connections between different parameters are described by Stratford’s criteria to evaluate 
limiting pressure distribution. The pressure coefficient at the minimum pressure (p0) is given 
by: 
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where 0p  and maximum velocity 0u  is supposed to be constant starting from the leading 
edge of the suction side till the starting of the positive pressure gradient ( 0x ). The Mach 
numbers 0M  at these points are calculated by: 
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The 0T , 0u  and 0  are obtained by the energy equation of the isentropic flow and ideal gas 
law: 
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The total quantities correspond to the given operational (flight) or inlet boundary conditions. 

A general way of determining pressure distribution starts with specifying a possible 0p . All 
parameter belongs to 0p  can be calculated by eqs. (48)-(52). The next step is to find location 

0x , which gives back the required trailing edge static pressure by using Stratford’s equations 
(42) and (43) over x. Hence, the location of starting flow deceleration ( 0x ) and the Stratford’s 
limiting pressure distribution till the required trailing edge pressure is the output of the first 
sub step of the optimization procedure. There are infinite possible pressure distribution 
existing of the presented method hence, the second sub step of the optimization procedure is 
the constraint optimization in order to determine the corresponding flow parameters and 
location belongs to the minimum pressure and maximum velocity point on the suction 
surface, which provides the maximum area bounded by the pressure distribution of the 
suction and pressure side of the profile. 0p , 0T , 0u , 0 , 0x  and )(xp  (by Stratford’s criteria) 
parameters will be modified in the second sub step to satisfy (46) and (47).  

The pressure side distribution is also modified by means of constraint optimization to 
maximize the area under the function restricted to less than or equal to the maximum 
pressure gradient or higher than or equal to the minimum pressure gradient respect to the 
original distribution. 

NACA 65-410 profile has been used to provide initial geometry and flow field for the 
optimization. The boundary conditions are the followings: inlet total pressure: ptot,in=112800 
[Pa]; inlet total temperature: Ttot,in=293.15 [K]; outlet static pressure: pstat,out=101325 [Pa] over 
the mesh size of 87×120. The pressure distributions of the given geometry are shown in Fig. 
14. and they are noted as init (initial). The inverse design program modifies initial geometry 
till the result pressure distribution over the geometry gives back exactly the target 
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(optimum) one. The optimum pressure distribution belongs to the maximum area of the closed 
distribution of the pressure and suction side at the limit of separation in case of adverse 
pressure gradient flow conditions on the suction side. However, several points near to the 
leading edge of the suction side are modified to make the extremely high pressure gradient 
smoother. Moreover, an arbitrary (optimal) target pressure distribution often causes non-
realistic geometry as negative thickness, trailing edge opening or cross over. Based on several 
theoretical investigation and computational tests, it can be noticed, that the expected pressure 
distribution can not be arbitrary in case of subsonic flow due to the information propagation 
into the upstream (leading edge) direction along the streamline bounded by the wall. If the 
required pressure is differ from the initial one at the certain representative part of the near wall 
region, the flow can be retarded or sucked depends on the local conditions. This effect has an 
influence on the flow evolution starting from the leading edge and the pressure should be 
redistributed by considering higher or lower local kinetic energy along the stream line 
especially at the first couple mesh points of the leading edge. 

 
Fig. 14. Pressure distribution of the initial (init), optimum (target) and result (of the inverse 
design based optimization procedure) cases (ps: pressure side and ss: suction side) 

The modified distributions have been imposed in the inverse design procedure to determine 
the geometry, which provides the optimal conditions. The inverse design method was 
converged after 10 iteration cycles of the inverse, wall modification and direct modes. The 
normal velocity distribution across the solid wall becomes near to zero at the last inverse 
subroutine, which represents that there is no need for any further steps, the pressure 
gradient is infinitesimally small (no flow) across the solid boundary. The corresponding 
results of the optimization procedure are found in Fig. 14. The target and optimized (result) 
pressure distribution are compared with each other and the deviation between them is 
negligible. The optimized geometry with Mach number and pressure distribution is shown 
in Fig. 15. The improvements are straightforward; the lower pressures at the suction side 
provide higher lift force in case of the optimum geometry. Further quantitative results are 
found in Fig. 16. The optimization was completed at zero angle of attack. However, the off-
design conditions show also the same order of improvements as the optimization at design 
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point. The lift force coefficient is increased significantly around by 100 % in the investigated 
range of the angle of attack. The effect of drag force should be analyzed and considered with 
the aim of including it in the optimization process. 

         
Fig. 15. Mach number and pressure distribution [Pa] of the result case (result of the inverse 
design based optimization procedure) 

 
Fig. 16. Lift coefficient distribution in the function of angle of attack (the optimization has 
been completed at angle of attack 0) 

4.2 Application of the inverse design based semi-optimization in cascade flows 

Compressors and turbines are widely used in the vehicle engines as gas turbines for shaft 
power and jet engines. The axial compressors and turbines can be simplified to cascade 
geometry by extracting a cylindrical cut surface from them and laying out in 2D. The basic 
characteristics of the elementary flow field can be analysed and studied by this way.  

NACA 65-410 profile has been used also in followings. The validation of the Euler solver for 
the cascade geometry is found in Subchapter 3.2. 
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The main goal of the first part of the subchapter is to show the outcome of the profile with 
maximum blade loading developed by the inverse design method coupling with SQP and 
Stratford’s limiting flow theory (see Subchapter 4.1.). The result of the optimization was 
analyzed by the present Euler solver and ANSYS CFX. The same computational procedure 
has been used in both software except for the mesh at viscous mode of the CFX. y+ 
determines the first cell size next to the wall and has an influence on the cell number, which 
results 71X23 2D volumes. Concerning the boundary conditions, the following physical 
parameters were used: the inlet total pressure is ptot,in= 107853 [Pa], the inlet total 
temperature is Ttot,in= 298.42 [K], the inlet flow angle is 30° and the outlet static pressure is 
pstat,out=101325 [Pa]. 

The CFX was convergent after 110 iterations. The quantitative results of the analyses are 
shown in Fig. 17. The target and the result pressure distributions of the inviscid inverse 
design based optimization are presented over the final geometry beside the inviscid (Ansys-
ss and Ansys-ps) and viscous (Ansys-ss-viscous and Ansys-ps-viscous) results of the CFX 
(ss: suction side and ps: pressure side). The average difference between the three approaches 
is less than 8 %, which is acceptable in engineering point of view. The main deviation is at 
the leading edge stagnation point; the static pressure in the Euler solver is higher compared 
with CFX. This unphysical feature is caused by the linear extrapolation of determining static 
pressure at the ghost cell of the solid wall boundaries without averaging procedure. 
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Fig. 17. Pressure distribution of the redesigned blade in case of recent Euler solver and the 
inviscid and viscous analysis of ANSYS CFX (ss: suction side and ps: pressure side) 

It can be observed in Fig. 17 that the outlet static pressure is higher than the inlet one, so the 
cascade is working in a compressor mode, however, the static pressure ratio is negligible 
due to the unexpected thick profile, which causes chocking.  
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Of course, the lower outlet static pressure – or higher mass flow – can improve design 
specification by means of increasing static pressure rise over the cascade due to the energy 
conversion. Moreover, the higher blade loading can also increase the static pressure ratio, 
which is shown in the second part of the present subchapter. The blade geometry variants in 
the function of the blade loading at the same mesh, solver settings, initial and boundary 
conditions are found in Fig. 18. with the corresponding pressure coefficients and 
distributions, which are based on the Stratford’s limiting flow theory. The pressure side 
pressure distribution was the same at the three investigated cases. The physical boundary 
conditions are the followings: the inlet total pressure is ptot,in= 107853.4 [Pa], the inlet total 
temperature is Ttot,in= 298.4267 [K], the inlet flow angle is 30° and the outlet static pressure is 
pstat,out= 83325 [Pa]. Although the static pressure ratio is increased from 1.034 to 1.14 
proportionally with blade loading and the absolute value of the pressure coefficient, further 
numerical and experimental investigations are indispensable to have for well established 
conclusions in the field of cascade optimization.  

 

   

Fig. 18. Blade geometries (left side) at different Stratford’s based pressure distributions 
(blade loadings) (right side) with the corresponding minimum pressure coefficients (ss: 
suction side and ps: pressure side) 
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