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1. Introduction 

Interest in phytoplankton diversity has increased in recent years due to its possible role in 
regulating climate by production and consumption of greenhouse gases. For example, gases 
can diffuse across the air-sea interface, many of which are synthesized and emitted by 
certain phytoplankton species or groups. It has been suggested that these variations play an 
important role in moderating our climate through backscattering of solar radiation and 
within cloud formation. Climate will ultimately control fundamental environmental 
conditions that regulate algal growth, including water temperature, nutrients, and light and 
thus can be expected to result in changes in the species composition, trophic structure and 
function of marine ecosystems. In the past several decades, the scientific community has 
witnessed changes in phytoplankton distribution.   
The marine phytoplankton community is diverse and includes on the order of tens of 
thousands of phytoplankton species (Jeffrey & Vesk 1997).  On regional scales, phytoplankton 
biogeography is controlled by the physical, chemical, and meteorological characteristics that 
force ecosystem dynamics.  There is a renewed impetus for new technologies to provide 
information about the phytoplankton community composition over global scales.  Real-time, 
large-scale taxonomic information, if available, could open up new possibilities and 
approaches geared toward monitoring highly-dynamic oceanic processes and phenomena 
such as algal blooms (including harmful algal blooms), frontal structures, eddies, and episodic 
events (storms, river outflow, and wind mixing).  Phytoplankton diversity information 
provides a valuable quantitative database for structuring sophisticated predictive models that 
includes taxonomic phytoplankton community information such as size spectra, probability 
distribution of taxa, and upper trophic level estimations including fisheries productivity 
(Cheson & Case 1986, De Angelis & Waterhouse 1987).   There have been several reviews and 
books written on phytoplankton community structure, dynamics, and biogeochemistry as 
measured by ocean color (Mitchell 1994, Martin 2004, Mueller et al. 2004, Miller et al. 2005, 
Richardson and LeDrew 2006, Longhurst 2007, Robinson 2010). 

www.intechopen.com



  
Remote Sensing of Biomass – Principles and Applications  

 

102 

 
Fig. 1. Distribution of Nitzschia americana (solid square), Nitzschia bicapitata (open circle) and 
Nitzschia pseudonana (open triangle) from shipboard observations.  Modified from Hasle 
(1976).  These data were compiled over several years in order to understand their global 
distribution. 

Approaches have been proposed for remote sensing detection of phytoplankton functional 
types (PFTs) and may be classified as direct (defined as they exploit optical signatures of 
phytoplankton that may be detected by sensors on satellite platforms) or indirect (e.g. 
exploit relationships between chlorophyll-a concentration and functional types).  Both 
approaches have their advantages and limitations. Direct methods are limited to few 
phytoplankton groups that possess optical signatures distinct from other constituents in 
seawater. Indirect methods exploit well-established algorithms for retrieval of chlorophyll-a 
concentrations from ocean color satellite products in combination with phytoplankton 
community structure, which is validated by in situ observations.  Optical sensors have 
ushered in a new capability of remotely sensing the ocean synoptically compared with in 
situ data collected on board ships, which may take years to compile but is is capable of 
exploring ancillary properties inaccessible to remote sensing (Hasle 1976, Figure 1).   Early 
shipboard studies have demonstrated the complexity of the marine ecosystem and how 
distribution, function, and physiology are linked closely to the biochemistry of carbon, 
nitrogen, sulfur, and other elements in the sea.  This chapter discusses how information on 
PFTs may be derived from a combination of satellite data and in situ observations. It is 
anticipated that developing an understanding of the large-scale distributions and variability 
in PFTs will contribute to various ecological problems of the day of paramount economic 
importance, such as providing an ecological basis for fisheries fluctuations and occurrence 
of harmful algal blooms.  Future satellite sensors with improved spectral resolution or 
temporal resolution holds promise for improving the accuracy of retrieval of PFTs and 
understanding their role in the ecology of the ocean.   
Global patterns of diversity for the majority of marine organisms are virtually 
uncharacterized (Worm et al. 2005).  For planktonic organisms, which form the base of the 
marine food web, global ocean geographic distribution of diversity has only been 
characterized for planktonic foraminifera (Rutherford et al. 1999).  Marine biodiversity 
patterns show a worldwide consistency despite differences in environmental conditions of 
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various oceanographic regions  (Irigolen et al. 2004).   Marine phytoplankton diversity, 
similar to terrestrial vegetation, is described as a uni-modal function of phytoplankton 
biomass with an occurrence of maximum diversity at intermediate levels of phytoplankton 
biomass  (sub-bloom concentrations) and low diversity during massive blooms (Irigolen et 
al. 2004).   Similar to terrestrial vegetation, phytoplankton diversity is a unimodal function 
of phytoplankton biomass, with maximal diversity at intermediate levels of phytoplankton 
biomass and minimum diversity during massive blooms. 
 

 
Fig. 2. Ratios of diatoxanthin and carotenoids (to chlorophyll-a) near the Delmarva 
Peninsula against the SeaWiFS 10 year average.  Differences between the values and the 
SeaWiFS average emphasize that the phytoplankton community is structured differently 
from the bulk community (e.g. chlorophyll-a). 

Moreover, the diversity–productivity relationship of oceanic plankton is similar to the 
classical relationship observed in early shipboard collections of phytoplankton. The results 
of PFT distribution return a significantly different pattern compared with the 10-year 
SeaWiFS average, underscoring that underlying biological processes produce a complex 
ecological food web matrix in the ocean (Figure 2). 
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Fig. 3. Monthly SeaWiFS data for 2004 interpreted for phytoplankton, size classes: pico 
(blue); nano (green); micro (red, Aiken  et al. 2009).   
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Our limited understanding of marine ecosystem responses to various physico-chemical 
climate drivers, which include genetic and phenotypic adaptation to the unprecedented 
pace of climate change call for novel methods to study the problem, and remote sensing is 
one of the potential avenues (Falkowski et al. 2004, Chavez et al. 1999).  Understanding the 
cyclical relationship of phytoplankton groups and how the production of greenhouse gases 
relates to temperature and productivity provides a better understanding of their coupling to 
climate (Falkowski et al. 2004).  Changes in phytoplankton community structure could 
potentially provide an early warning for climate-driven perturbations in marine ecosystems 
(Hallegraeff 2010).  Establishing the biogeography of several morphologically and 
genetically distinct marine species is a complex target for which remote sensing may 
provide at best, a partial solution.  
Historically, satellite sensors have provided oceanographers with bulk phytoplankton 
pigment concentrations (e.g. chlorophyll-a) over global scales with synoptic resolution 
(McClain, 2009). Coastal Zone Color Scanner (CZCS) was the beginning of the era of satellite 
remote sensing of ocean color. It was a relatively simple sensor and was successful at the 
retrieval of chlorophyll-a concentrations in open-ocean waters. Models were then developed 
that utilized satellite-derived chlorophyll-a data along with information on 
photosynthetically available radiation and temperature at the sea surface to compute water 
column primary production by remote sensing.  However, CZCS performed poorly in 
coastal waters.  SeaWiFS and MODIS, the successor to the CZCS, had better radiometric 
precision and more wavebands and was designed to address the limitations of CZCS, in 
particular for applications in coastal waters. Satellites with even higher spectral resolution 
followed (e.g. MERIS). Though the newer generations of satellites were designed for 
improving performance in coastal waters, there has been increasing recognition of their 
value in the detection of phytoplankton functional types as well.  These satellite missions 
have provided knowledge and understanding of a variety of events including frontal 
features and episodic blooms on a global basis.  The scientific community has now moved 
onto predicting ecologically significant characteristics of the food web such as size structure 
as interpreted for phytoplankton size classes including picoplankton to microplankton 
(Aiken et al. 2008).  Ocean Color has been recognized as an essential climate variable by the 
Global Climate Observation System (GCOS). As the global time series of ocean color data 
grows (CZCS, MODIS, & SeaWiFS), there is an increase in satellite products available to 
study decadal-scale variations in phytoplankton distribution and primary production.  
Understanding the spatial and temporal distribution of PFTs will allow us to improve our 
knowledge of biologically-mediated fluxes of elements between the upper ocean and the 
ocean interior (Falkowski & Raven, 1997).  The performance of biogeochemical models in 
the ocean has improved substantially as a result of incorporating PFTs into ecosystem 
models.  The spatial variability and concentration of various PFTs are critical to improving 
primary-productivity estimates, and understanding the feedbacks of climate change.   The 
ability to observe PFTs on a global scale that relate to key biogeochemical processes such as 
nitrogen fixation, silicification, and calcification is valuable to studies of marine elemental 
cycles. Despite the paucity of data on functional groups, our understanding of ecosystem 
linkages is improving as we accrue larger amounts of data.  Major divisions of 
phytoplankton taxonomic groups such as diatoms, coccolithophores, dinoflagellates, 
chlorophytes, and cyanobacteria are often separated into distinct functional groups, as these 
taxonomic groups have unique biogeochemical signatures  

www.intechopen.com



  
Remote Sensing of Biomass – Principles and Applications  

 

106 

 
 
 
 

 
 
 
 

Fig. 4. Schematic diagram showing sources of variation in optical characteristics which 
influence ocean color. (Keller et al. 1989)  

Aiken et al. (2009) shows how different size classes of phytoplankton are distributed 
globally, and size is often related to function (Nair et al. 2008).  Nonetheless, there are 
limitations to discriminating phytoplankton taxonomic composition or even functional 
groups by remote sensing, due to our inability to discriminate various phytoplankton types 
optically. Remote-sensing reflectance (Rrs (λ)) is influenced by absorption and 
backscattering by seawater, phytoplankton, colored dissolved organic matter, detrital matter 
and other suspended material (Garver & Siegel 1997).  We show the various optical pools 
that contribute to absorption, which contributes to the spectral variability of Rrs (λ, Figure 
4).  Remote sensing of particular types of phytoplankton is only possible if optical 
characteristics are identified for those types that can be used to distinguish them from all 
other types of material in the water. 
New technological developments and improved scientific knowledge have allowed for the 
development of several approaches for detecting phytoplankton biomass and some 
functional groups of phytoplankton including coccolithophores (Balch et al. 1991, Balch et 
al. 1996) and Trichodesmium (Subramanian et al. 1994, 1999 a,b, Hu et al. 2010).  More 
recently, algorithms have been developed to distinguish additional phytoplankton groups 
and size classes (Sathyendranath et al. 2004, Alvain et al. 2005, Moisan et al. 2011ab).  High 
Performance Liquid Chromatography (HPLC) is the in situ method of choice to serve as 
ground truth for satellite products due to its accuracy and rapid processing.  A relatively 
new analysis tool called CHEMical TAXonomy (CHEMTAX) has been developed that is 
designed to yield information on the phytoplankton composition using HPLC data (Mackey 
et al.1996), but it has to be recognized that HPLC models have their limitations (e.g. Latasa 
2007).  
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2. “History of terminology for phytoplankton functional types”: Ecological, 
biogeochemical, and optical definitions 

The Ocean Color community has utilized a reductionist approach to describe  
phytoplankton taxonomic composition and refers to optical signatures of certain 
phytoplankton groups/species or PFTs.   In this chapter, we will refer to Phytoplankton 
Functional Types (PFTs) in order to utilize current terminology.  Please take into account 
that we may be defining groups within different levels of complexity that relate to 
phylogeny or bio-optically similarities etc.   Taxonomic characterization has utilized 
different terminology over the years and we delve into the history of its classification 
because it may define many different levels of complexity.    
Present studies on diversity are not too far removed from the original ideas invoked by G.E. 
Hutchinson’s “Paradox of the Plankton” (Hutchinson, 1961) and J. H. Connell’s 
“Intermediate Disturbance Hypothesis” (Connell, 1978).  Ocean variability, through eddies, 
storms, seasonal cycles, and El Niño, have been documented to play a role in controlling 
diversity.  How this level of stochastic variability manifests itself spatially and temporally 
due to climate change is unknown.  Falkowski & Oliver (2007) suggest that resource 
competition theory is adequate to describe global distribution of marine eukaryotic 
phytoplankton taxa during equator-to-pole and continent-to-land thermal gradients.   These 
results are supportive in light of describing phytoplankton beyond a bulk approach of 
utilizing only chlorophyll a.    
A functional group is used as an ecological term to define a group of organisms that have 
similar biogeochemical processes e.g. nitrogen fixation, silicifiers, and calcifiers (Fauchald & 
Jumars 1979, Reynolds et al. 2002, Nair et al. 2008). Functional groups in phytoplankton are 
defined as groups of organisms related through common biogeochemical processes but are 
not necessarily phylogenetically related (Iglesias-Rodriguez et al. 2002). Homologously 
similar sets of organisms are referred to as “functional groups” or “biogeochemical guilds” 
following Totterdell et al. (1993).    For marine phytoplankton, some attempts have been 
made to organize species within certain classes of phytoplankton according to their 
ecological and biogeochemical function or habitat distribution perspective (Iglesias-
Rodríguez et al. 2002, Smayda & Reynolds, 2003,Vila & Masó, 2005). Thus, terminology has 
finally evolved to the usage of Phytoplankton Functional Type (PFT) or Phytoplankton 
Functional group but these classifications are not necessarily straightforward and include a 
wide range of different taxonomic classification approaches such as size, biogeochemistry, 
or traditional taxonomic hierarchies (see discussion by Nair et al. 2008).  

3. On the road to predicting remote sensing reflectance: Fundamental basis 
between pigments and in vivo absorption  

Algorithm development for remote sensing is focused on estimating the quantities of 
various optically-active constituents in the ocean. Various pigments present in 
phytoplankton play a role in determining the total absorption coefficient of phytoplankton, 
which is a key determinant of the spectral variability in remote-sensing reflectance.  We 
utilize a reconstruction model to demonstrate the spectral variability of photoprotective and 
photosynthetic pigments (Sathyendranath et al. 1987, Bidigare 1990).  There are differences 
in the weight-specific absorption spectra of various in vitro (extracted) phytoplankton 
pigments (Figure 5).   The comparison of maximal peaks of mass-specific absorption spectra 
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and center wavelengths on ocean color satellite platforms proves that coupling taxonomic 
and optical properties is quite challenging (Table 1).  Future sensors with increased 
temporal and spectral resolution will provide more spectral information for development of 
algorithms.  Future development of hyperspectral sensors would cover pigment-specific 
peaks at relatively high spatial and temporal resolution, which would allow retrieval of 
photosynthetic and photo-protective pigments. 
 

 

Fig. 5. Weight-specific in vitro absorption spectra of various pigments, *( )ia  , derived from 

measuring the absorption spectra of individual pigments in solvent and shifting the maxima 
of the spectra according to Bidigare et al. (1990).  Data obtained courtesy of A. Bricaud 
(Bricaud et al. 2004). 

 
SeaWiFS MODIS MERIS OCM2 OCTS CZCS 

412 412 413 415 412 443 
443 443 443 442 443 520 
490 469 490 491 490 550 
510 488 510 512 516 670 
555 531 560 557 565  
670 547 620 620 667  

 555 665    
 645 681    
 667 709    
 678     

Table 1.  Past and present Ocean Color Sensors and their respective center wavelengths (nm).  
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The multi-spectral radiance measurements from the satellite sensor can be corrected for the 
influence of the atmosphere to yield remote-sensing reflectance. It has been demonstrated 
using various types of models (e.g. Morel & Prieur 1977; Sathyendranath & Platt 1988) that 
remote sensing reflectance, Rrs (λ), at a particular wavelength (λ) increases with the back-
scattering coefficient of light at a wavelength, and decreases with the absorption coefficient:   

Rrs (λ) is proportional to bb (λ) / [a (λ) + bb(λ)] 

where bb(λ) is backscattering coefficient and a(λ) is the total absorption coefficient. The total 
absorption coefficient can be partitioned into its components:   

( ) ( ) ( ) ( ) ( )w ph g da a a a a         

where the subscripts w, ph, g, and d relate to seawater, phytoplankton, gelbstoff and detritus, 
respectively. A similar equation can be wiritten for backscatter.  The absorption coefficient 
of phytoplankton can be further broken down into contributions from various pigments to 
the total phytoplankton absorption. 

1

( ) * ( )
n

i ci
i

a C a 


  

where ci is the concentration of the individual pigments derived from HPLC analysis and 
*( )ia   is the absorption coefficient for the phytoplankton pigment.  

As the pigment composition of phytoplankton changes with changes in community 
structure, the absorption spectra will be modified accordingly. Furthermore, it has been well 
demonstrated that the absorption spectra of phytoplankton are also modified by changes in 
the size structure of the community (Duysens 1956; Morel and Bricaud 1981; 
Sathyendranath et al. 1987; Moisan and Mitchell 1999). Therefore, pigment packaging 
significantly affect a*ph (Figure 6).  To the extent that size and function are related, size-
dependent changes may also be related to changes in functional types.  Remote sensing of 
PFTs must rely on such deviations in the spectral signatures of phytoplankton associated 
with changes in the phytoplankton community structure. Note that such approaches can be 
adapted to account for the contribution of mycosporine-like amino acids to absorption in the 
UV regions, which have some but limited taxonomic value (Moisan et al. 2011a, b). 

4. Algorithm development of ocean color phytoplankton functional types 

PFT algorithms have been developed to map the distribution of numerically- and 
ecologically-important organisms that demonstrate an anomalous relationship to a satellite-
derived reflectance product, such as chlorophyll-a.  Generally, algorithm development has 
capitalized on the backscattering or absorption characteristics of a particular phytoplankton 
group, or utilized sophisticated modeling efforts.   In earlier years, a particular 
species/group was targeted, whereas more recently mathematically sophisticated 
algorithms have produced multiple products relating to phytoplankton community 
structure. Both approaches provide valuable data products, which enhance our 
understanding of the spatial and temporal variability in ecological structure and function.  
We present a generalized description of present algorithms for in situ data and satellite-
derived data that describe phytoplankton taxonomic composition.    
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Fig. 6. Phytoplankton absorption spectra for a range of Chla (24.6, 18.9, 13.0, 1.91, 0.68, 0.21 
mg m−3) and taxonomic size classes (pico, nano and micro) with decreasing slope from high 
to low aph (λ) and Chla; inset spectra of pico and nanoplankton at expanded range (Hirata 
et al 2008).  
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Prokaryota                      

Synechococcus _        _  _             _  

Prochlorococcus    _  _     _  _             _  

Eukaryota                      _  

Rhodophyt a _        _               

Crypt ophyta _      _   _   _             

Chlorophyc eae _  _       • _        _  _    _  _  

Prasinophyceae _  _       • _        • _   _  _   

Eulgenophyt a _  _        _    _      •     

Eust igmatophyta _         _            _  • 

Bacil lariophyta _     _  _    •   _   _         

Dinophyta _      _    •   _  •     _     

Prymnesiophyta _     _  _  _  • •  _  _   _  _        

Chrys ophyceae _      _  _   •  _  _   _         

Raphidophyceae _     _  _    _    _   _          
Table 2. Distribution of pigments across the divisions and classes of the algae that are 
conventionally measured by high performance liquid chromatography. ● = major pigment 
(>10%); �=minor pigment (≤10%) of the total chorophylls or carotenoids.  (Modified from 
Jeffrey & Vesk 1997) 
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5. Pigments as a diagnostic tool for identifying phytoplankton functional 
types 

Because conventional light microscopy is labor-intensive and biased towards the larger 
phytoplankton, biological oceanographers have sought alternative approaches to derive 
information on community structure of the entire phytoplankton population. The most 
common method to achieve this is by measuring the phytoplankton pigment composition.  
Algal pigments have been routinely used as chemotaxonomic markers in studies of 
phytoplankton ecology and biogeochemistry.  Chlorophyll-a, in its monovinyl and divinyl 
forms, is found within all photosynthetic microalgae and cyanobacteria, and is used as a 
universal proxy of autotrophic biomass.  However, there also exist other chlorophylls and 
carotenoids that are routinely measured by High Performance Liquid Chromatography 
(HPLC) and may serve as class-specific markers.    
It should be noted that most algal pigments are found in more than one class, while some 
are not necessarily present in every member of the same class.   Given the complexity of the 
distribution of pigments between and within various phytoplankton taxa, a number of 
statistical and mathematical methods have been developed to partition the bulk pigment 
biomass into the various phytoplankton groups. In addition to using pigments as class-
specific markers, pigments indices of phytoplankton classes have been developed based on 
certain diagnostic pigments that tend to dominate in a particular size class.  In this section 
we briefly describe these approaches.  For a more detailed review of the use of pigments as 
taxonomic markers see Wright & Jeffrey (2005). 

Pigments in relation to taxa 

The increased use of HPLC pigment analyses in ecological, remote sensing and 
biogeochemical studies of marine systems has created an impetus to try to extract from 
pigment data not only the bulk chlorophyll-a biomass of the entire population, but also the 
distribution of phytoplankton groups from the class to the genus level. The quantitative use 
of pigment markers to assess the relative contribution of taxa to chlorophyll-a biomass is 
still a relatively new and developing area of research.  The task of estimating the 
contribution of various taxa to the pigment signature of natural samples is complex, given 
that many pigments are found in more than one algal class.  The distribution of 
phytoplankton pigments across the various phytoplankton classes is illustrated in Table 1. 
There are three basic approaches used to extract information on algal taxonomic 
composition based on pigments: multiple linear regression (Gieskes & Kraay 1983, 1986), 
inverse methods (Bidigare & Ondrusek 1996, Everitt et al. 1990, Letelier et al. 1993, Vidussi 
et al 2001) and matrix factorization analysis (Mackey et al. 1996, Wright & Jeffrey 2006).   

Multiple linear regression analysis 

The principal motivation behind the use of multiple linear regression studies of phytoplankton 
pigments was to establish a relationship between diagnostic pigments & the ubiquitous light 
harvesting pigment, chlorophyll-a, a universal proxy of phytoplankton biomass.  One of the 
aims of the approach was to account for the fraction of phytoplankton cell biomass that may 
not be detected by conventional microscopy counts.  Using multiple linear regression of 
diagnostic pigments against chlorophyll-a concentration, Gieskes & Kraay (1983) revealed that 
cryptophytes accounted for about half of the chlorophyll-a standing stock during a spring 
bloom study of the central North Sea, although these cells were not detected by microscope 
counts.  The evidence was compelling, given that cryptophytes have a unique ‘pigment 
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fingerprint’ (alloxanthin), and this carotenoid was the most abundant accessory pigment in the 
field samples.  The explanation for the discrepancy between the pigment data and the cell 
counts was that small flagellates and photosynthetic ciliates that harbour alloxanthin are 
poorly preserved in Lugol’s solution, resulting in underestimated cell abundances whereas the 
larger microphytoplankton (diatoms and dinoflagellates) are better preserved and more easily 
to identified. The authors also commented on the difficulty in assigning other pigments, such 
as fucoxanthin, to a particular class, given it is also found in other algal classes, such as 
prymnesiophytes and chrysophytes.  
There are caveats to using the multiple linear regression approach to examine shifts in 
phytoplankton community structure (Gieskes et al. 1988). In the study by Gieskes et al. 
(1988), a clear influence of light adaptation on pigment composition was apparent in surface 
and deep populations, which were characterized by different ratios and intracellular 
concentrations of diagnostic pigments.  As a result, poor taxon specificity of pigment 
markers such as fucoxanthin may mislead authors to conclude that microscopic counts 
provide superior quantitative estimates of taxon-specific biomass compared to pigment 
data. 

Inverse methods 

In order to estimate the contribution of various algal taxa to chlorophyll-a, inverse methods 
have been adopted to studies of phytoplankton pigments.  The inversion method uses ratios 
of chlorophyll-a to accessory pigments based on literature values for representative taxa, 
(Everitt et al. 1990, Letelier et al. 1993, Bidigare et al. 1996).  From these data a series of 
simultaneous equations for each algal group is derived to determine their contribution to 
total chlorophyll-a biomass.  The method also addresses the problem of shared pigments 
between classes by subtracting out the contribution by other taxonomic groups for a 
particular pigment marker.  The culture-based pigment: chlorophyll-a seed values are then 
modified by matrix inversion to the field data to find the least squares best solution. 
Constraints are also applied to the pigment ratios to avoid negative contributions by taxa.   
The inverse method was used by Everitt et al. (1990) to demonstrate that 
nanophytoplankton species dominated the waters of the western Equatorial Pacific, and 
showed significant variation in community structure.  Seasonal changes in the composition 
of phytoplankton groups (Prochlorococcus, other cyanobacteria, prymnesiophytes and 
chrysophytes) that comprise the deep chlorophyll maximum were examined for the Station 
ALOHA time series (Letelier et al. 1993).  This approach has also been adopted by Vidussi et 
al. (2001) to assess the shift in community structure during a spring bloom in the 
northwestern Mediterranean Sea.   

Matrix factorization of HPLC pigments (CHEMTAX) 

CHEMTAX (CHEMical TAXonomy) is a MATLAB program that estimates the relative 
contributions of different phytoplankton taxa to the bulk chlorophyll-a concentration of a 
given sample (Mackey et al. 1996, Wright et al. 2000).  Over the years this method has been 
used to separate out the phytoplankton community into taxonomic groups to at least the 
class, and in some cases, the genus or species level.  To implement this algorithm an input 
pigment matrix is constructed based on knowledge of the kinds of taxa likely to be present 
in the study area and information on the cell-specific pigment composition and 
concentrations of these groups from culture studies.  Unlike the multiple linear regression or 
inversion methods, which use only one or two diagnostic pigment markers for each taxa in 
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the analyses, the CHEMTAX pigment matrixes make use of a wider range of accessory 
pigments. However, some criticisms within the community have occurred regarding its 
application because it assumes constant pigment ratios (Latasa 2007). 
Given that the growth conditions of microalgae are known to influence the pigment 
composition of phytoplankton. The principal factors that led to chromatic adaptation of 
microalgae include the quality and spectral quantity of irradiance and nutrient status.  In 
addition to the effect of taxa, growth conditions of microalgae are known to influence the 
pigment composition of phytoplankton.  The principal factors that lead to chromatic 
adaptation of microalgae include the quality and spectral quantity of irradiance and nutrient 
status.  Variability in pigment composition caused by these factors is seen both in the change 
in the intracellular concentration of the cells as well as the ratios of accessory pigments (such 
as the relative concentrations of photosynthetic or photoprotective pigments).  Therefore, 
similar to inversion methods, it is recommended that sample be divided according to light 
regime before running the matrix factorization. 
Other inverse methods focus on the absorption term related to phytoplankton as has been 
estimated using a wide range of algorithms.  An alternative approach proposed by Bidigare et 
al. (1989 & 1990) utilizes the absorption signatures of the various pigments to reconstruct the 
unpackaged absorption spectra of marine phytoplankton.  Using the pigment outputs for 
various algal groups from CHEMTAX, an unpackaged absorption spectra for a particular 
phytoplankton group can be constructed when regarding the absorption spectra solely as a 
function of the chlorophyll-a concentration and the chlorophyll-a specific absorption spectra.  
Several inverse modeling capabilities are available that can make use of these absorption 
formulations for other pigments.  Moisan et al. (2011ab) have developed a matrix inverse 
modeling technique that produces photoprotective and photosynthetic pigments with 
relatively accurate results (r2 >0.80) using HPLC pigments as validation (Figure 7). 

Modeling pigments in relation to cell size fractions 

Fortuitously, the major taxa of marine phytoplankton tend to fall within the three size 
classes originally proposed by Sieburth (1979), the micro- (>20m), nano- (2-20m) and 
picophytoplankton (<2m).  Thus pigment markers of particular taxonomic groups can 
provide insight into the relative contribution of a particular size class to the pigment 
biomass.  The use of pigment markers to derive a size index of phytoplankton populations 
was proposed by Claustre (1994).   The approach used seven diagnostic pigments to obtain 
an index of the relative contribution of microphytoplankton to pigment biomass integrated 
over the watercolumn.  The two marker pigments ascribed to the microphytoplankton size 
class are fucoxanthin, associated with the diatom fraction, and peridinin, representing the 
dinoflagellate fraction.  The index also used markers pigments that tend be dominant 
accessory pigments in natural populations: 19’-hex, 19’-but, alloxanthin, zeaxanthin and 
chlorophyll-b.  Thus by summing the watercolumn-integrated concentration of diagnostic 
pigments associated with the microphytoplankton fraction, and dividing by the sum of all 
water-column integrated accessory pigments, an index of the relative contribution of 
microphytoplankton to total integrated pigment biomass can be calculated according to the 
equation: 

( )

19' 19'p
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
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Fig. 7. (top) Predicted absorption versus measured absorption (Algorithm II) for values every 
10 nm ranging from 300 nm to 700 nm using matrix inversion methods using a single value 
decomposition.  (bottom) Predicted pigments versus measured HPLC pigments for use in 
photosynthesis and photoprotection pigments.  See Moisan et al. (2011 ab for more details). 
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A Fp value equal to one means that fucoxanthin and peridinin made up the entire integrated 
diagnostic pigment concentration, whereas a value of zero means that neither indicator 
pigment of microphytoplankton were found in the water column. 
The size-based approach was refined by Vidussi et al. (2001) to obtain a pigment-derived 
indices of the contribution of the three size classes of phytoplankton (micro- (>20mm), nano- 
(2-20mm) and picophytoplankton (<2mm) to integrate pigment biomass.  To determine the 
relative contribution of the three size classes to chlorophyll-a biomass, Uitz et al. (2006) 
combined the multiple linear regression analysis of Gieskes et al. (1983, 1988) with the size-
specific index of Vidussi et al. (2001) to derive estimates of all three size fractions and used 
not only to derive an index of the presence of the three size classes, but also to estimate their 
relative contribution to total chlorophyll concentration, similar to the inversion methods and 
CHEMTAX.  It is important to note that in this approach integrated rather than discrete 
pigment concentrations are used.  The approach to using size as a description of the 
phytoplankton community is becoming a well-accepted PFT, which provides an important 
link between the fields of remote sensing and marine ecology. 

6. Modeling trophic structure through correspondence between taxa, size 
and function 

The relationship between phytoplankton size and biogeochemical function has been well 
established.  Diatoms (silicifiers) tend to be large, and their negative buoyancy leads to their 
significant contribution to export production (Sarmiento & Gruber 2004).  
Picophytoplankton, on the other hand, are more important in microbial food webs were 
rapid recycling of organic matter in the surface ocean leads to a reduction in biogenic export 
to the deep ocean.   Recent molecular studies on the picocyanobacterium Prochlorococcus, 
which dominates the chlorophyll-a biomass in the oligotrophic gyres, have revealed that 
many strains are unable to utilize nitrate as a nutrient source, and consequently can be 
considered obligate participants in regenerative production. 
The use of pigment markers to provide insight on the trophic structure of marine 
ecosystems was examined by Claustre (1994).  He proposes that the contribution of 
microphytoplankton (in particular diatoms) to the integrated concentration of diagnostic 
pigments, which can be considered to be a indicator of the f-ratio and hence new 
production.  In addition, information on the contribution of various phytoplankton taxa to 
chlorophyll-a standing stock has led to the generation of taxon-specific maps of primary 
production using global relationships on the relationship between surface chlorophyll-a 
concentration and the ratio of integrated diagnostic pigments to integrated chlorophyll-a 
concentration (Uitz et al. 2006).  Although the simple pigment indices invoked by Claustre 
(1994) and Uitz et al. (2006) cannot resolve instances where other taxa contribute to the 
diagnostic pigment markers used in their analysis, it provides a useful first attempt at 
obtaining information on the global distribution of phytoplankton size classes (Uitz et al. 
2006), the environmental factors that control their biogeography (Bouman et al. 2003) and 
their relative contribution to marine productivity (Bouman et al. 2005, Uitz et al. 2006).  

7. Societal benefits of ocean color approaches to algorithm development for 
key phytoplankton functional types: Fisheries and habs applications 

A fundamental goal of phytoplankton biogeography is to describe how PFTs are distributed 
spatially and temporally and how these patterns relate to processes that control primary 
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production/new production.  Several theories have been postulated about what governs 
biological diversity, which stabilizes community dynamics.   Future satellites with increased 
spectral resolution will allow for algorithms of different proxies for diversity whether the 
products are pigments, size spectra, or biogeochemical indicators.  Such phytoplankton 
diversity indicators will lead to a better understanding of the response of marine ecosystems 
to climate and human activities (Platt et al. 2008, 2009). To date, the scientific community has 
been able to describe phytoplankton community structure based on broad size classes, 
pigmentation, probability of occurrence, or some other index of presence or absence. We 
have focused on two successful applications including fisheries management and harmful 
algal blooms.   
a. Fisheries applications 
Satellite ocean color application on broad scales allow for PFTs, namely diatoms, to be put 
into an ecological context regarding El Niño events in the Humboldt ecosystem (Jackson et 
al. 2011, Figure 8). A locally tuned algorithm for detecting diatom distribution allowed for 
critical observations in shifts in the size structure of the phytoplankton community, which 
provide a food source for anchovies.   Changes in carbon structure will affect food stress on 
the fish populations and appears to influence landings in the following year.  Mapping the 
distribution and abundance of phytoplankton using remotely sensed data assists in the 
creation of targeted and quantitative fishing strategies.   Satellites can provide strategies and 
tools together with modeling and other satellite. Both ocean color and other satellite data, 
coupled with models, can provide resource managers the information of food web 
components (other than the chlorophyll-a product), which may be used to direct shipboard 
sampling on regional scales. 
 

Dec 1997 Dec 2000

 
Fig. 8. Climate-induced changes in the spatial distribution of diatoms in the Humboldt 
system. The figure shows a marked reduction in the presence of diatoms during the 1997 El 
Niño event compared with the control period (December 2000), which represents typical 
oceanic conditions for the study region. The color bar represents the fraction of pixels 
identified as diatoms.  Modified from Jackson et al. (2011).  
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b. Monitoring and tracking through the identification of harmful algal blooms  
Ocean Color satellites have had a valuable application for many marine biological processes 
such as red tides and harmful algal blooms (HABs, reviewed in Stumpf & Tomlinson 2005).  
HABs are not only harmful to the marine ecosystem but substantive economic losses occur 
in coastal regions worldwide and the need for remote detection of blooms is critical 
(Anderson et al. 1997, Schofield et al. 1999, Sellner et al. 2003). HAB events threaten human 
health, living marine resources, and ecosystem health. Their occurrence has increased in 
frequency, duration, and severity over the last several decades (Figure 9).  Current 
monitoring efforts of toxic cells and toxin levels in shellfish tissue are relatively slow and 
lack the synoptic coverage of satellites (Schofield et al. 1999). Nevertheless, HAB monitoring 
can occur at unprecedented scales with detailed shipboard and drifters to predict arrival, 
transport time, and possibly toxicity of the bloom (Figure 9, Schofield et al. 1999). 
Knowledge such as this allows the public to know location, timing of the bloom and close 
any fisheries that are impacted economically.  An excellent example of this type work has 
been conducted on the mesoscale blooms of Karenia brevis in the Gulf of Mexico with ocean 
color derived chlorophyll a and solar stimulated fluorescence (Stumpf et al. 2003, Hu et al. 
2005, Figure 9).  Most HAB studies have focused on monitoring with chlorophyll-a as a 
biomass indicator, however, photo-protective pigments such UV mycosporine-like amino 
acids and gyroxanthin from other non-toxic organisms (Kahru & Mitchell 1998, Moisan et al. 
2011). Several countries all over the world have successfully monitored HABs over broad 
spatial scales with supplemented satellite imagery and aircraft monitoring in the Gulf of 
Mexico that allows for tracking of the bloom by satellite and drifters to notify the public.  
 

 
Fig. 9. Left figure: Harmful algal bloom image in the Gulf of Mexico while using drifters and 
ocean color satellite imagery that allows for tracking for responses to the public (Lohrenz et 
al., unpub.).  Right figure: Fluorescence Line Height is a better indicator than the satellite-
based Chl for chlrophyll-a biomass in CDOM-rich waters. This image is for a Karenia brevis 
bloom (modified from Hu et al. 2005, Courtesy of Dr. Chuanmin Hu).  Please note that 
images from different years. 

8. Future directions of algorithm development using ocean color  

Over the past few decades, the dominant phytoplankton biomass product, chlorophyll-a, 
has been observed over a long time period on global scales.   Recent investigations using 
ecological provinces have indicated additional regional variability and have provided 
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information based on marine ecology and biogeochemistry in the broader context of climate 
change (Falkowski et al. 2004).  Although validated satellite data is not a substitute for ship-
based sampling, in situ information about the physical/biological regimes is still required to 
produce sound ecological products.   Hence, the future lies in the combined utilization of in 
situ data, remote sensing, and modeling.  The remote sensing of PFTs in the ocean will bring 
about a greater understanding of how phytoplankton community structure affects climate 
with biologically-produced greenhouse gases.  In contrast, PFTs will contribute to an overall 
understanding of global marine biodiversity and that knowledge will provide insight on the 
relationship between ecosystem stability and ocean biogeochemistry.   
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The accurate measurement of ecosystem biomass is of great importance in scientific, resource management

and energy sectors. In particular, biomass is a direct measurement of carbon storage within an ecosystem and

of great importance for carbon cycle science and carbon emission mitigation. Remote Sensing is the most
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measurements and modeling. The chapters in this book are separated into five main sections.
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