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1. Introduction 

A relevant issue nowadays is the monitoring and identification of the concentration and rate 
flux of the gases from the greenhouse effect. Most of these minority gases belong to 
important bio-geochemical cycles between the planet surface and the atmosphere. 
Therefore, there is an intense research agenda on this topic. Here, we are going to describe 
the effort for addressing this challenging. This identification problem can be formulated as 
an inverse problem. The problem for identifying the minority gas emission rate for the 
system ground-atmosphere is an important issue for the bio-geochemical cycle, and it has 
being intensively investigated. This inverse problem has been solved using regularized 
solutions (Kasibhatla, 2000), Bayes estimation (Enting, 2002; Gimson & Uliasz, 2003), and 
variational methods (Elbern et al., 2007) – the latter approach coming from the data 
assimilation studies. 

The inverse solution could be computed by calculating the regularized solutions. 

Regularization is a general mathematical procedure for dealing with inverse problems, 

looking for the smoothest (regular) inverse solution. For this approach, the inverse 

problem can be formulated as an optimization problem with constrains (a priori 

information). These constrains can be added to the objective function with the help of a 

regularization parameter. For adding a regularization operator, the ill-posed inverse 

problem becomes in a well-posed one. The maximum second order entropy principle was 

used as a regularization operator (Ramos et al., 1999), and the regularization parameter is 

found by the L-curve technique. A recent approach for solving inverse problems is 

provided by the use of artificial neural networks (ANN). Neural networks are non-linear 

mappings, and it is possible to design an ANN to be one inverse operator, with 

robustness to deal on noisy data.  

We have applied two different strategies for addressing the inverse problem: formulated as 
an optimization problem, and neural network. The optimization problem has been solved 
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by using a deterministic method (quasi-Newton), implementation used in the E04UCF 
routine (NAG, 1995) – see Roberti et al. (2007), and applying a stochastic scheme (Particle 
Swarm Optimization: PSO) (Luz et al., 2007). The PSO is a meta-heuristic based on the 
collaborative behaviour of biological populations. The algorithm is based on the swarm 
theory, proposed by Kennedy & Eberhart (1995) and is inspired in the flying pattern of birds 
which can be achieve by manipulating inter-individual distances to synchronize the swarm 
behaviour. The swarm theory is then combined with a social-cognitive theory. The 
multilayer perceptron neural network (MLP-NN) with 2 hidden layers (with 15 and 30 
neurons) was applied to estimate the rate of surface emission of a greenhouse gas (Paes et 
al., 2010). The input for the ANN is the gas concentration measured on a set of points. 

2. Techniques for solving inverse problems  

There is an aphorism among mathematicians that the theory of partial differential equation 
could be divided into two branches: an easy part, and a difficult one. The former is called 
the forward (or direct) problem, and the latter is called inverse problem. Of course, the anecdotal 
statement tries to translate the pathologies found to deal with inverse problem.  

For a given mathematical problem to be characterized as a well-posed problem, Jacques 
Hadamard in his studies on differential equations (Hadamard 1902, 1952) has established 
the following definition: 

A problem is considered well-posed if it satisfies all of three conditions: 

a. The solution exists (existence); 
b. The solution is unique (uniqueness); 
c. The solution has continuous dependence on input data (stability). 

However, inverse problems belong to the class of ill-posed problems, where we cannot 
guaranty existence, uniqueness, nor stability related to the input data. A mathematical 
theory for dealing with inverse problems is due to the Russian mathematician Andrei 
Nikolaevich Tikhonov during the early sixties, introducing the regularization method as a 
general procedure to solve such mathematical problems. The regularization method looks 
for the smoothest (regular) inverse solution, where the data model would have the best 
fitting related to the observation data, subjected to the constrains. The searching by the 
smoothest solution is an additional information (or a priori information), which becomes the 
ill-posed inverse problem in a well-posed one (Tikhonov & Arsenin, 1977). 

Statistical strategies to compute inverse solution are those based on Bayesian methods. 
Instead to compute a set of parameter or function as before, the goal of the statistical 
methods is to calculate the probability density function (PDF) (Tarantola, 1987; Kaipio & 
Somersalo, 2005). Bayesian methodology will not be applied here. 

With some initial controversy, artificial neural networks are today a well established 
research field in artificial intelligence (AI). The idea was to develop an artificial device able 
to emulate the ability of human brain. Sometimes, this view is part of program of so called 
strong AI. Some authors have used the expression computational intelligence (CI) to express a 
set of methodologies with inspiration on the Nature for addressing real world problems. 
Initially, the CI includes fuzzy logic systems, artificial neural networks, and evolutionary 
computation. Nowadays, other techniques are also considered to belong to the CI, such as 
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swarm intelligence, artificial immune systems and others. Different from other 
methodologies for computing inverse solutions, neural networks do not need the 
knowledge on forward problem. In other words, neural networks can be used as inversion 
operator without a mathematical model to describe the direct problem. Several architectures 
can be adopted to implement a neural network, here will be adopted the multi-layer 
perceptron with back-propagation algorithm for learning process. Other approaches to 
implement artificial neural network for inverse problem are described by Campos Velho 
(2011).  

2.1 Regularization theory 

Regularization is recognized as the first general method for solving inverse problems, where 
the regularization operator is a constrain in an optimization problem. Such operator is 
added to the objective function with the help of a Lagrangian multiplier (also named the 
regularization parameter). The regularization represents an a priori knowledge from the 
physical problem on the unknown function to be estimated. The regularization operator 
moves the original ill-posed problem to a well posed one. Figure 1 gives an outline of the 
idea behind the regularization scheme, one of most powerful techniques for computing 
inverse solutions. 

 

         
 

Fig. 1. Outline for regularization methods, where additional information is applied to get a 
well-posed problem. 

The regularization procedure searches for solutions that display global regularity. In the 

mathematical formulation of the method, the inverse problem is expressed as optimization 

problem with constraint: 

 
2

2
min ( ) , suject to [ ]
x X

A x f x 


    (1) 

where ( )A x f   represents the forward problem, and [ ]x  is the regularization operator 

(Tikhonov & Arsenin, 1977). The problem (1) can be written as an optimization problem 

without constrains with the help of a Lagrange multiplier (penalty or regularization 

parameter): 

  2

2
min ( ) [ ]
x X

A x f x 
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    (2) 
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being   the regularization parameter. The first term in the objective function (2) is the 

fidelity of the model with the observation data, while the second term expresses the 

regularity (or smoothness) required from the unknown quantity. Note that for    0, the 

fidelity term is overestimated; on the other hand, for     all information in the 

mathematical model is lost. A definition of a family of regularization operator is given 

below. 

Definition 1: A family of continuous regularization operators :R F U   is called a 

regularization scheme for the inverse operation of ( )A x f  , when 

  0lim ( )R A x x    (3) 

where x  X, and   is regularization parameter.  

The expression (2) is a practical implementation of the Definition 1. Several regularizations 

operators have been derived from the pioneer works. Here, only one class of these 

regularization operators will be described. 

2.1.1 Entropic regularization 

The maximum entropy (MaxEnt) principle was firstly proposed as a general inference 

procedure by Jaynes (1957), on the basis of Shannon's axiomatic characterization of the 

amount of information (Shannon & Weaver, 1949). It has emerged at the end of the 60's as a 

highly successful regularization technique. Similar to others regularization techniques, 

MaxEnt searches for solutions with global regularity. Employing a suitable choice of the 

penalty or regularization parameter, MaxEnt regularization identifies the smoothest 

reconstructions which are consistent with the measured data. The MaxEnt principle has 

successfully been applied to a variety of fields: pattern recognition (Fleisher et al., 1990), 

computerized tomography (Smith et al., 1991), crystallography (de Boissieu et al., 1991), 

non-destructive testing (Ramos & Giovannini, 1995), magnetotelluric inversion (Campos 

Velho & Ramos, 1997). 

For the vector of parameters xi with nonnegative components, the discrete entropy function 

S of vector u is defined by 

 
 TN

N
q q N

q q q q q

x x x
S x s s

s x x

1

1 1

( ) log( ), with 
 

   






 (4) 

The (nonnegative) entropy function S attains its global maximum when all sq are the same, 

which corresponds to a uniform distribution with a value of max logS N , while the lowest 

entropy level, min 0S  , is attained when all elements sq but one are set to zero. 

Following the Tikhonov regularization, new entropic higher order regularization techniques 

have been introduced: MinEnt-1 – applied to identify the 2D electric conductivity from 

electro-magnetic data (Campos Velho & Ramos, 1997), MaxEnt-2 – employed to the retrieval 

of vertical profiles of temperature in the atmosphere from remote sensing data (Ramos et al., 

1999). They represent a generalization of the standard MaxEnt regularization method, 
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allowing a greater flexibility to introduce information about the expected shape of the true 

physical model, or its derivatives, for the inverse solution.  

For defining higher order entropy functions, two approaches can be derived from the 
maximization of the entropy of the vector of first- and second-differences x. Under the 
assumption xmin < xi < xmax, (i=1, …, N), the methods of maximum entropy of order 1 (MaxEnt-1) 
and maximum entropy of order 2 (MaxEnt-2) are defined below (Muniz et al., 2000): 

 
min

1 max min

1 1 max min

     (zeroth  order)                                   

( )     (first  order)                 

2 2( )     (second order)







 

 
    
     

i

i i i

i i i

x x

p x x x x

x x x x x

 (5) 

where  is a small parameter ( = 10-10). The argument in the Eq. (4) is to be considered with 
pi, instead of xi. 

The non-extensive formulation for the entropy proposed by Tsallis (Tsallis, 1988) can be 
used to unify the Tikhonov and entropic regularizations (Campos Velho et al., 2006, see also 
Campos Velho, 2011). The Tsallis’ non-extensive entropy is expressed as 

 
1

1
1

M
q

q i
i

k
S (x) x

q 

 
    

  (6) 

The non-extensive parameter q plays a central role in the Tsallis' thermostatistics. The 
Boltzmann-Gibbs-Shannon's entropy is recovered setting q=1. However, for q=2, the 
maximum non-extensive entropy principle is equivalent to the standard Tikhonov 
regularization. Of course, for q  1 and 2, we have a new regularization operator. In context 
of inverse problem, the Boltzmann constant (k) is assumed to be equal to 1. 

In order to have a complete theory, the regularization operator should be known, and it is 
also necessary to have a scheme to compute the regularization parameter. Several methods 
have been developed to identify this parameter: Morosov’s discrepancy criterion, Hansen’s 
method (L-curve method), and generalized cross validation are the most used schemes. 

The Morosov’s criterion is based on the difference between data of the mathematical model 
and observations. It should have the same magnitude as measurement errors (Morosov, 
1984; see also Morosov & Stessin, 1992). Therefore, if  is the error in the measure process,  
is the root of the following equation: 

  
*

2

2
( )A x f 


   (7) 

For determining N parameter in an inverse problem, and assuming that measurement errors 
could be modeled by a Gaussian distribution with 2 variance, the discrepancy criterion for 
independent measures could expressed as: 

 
2 2

2
( )A x f N    (7.1) 

The discrepancy principle can also be applied to the higher entropy regularization (Muniz et 

al., 2000). However, if the probability density function of measurement errors follows a 
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distribution where the second statistical moment is not defined (Lévy or Cauchy 

distributions, for example) the generalized Morosov’s discrepancy principle can be used 

(Shiguemori et al., 2004). 

If the statistics on the observational data is not available, the generalized cross-validation 

method can be applied (Bertero & Bocacci, 1998; Aster et al., 2005). Considering now a linear 

forward problem: A(x)Ax, being A a matrix, the goal of the cross-validation scheme is to 

minimize the generalized cross-validation function (Aster et al., 2005): 

 
 

2

2
2

( )
( )

( )

N A x f
V

Tr I B









   

 (8) 

being Tr{C} the trace of matrix C, and ( )B   is the following matrix: 

 * * 1( ) ( )    B AA AA I  (9) 

where A* is the adjoint matrix: *( , ) ( , )Af g f A g  and I is the identity matrix. 

Another scheme to compute the regularization parameter is the L-curve method. The L-

curve criterion is a geometrical approach suggested by Hansen (1992) (see also Bertero & 

Bocacci, 1998; Aster et al., 2005). The idea is to find the point of maximum curvature, on the 

corner of the plot: 
2

2
[ ] ( ) 

  x A x f . In general, the plot smoothness × fidelity shows a L-

shape curve type. 

2.1.2 Optimization methods 

This is a central issue in science and engineering, where several methods have been 

developed. They can classified as a deterministic and stochastic schemes. Here, only the 

methods used in the application treated will be described. 

2.1.2.1 Quasi-Newton optimization 

The minimization of the objective function J(x) given by equation (2), subjected to simple 

bounds on x, is solved using a first-order optimization algorithm from the E04UCF 

routine, NAG Fortran Library (1993). This routine is designed to minimize an arbitrary 

smooth function subject to constraints (simple bounds, linear and nonlinear constraints), 

using a sequential programming method. For the n-th iteration, the calculation proceeds 

as follows: 

1. Solve the forward problem to x and compute the objective function J(,x), 

2. Compute the gradient J(,x) by finite difference, 

3. Compute a positive-definite approximation (quasi-Newton) to the Hessian Hn: 

 

1 1
1

1

( ) ( )

( ) ( )

 


  
n n T n n n T n

n n
n T n n T n n

b b H u u H
H H

b u u H u
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where 

1 1and ( , ) ( , )     n n n n n nb x x u J x J x  

4. Compute the search direction dn as a solution of the following quadratic programming 
subproblem: 

11
minimize: [ ( , )] ( )

2
  n T n n T n nJ x d d H d  

min maxunder constrain: ( ) ( )n n
q q q q qx x d x x     

5. Set: xn+1 = xn +ndn, where the step length n minimizes J(xn + n dn). 

6. Test of convergence: Stop, if x satisfies the first-order Kuhn-Tucker conditions and 

n||d|| < 1/2(1+||x||), where  specifies the accuracy to which one wishes to 

approximate the solution of the problem. Otherwise, return to step 1. 

2.1.2.2 Particle swarm optimization 

The particle swarm optimization (PSO) is a heuristic search method the uses the behavior of 

biological collective behavior, like birds, fishes or bees to drive the artificial particles in a 

search pattern that equalizes a global search with a local search, in a way that an optimum, 

or near to optimum, result is found (Kennedy & Eberhart, 1995, 2001). There is a socio-

cognitive theory for supporting the particle swarm scheme. The cultural adaptive process 

encloses two components: high-level (pattern formation trough the individual and the 

ability of problem solving), and a low-level (individual behavior), with some skills for 

evaluating, comparing, and emulating (Kennedy & Eberhart, 2001). 

The tendency to evaluate is, maybe, the behavioral feature more present in several living 

beings. This is intrinsic for the learning process. The comparison among individuals from a 

population is a behavior process used to identify patterns to find a way to improve each one 

quality. The emulation behavior gives the living beings the ability to learn through the 

observations of others actions. This behavior is not so much common in the nature. The 

emulation behavior is closer to the human society, but it can be used to improve the 

performance of the algorithms. These three concepts can be combined, even in simplified 

computational rules, providing a scheme for solving optimization problems. 

PSO searches for the optimum in an infinite (∞) or N (N-dimensional space of real 

numbers,). Indeed, computational solutions can only obtain a projection of an infinite space 

into N space. The algorithm allows the particles to fly in the search space, looking for the 

optimization of a predetermined function. A special position x* of a particle in the search 

space represents the solution of the problem. This position can be represented by an vector 

of real numbers x=(x1, x2, …, xN). In the PSO, the solution x* is searched in a iterative 

procedure. At each time step, or iteration of the algorithm, the position of the each particle xk 

is updated, by the addition of a speed vector vk, in each dimension (space direction). The 

iteration could be given by  

 ( ) ( 1) ( )k k kx t x t v t    (10) 
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where xk(t-1) is the previous position of the particle. The velocity that is applied to the 
particle is function of two basic behaviors: a cognitive component, and a social component. 
The velocity is up dated taken into account the behaviors mentioned, as following: 

 1 1 1 2( ) ( 1) ( ) ( )gk k k k kv t wv t c rand p x c rand p x       (11) 

where c1,2 are constants (real numbers) that weights the cognitive and social components, 

respectively, rand1,2 are random numbers from a uniform distribution in the interval [0,1], pk 

is the best position achieved by the particle and pg is the best position of the swarm, with xk 

actual position of the particle k. The parameter w is used to give more stability to the 

algorithm (Shi & Eberhart, 1998). The selection of the w value follows a heuristic rule: 

 If w < 0.8: the algorithm works in a local search mode, in a exploration mode; 

 If w > 1.2: the algorithm works in a exploitation mode, where the global is more 
explored; 

 If 0.8 < w < 1.2: a balance point, where exploration and exploitation are well divided. 

2.2 Artificial neural networks 

The artificial neuron is a simplified representation of a biological neuron, where a weighted 

combination of the inputs is the value for the non-linear activation function (in general, a 

sigmoid one). In artificial neural networks (ANN), the identification of the connection 

weights is called the learning (or training) phase.  

Several architectures can be used for the ANN. Related to the learning process, ANNs can 

be described into two important groups: supervised, and unsupervised NNs. For the 

supervised scheme, the connection weights are selected to become the output from the ANN 

as close as possible to the target. For example: the weights could be found by minimizing a 

functional of the square differences between the ANN output and the target values. Some 

authors have suggested the use of a Tikhonov’s functional (Poggio & Girosi, 1990). The 

regularization suggested by Poggio & Girosi (1990) is applied on the output values x of the 

NN: 

 Target 2

1

[ ] [ ( )]
N

ii
i

J w x x w Px


    (12) 

where x is the NN output, w is the connection weight matrix, and P is a linear operator. 

Shiguemori et al. (2004) employed three different architectures for the NNs, with focus on 

determination of the initial profile for the heat conduction problem. The NNs used were: 

multilayer perceptron (MLP), RBF-NN, and cascade correlation. The backpropagation 

algorithm was used for the learning process (without regularization). Figure 2 shows a cartoon 

to represent a MLP-NN. Cybenko (1989) has proved that the standard multilayer NN with a 

single hidden layer with a sigmoid activation function, for a finite number of hidden neurons, 

are universal approximators on a compact subset of N (Cybenko theorem). 

The backpropagation training is a supervised learning algorithm that requires both input 
and output (desired) data. Such pairs permit the calculation of the error of the network as 

the difference between the calculated output and the desired vector: 1/2  xtarget – x(w). The 
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weight adjustments are conducted by backpropagating such error to the network, governed 
by a change rule. The weights are changed by an amount proportional to the error at that 
unit, times the output of the unit feeding into the weight. Equation below shows the general 
weight correction according to the so-called delta rule (Haykin, 1999) 

 [ ( ) ( 1)] [ ( ) ( 1)]ji i ij ij i i ij ij
ji

w x w n w n x w n w n
w

   
        


 (13) 

where, j is the local gradient, xi is the input signal of neuron j,  is the learning rate 

parameter that controls the strength of change, and  the momentum coefficient, which 
decides to what degree this previous adjustment is to be considered so as to prevent any 

sudden changes in the direction in which corrections are made. The learning rate  and 

momentum  were set to 0.1 and 0.5, respectively. Nevertheless, the activation test is an 
important procedure, indicating the performance of a NN. The effective test is defined using 
an unknown vector x that did not belong to the training set. This action is called the 
generalization of the NN.  

 

Fig. 2. Outline of fully connected MLP-NN with 2 hidden layers.  

The up date for the weight matrix of neural connections is obtained with the innovation 
described in Equation (13): 

( ) ( 1)ij ij jiw n w n w     

where the iterative process follows up to reach a maximum number of epochs (iterations) or 
the required precision to be caught. The delta rule can be justified if the diagonal matrix I 
(the learning parameter multiply by identity matrix) could be understood as an approximate 
inverse of Hessian matrix (a matrix C is defined as an approximate inverse if: ||I - CA|| < 
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1, see Conte and de Boor (1980)). Therefore, the free parameter  should determined to be an 
approximation for the inverse of the Hessian matrix, producing similar results as the 
Newton method. However, the Newton method, or even the steepest descent scheme, is not 
good to deal if a shallow local minimum. The momentum term ( 0, in Eq. (13)) is added to 
circumvent some instabilities (Rumelhartet al., 1986) and avoid pathological behaviour with 
shallow error surface (Haykin, 1999). However, any other optimization method can be used 
instead of delta rule. Indeed, the PSO scheme described in Section 2.1.2.2 can be employed 
to determine the weights of the neural network (Li and Chen, 2006). 

3. The lagrangian stochastic model LAMBDA 

The Lagrangian particle model LAMBDA was developed to study the transport process and 

pollutants diffusion, starting from the Brownian random walk modeling (Anfossi & Ferrero, 

1997). In the LAMBDA code, full-uncoupled particle movements are assumed. Therefore, 

each particle trajectory can be described by the generalized three dimensional form of the 

Langevin equation for velocity (Thomson, 1987): 

 , , ) ( , , ) ( )i i ij jdu a t dt b t dW t (x u x u  (14a) 

 ( )d dt x U u  (14b) 

where , 1,2,3i j  , and x  is the displacement vector, U  is the mean wind velocity vector, 

u  is the Lagrangian velocity vector, ( , , )ia tx u  is a deterministic term, and ( , , ) ( )ij jb t dW tx u  

is a stochastic term and the quantity ( )jdW t  is the incremental Wiener process.  

The deterministic (drift) coefficient ( , , )ia tx u  is computed using a particular solution of the 

Fokker-Planck equation associated to the Langevin equation. The diffusion coefficient 

( , , )ijb tx u  is obtained from the Lagrangian structure function in the inertial subrange, 

( )K Lt    , where K  is the Kolmogorov time scale and L  is the Lagrangian de-

correlation time scale. These parameters can be obtained employing the Taylor statistical 

theory on turbulence (Degrazia et al., 2000).  

The drift coefficient, ( , , )ia tx u
 

, for forward and backward integration is given by 

    , , ,i E i j E i
j

a P B P t
u


 


x u  (15a) 

with,  

    
 

  
i E

i E
i i

P
u P

u t x
 and 0i   when u  (15b) 

where 1 vc  for forward integration and 1vc   for backward integration,  , ,EP P t x u  is 

the non-conditional PDF of the Eulerian velocity fluctuations, and , , ,(1 / 2)i j i k j kB b b . Of 

course, for backward integration, the time considered is ' t t , and velocity ' U U , 

being U the mean wind speed. The horizontal PDFs are considered Gaussians, and for the 

vertical coordinate the truncated Gram-Charlier type-C of third order is employed (Anfossi 
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& Ferrero, 1997). The diffusion coefficients, ( , , )ijb tx u , for both forward and backward 

integration is given by 

 

1/22

2 i
ij ij

Li

b



 
  

  
 (16) 

where ij  is the Kronecker delta, 2
i  and Li  are velocity variance at each component and 

the Lagrangian time scale (Degrazia et al., 2000), respectively. With the coordinates and the 

mass of each particle, the concentration is computed (see below). 

The inverse problem here is to identify the source term S(t). A source-receptor approach can 

be employed for reducing the computer time, instead of running the direct model, Eq. (14), 

for each iteration. This approach displays an explicit relation between the pollutant 

concentration of the i-th receptor related the j-th sources: 

 
1

sN

i ij j
j

C M S


   (17) 

where the matrix ijM  is the transition matrix, and each matrix entry given by 

 
  
 

, , , , ,

, , ,

- forward model;

- backward model.

S j R i S j R i j

ij

R i S i j

V V t N N
M

t N N

  


 (18) 

where ,R iV  and ,S jV  are the volume for the i-th receptor and j-th source, respectively; ,S jN  

and ,R iN  are the number of particle realised by the j-th source and i-th sensor, respectively; 

, ,R i jN  and , ,S i jN  are the number of particle released by the j-th source and detected by the 

i-th receptor. 

4. Determining gas flux between the ground and the atmosphere 

For testing the procedure to estimate the emission rate procedure, it is considered the area 

pollutant sources placed in a box volume, where the horizontal domain and vertical height 

are given by: (1500 m  1000 m)  1000 m. There are two embedded regions R1 and R2 into 

computational domain, with following horizontal domain (600 m  600 m) for each region, 

and 1 m of height, and they are realising contaminants with two different emission rates. 

Figure 1 shows the computational scenario in a two-dimensional projection ( ,x y ): the six 

sensors are placed at 10 m height and spread horizontally with the coordinates presented in 

Table 1. The domain is divided into sub-domains with 200 m  200 m  1 m. The emission 

rates for each sub-domain (
kAS ) is as following: 

R1 =
2 3 4 7 8 9A A A A A AS S S S S S      = 10 gm-3s-1 (Region-1) 

R2 =
12 13 14 17 18 19A A A A A AS S S S S S      = 20 gm-3s-1 (Region-2) 
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1 5 6 10 11 15 16 20 21 22 23 24 25
0A A A A A A A A A A A A AS S S S S S S S S S S S S              

The dispersion problem is modelled by the LAMBDA backward-time code, where data 

from the Copenhagen experiment are used, for the period (12:33 h – 12:53 h, 

19/October/1978) (Gryning & Lyck, 1984, 1998). It is assumed a logarithmic vertical 

profile for the wind field 

 *

0

( ) ln
u z

U z
z

 
  

 
 (19) 

being U(z) the main stream, u* the fiction velocity,  the von Kármán constant, z the height 

above the ground, and z0=0.06 m the roughness. The wind speed was measured at 10 m, 120 

m, and 200 m. The numerical value for u* was obtained from the best fitting with the 

measured wind speed – see Table 2 – and the equation (19).  

 

Sensor-number x  (m) y  (m) 

1 400 500 

2 600 300 

3 800 700 

4 1000 500 

5 1200 300 

6 1400 700 

Table 1. Position of sensors in physical domain. 

For this experiment the wind direction had an angle =180°, and the boundary layer height 

is h=1120 m (Gryning & Lyck, 1998). The turbulence parameterization follows Degrazia et al. 

(2000), for computing the wind variance ( 2
i ) and the Lagrangian decorrelation time scale 

(
iLT ). These two turbulent parameters are considered constant for the whole boundary 

layer, and their numerical values were calculate at z=10 m level. This characterises a 

stationary and vertically homogeneous atmosphere. 

The sensors dimension, where the fictitious particles have arrived, was de 0,1 m  0,1 m  

0,1 m, centred in the computational cells presented in Table 1. Next, the reverse trajectories 

are calculated for 1000 particles per sensor. The parameters for numerical simulations were 

1800 time-steps with t  = 1 s, meaning 30 min for the whole simulation. After 10 min, the 

concentration was computed at each 2 min, for the remaining 20 min of simulation. The 

mean concentration is found using the following expression: 

 
10 25

, , ,
1 1 ,

1
( , )

10
Mod

j j i PVF i j n
n i PES j

t
C x y S N

N 

 
  

  
   (20) 

where ( , )j jx y  is position the each sensor (the number of sensors is 6), ,PES jN =1000 is the 

number of particles arriving at each sensor. , , ,PVS i j nN  is the quantity of fictitious particles in 

the i-th volume source, at the n-th instant. 
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Time Speed U (ms-1) Wind direction () 

(h:min) 10 m 120 m 200 m 10 m 20 m 200 m 

12:05 2.6 5.7 5.7 290 310 310 

12:15 2.6 5.1 5.7 300 310 310 

12:25 2.1 4.6 5.1 280 310 320 

12:35 2.1 4.6 5.1 280 310 320 

12:45 2.6 5.1 5.7 290 310 310 

Table 2. Measured wind speed for the Copenhagen experiment (Gryning & Lyck, 1998). 

The inverse approach is tested using synthetic measured concentration data The synthetic 

observations are emulated as: 

 ( , ) ( , )[1 ]Exp Mod
j j j jC x y C x y    (21) 

where CMod(x,y) is the gas concentration computed from the forward model (14),  is a 

random number associated to the Gaussian distribution with zero mean and unitary 

standard deviation, and  is the level of the noise (Gaussian white noise). In our tests, =0.05 

(Experiment-1) and =0.1 (experiment-2) were used. In other words, two numerical 

experiments are performed, using two different maximum noise levels: 5% and 10%. 

The optimization method is used to find the minimum for the functional: 

    Exp Mod
j j

j

F C C

26

1

, ( ) 


     S S S  (22) 

where the vector 
1 2 25

[ , ,..., ]TA A AS S SS  represent the emission rate from 25 sub-domains, 

presented in Figure 3. However, some sub-domains are considered releasing nothing. 

Therefore, the number of the unknown parameters to be estimated by inverse method 

decreases to 12 cells: 
2 3 4 7 8 9 12 13 14 17 18 19

[ , , , , , , , , , , , ]A A A A A A A A A A A AS S S S S S S S S S S SS . Another a 

priori information is smoothness of the inverse solution (regularization operator). As 

mentioned before, the second order maximum entropy is applied, Eq. (13c). The use of 

entropic regularization for this type of inverse problem was independently proposed by 

Roberti (2005) and Bocquet (2005a, 2005b) – see also Roberti et al. (2007) and Davoine & 

Bocquet (2007). 

There are several methods to compute the regularization parameter. Here, a numerical 

experimentation was employed to determine this parameter. Roberti (2005) had found the 

values  = 10-6 for Experiment-1, and  = 10-5 for Experiment-2. 

The first inverse solution was obtained by applying the quasi-Newton optimization method 

(described in Section 2.1.1). In the Experiment-1, a global error around 2% is found for the 

inverse solution. For the region-1 (lower emission rate), the error in the estimation is 10%, 

and for region-2 the error is 3%. The biggest errors for estimation are verified for sub-

domains A9 and A14, with error of 55% and 42%, respectively. 
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Fig. 3. Sub-domains representation, in a two-dimensional projection (x,y), with different 

emission rates, and black points () represent the sensor position at 10 m height. 

In order to try some improvement for the inverse solution, the minimum value for the 
functional (22) is computed using the PSO scheme. This method is a stochastic technique 
and it deals with a population (candidate inverse solutions). Therefore, the numerical results 
represent the average from 25 seeds used by the PSO algorithm, working with 12 particles, 
with the following parameters: w = 0.2, c1 = 0.1, and c2 = 0.2. The total error obtained with 
the PSO was less than inverse solution computed from the quasi-Newton method. It is also 
important to point out that for the PSO approach no regularization operator was used ( = 0 
in Eq. (22)).  

The inverse problem was also addressed by neural network. The MLP-NN was designed 
and trained to find the gas flux between the soil and the atmosphere. However, there are 
two previous steps before the application of MLP-NN. Firstly, it is necessary to determine 
the appropriated activation function, number of hidden layers for the NN, and the number 
of neurons for each layer. Secondly, the values of the connection weights (learning process) 
must be identified.  

The hyperbolic tangent was used as activation function. Different topologies for MLP-NN 
were tested with 6 inputs (measured points for 6 different sensors) and 12 outputs (emission 
for each subdomain). Good results were achieved for two neural networks with 2 hidden 
layers: NN-1 with 6 and 12 (6:6:12:12), and NN-2 with 15 and 30 (6:15:30:12) neurons for the 
hidden layers, respectively. 
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Table 3 shows the numerical values computed for the emission rate for each marked cell. 

Good results were obtained for all methodologies. The cells 12 and 14 had a worst 

estimation using optimization solution. Inversions with MLP-NN were better, in particular 

for the emission of the cells 12 and 14. Figures 4 and 5 show the emission estimation for the 

experiment-1 (5% of noise level) and experiment-2 (10% of noise level), only results obtained 

with NN-2 (6:15:30:12) are shown (the best results with MLP-NN). 

 

Sub-domain Exact Q-N PSO  MLP-NN-1 MLP-NN-2 

A2 10 8.97 9.83 10.33 10.11 

A3 10 9.97 10.40 10.11 10.11 

A4 10 12.53 10.79 10.12 10.20 

A7 10 7.99 10.50 10.27 10.20 

A8 10 10.15 12.06 10.24 10.06 

A9 10 11.56 11.28 10.21 10.17 

A12 20 13.85 14.56 21.28 20.97 

A13 20 22.65 22.67 21.32 21.00 

A14 20 14.14 15.85 21.47 20.95 

A17 20 19.99 21.56 21.47 20.99 

A18 20 21.17 20.05 21.38 20.99 

A19 20 24.90 21.74 20.96 20.96 

Table 3. Estimation of gas flux emission by the methodologies: quasi-Newton (Q-N), PSO, 
MLP-NN-1 (6:6:12:12) MLP-NN-2 (6:15:30:12). 
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(d) 

Fig. 4. Gas flux rate for Experiment-1: (a) true values, (b) quasi-Newton (Q-N), (c) PSO, and 
(d) MLP-NN. 
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(d) 

Fig. 5. Gas flux rate for Experiment-1: (a) true values, (b) quasi-Newton (Q-N), (c) PSO, and 
(d) MLP-NN. 

5. Conclusions 

The estimation of gas flux between the surface and the atmosphere is a key issue for several 

objectives: air pollution quality, climate change monitoring, short and medium range 

weather forecasting, and ecology. This lecture presents two formulations to address this 

important inverse problem: optimization problem approach, and artificial neural networks. 

When the inverse problem is formulated as an optimization problem, a regularization 

operator is, in general, required. The optimal solution could be computed using a 

determinisc or a stochastic searching methods. Deterministic methods has a faster 

convergence, but stochastic schemes can overcome the local minima. The regularization 

strategy requires the estimation of the regularization parameter, responsible by a fine 

balance between adhesion term (square difference between measurements and model data) 

and of the regularization function. For the present estimation, the PSO inverse strategy does 

not use the regularization. This is an advantage, but there are much more calculations of the 

objective function than the determinisc method. 

The artificial neural networks produced the better results for the worked example. More 

investigations are needed to confirm this good performance. We are generating different 

weather conditions, for all seasons of the year and for different latitudes, to provide more 

robust conclusions. Any way, the results are very encouraging. As a final remark, two 

topologies for MLP neural network were identified. Of course, the best result is an obvious 

criterion to select the topology, but an additional criterion could be based on the complexity: 

less complex NN (less neurons) is better. Using these two criteria, the NN-1 (6:6:12:12) could 

be better than NN-2 (6:15:30:12). 
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The methodology for computing inverse solution was described for in situ measurements. 
The new wave of environmental satellites already started (Clerbaux et al., 1999; Buchwitz et 
al., 2004; Crevoisier et al., 2004; Carvalho & Ramos, 2010). The next step is to use a cascade 
of inversions to estimate the surface flux. The first inversion is to determine the gas vertical 
profile concentration from the radiances measured by the satellite. The second inversion 
would be to identify the gas surface flux from the gas concentration found by the first 
inversion. We are going to adapt the methodology described here for this new observation 
data. 
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