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1. Introduction 

Quality of life (QOL) is an integral outcome measure in the management of diseases. It can 

be used to assess the results of different management methods, in relation to disease 

complications and in fine-tuning management methods (Koller & Lorenz, 2003). 

Quantitative analysis of quality of life across countries, and the construction of summary 

indices for such analyses have been of interest for some time (Slottje et al., 1991). Most early 

work focused on largely single dimensional analysis based on such indicators as per capita 

GDP, the literacy rate, and mortality rates. Maasoumi (1998) and others called for a 

multidimensional quantitative study of welfare and quality of life. The argument is that 

welfare is made up of several distinct dimensions, which cannot all be monetized, and 

heterogeneity complications are best accommodated in multidimensional analysis. 

Hirschberg et al. (1991) and Hirschberg et al. (1998) identified similar indicators, and 

collected them into distinct clusters which could represent the dimensions worthy of distinct 

treatment in multidimensional frameworks.  

In this research effort we have considered the role of air quality indicators in the context of 

economic and welfare life quality indicators, using artificial neural networks (ANN). 

Therefore in this presentation we have obtained the key variables (life expectancy, healthy 

life years, infant mortality, Gross Domestic Product (GDP) and GDP growth rate) and 

developed a neural network model to predict the air quality outcomes (emissions of sulphur 

and nitrogen oxides). Sustainability and quality of life indicators have been proposed 

recently by Flynn et al. (2002) and life quality indices have been used to estimate willingness 

to pay (Pandey & Nathwani, 2004). The innovative part of this research effort lies in the use 

of a soft computing machine learning approach like the ANN to predict air quality. In this 

way, we introduce the reader to a technique that allows the comparison of various attributes 

that impact the quality of life in a meaningful way. 
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2. Materials and methods 

It is well known that the quality of the air in a locale influences the health of the 

population and ultimately affects other dimensions of that population’s welfare and its 

economy. As a simple example, in cities where pollution levels rise significantly in the 

summer, worker absenteeism rates rise commensurately and productivity is adversely 

impacted. Other dimensions of the economy are influenced on “high pollution days” as 

well. For example, when outdoor leisure activity is restricted this may have serious 

consequences for the service sector of the economy (Bresnahan et al., 1997). In this 

chapter, we have introduced two measures of environmental quality or air quality as 

quality of life factors. A feature of these indices is the fact that these types of pollution are 

created by some of the very activities that define economic development. The two factors 

under investigation here are sulfur oxides (SOx) and nitrogen oxides (NOx) (million tones 

of SO2 and NO2 equivalent, respectively). Sulphur oxides, including sulphur dioxide and 

sulphur trioxide, are reported as sulphur dioxide equivalent, while nitrogen oxides, 

including nitric oxide and nitrogen dioxide, are reported as nitrogen dioxide equivalent. 

They are both produced as byproducts of fuel consumption as in case of the generation of 

electricity. Vehicle engines also produce a large proportion of NOx. SOx is primarily 

produced when high sulphur content coal is burned which is usually in large-scale 

industrial processes and power generation. Thus, the ratio of these emissions to the 

population is an indication of pollution control.  

The following attributes of QOL have been used: 

 Life expectancy at birth: The mean number of years that a newborn child can expect to 

live if subjected throughout his life to the current mortality conditions (age specific 

probabilities of dying). 

 Healthy life years: The indicator Healthy Life Years (HLY) at birth measures the 

number of years that a person at birth is still expected to live in a healthy condition. 

HLY is a health expectancy indicator which combines information on mortality and 

morbidity. The data required are the age-specific prevalence (proportions) of the 

population in healthy and unhealthy conditions and age-specific mortality information. 

A healthy condition is defined by the absence of limitations in functioning/disability. 

The indicator is also called disability-free life expectancy (DFLE). Life expectancy at 

birth is defined as the mean number of years still to be lived by a person at birth, if 

subjected throughout the rest of his or her life to the current mortality conditions 

(WHO, 2010). 

 Infant mortality: The ratio of the number of deaths of children under one year of age 

during the year to the number of live births in that year. The value is expressed per 1000 

live births. 

 Gross Domestic Product (GDP) per capita: GDP is a measure of the economic 

activity, defined as the value of all goods and services produced less the value of 

any goods or services used in their creation. These amounts are expressed in PPS 

(Purchasing Power Standards), i.e. a common currency that eliminates the 

differences in price levels between countries allowing meaningful volume 

comparisons of GDP between countries. 
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 GDP growth rate: The calculation of the annual growth rate of GDP volume is 
intended to allow comparisons of the dynamics of economic development both 
over time and between economies of different sizes. For measuring the growth rate 
of GDP in terms of volumes, the GDP at current prices are valued in the prices of 
the previous year and the thus computed volume changes are imposed on the level 
of a reference year; this is called a chain-linked series. Accordingly, price 
movements will not inflate the growth rate. 

Data were extracted for 34 European countries, for the year 2005, from the Eurostat database 
(Eurostat, 2010). Descriptive statistics for all variables are given in Table 1. 

 

Statistics 

Emissions 
of 
sulphur 
oxides 
(million 
tones 
of SO2 
equivalent) 

Emissions 
of 
nitrogen 
oxides 
(million 
tones 
of NO2 
equivalent) 

Infant 
Mortality 

GDP 
(Purchasing 
Power  
Standards, 
PPS) 

GDP 
Growth 
Rate 

Life 
Expectancy 
At Birth 
(years) 

Healthy 
Life 
Years 

Valid N* 34 34 34 33 33 33 27 

Missing** 0 0 0 1 1 1 7 

Mean 0.503 0.372 5.721 95.921 4.206 77.535 60.448 

Std. 
Deviation 

0.648 0.482 4.227 46.620 2.521 3.244 5.443 

Min 0.00 0.00 2.30 28.50 0.70 70.94 50.10 

Max 2.37 1.63 23.60 254.50 10.60 81.54 69.30 
 

*Number of observations (countries) for each variable. 
**Number of countries that didn’t had available data. 
 

Table 1. Descriptive statistics for all variables used in the analysis. 

For the performance of the analyses, multi-layer perceptron (MLP) and radial-basis function 
(RBF) network models were developed under the SPSS v.19 statistical package (IBM, 2010). 
We specified that the relative number of cases assigned to the training:testing:holdout 
samples should be 6:2:1. This assigned 2/3 of the cases to training, 2/9 to testing, and 1/9 to 
holdout. For the MLP network we employed the back propagation (BP) optimization 
algorithm. As it is well known in BP the weighted sum of inputs and bias term are passed to 
the activation level through the transfer function to produce the output (Bishop, 1995; Fine, 
1999; Haykin, 1998; Ripley, 1996). The sigmoid transfer function was employed (Callan, 
1999; Kecman, 2001), due to the fact that the algorithm requires a response function with a 
continuous, single valued with first derivative existence (Picton, 2000). 

Before using the input data records to the ANN a normalization process took place so that the 
values with wide range do not prevail over the rest. The autoscaling approach was applied. 
This method outputs a zero mean and unit variance of any descriptor variable (Dogra, 
Shaillay, 2010). Thus, each feature’s values were normalized based on the following equation:  
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Zi=(Xi-μi)/σi 

where Xi was the ith parameter, Zi was the scaled variable following a normal distribution 

and σi, μi were the standard deviation and the mean value of the ith parameter. 

These networks were trained in an iterative process. A single hidden sub layer architecture 

was followed in order to reduce the complexity of the network, and increase the 

computational efficiency (Haykin, 1998). Two units were chosen in the hidden layer. The 

schematic representation of the neural network is given in Fig. 1. 

 

Fig. 1. Multi-layer perceptron network structure. 

As regards the RBF network (Bishop, 1995; Haykin, 1998; Ripley, 1996; Tao, 1993; Uykan et 

al., 2000), the architecture that was developed included nine neurons in the hidden layer. 

The transfer functions (hidden layer activation functions and output function) determine the 

output by depicting the result of the distance function (Bors & Pitas, 2001; Iliadis, 2007). The 

schematic representation of the neural network with transfer functions is given in Fig. 2. 
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Fig. 2. Radial-basis function network structure. 
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3. Results – Discussion 

From the MLP analysis, 19 cases (70.4%) were assigned to the training sample, 2 (7.4%) to 

the testing sample, and 6 (22.2%) to the holdout sample. The choice of the records was done 

in a random manner. The whole effort targeted in the development of an ANN that would 

have the ability to generalize as much as possible. The seven data records which were 

excluded from the analysis were countries that did not had available data on Healthy Life 

Years. Two units were chosen in the hidden layer. 

Table 2 displays information about the results of training and applying the MLP network to 

the holdout sample. Sum-of-squares error is displayed because the output layer has scale-

dependent variables. This is the error function that the network tries to minimize during 

training. One consecutive step with no decrease in error was used as stopping rule. The 

relative error for each scale-dependent variable is the ratio of the sum-of-squares error for 

the dependent variable to the sum-of-squares error for the "null" model, in which the mean 

value of the dependent variable is used as the predicted value for each case. There appears 

to be more error in the predictions of emissions of sulphur oxides than in emissions of 

nitrogen oxides, in the training and holdout samples. 

The average overall relative errors are fairly constant across the training (0.779), testing 

(0.615), and holdout (0.584) samples, which give us some confidence that the model is not 

overtrained and that the error in future cases, scored by the network will be close to the 

error reported in this table 

. 

Training 

Sum of Squares Error 14.029 

Average Overall Relative Error 0.779 

Relative Error for Scale 
Dependents 

Emissions of sulphur oxides (million 
tones of SO2 equivalent) 

0.821 

Emissions of nitrogen oxides (million 
tones of NO2 equivalent) 

0.738 

Testing 

Sum of Squares Error 0.009 

Average Overall Relative Error 0.615 

Relative Error for Scale 
Dependents 

Emissions of sulphur oxides (million 
tones of SO2 equivalent) 

0.390 

Emissions of nitrogen oxides (million 
tones of NO2 equivalent) 

0.902 

Holdout 

Average Overall Relative Error 0.584 

Relative Error for Scale 
Dependents 

Emissions of sulphur oxides (million 
tones of SO2 equivalent) 

0.603 

Emissions of nitrogen oxides (million 
tones of NO2 equivalent) 

0.568 

Table 2. MLP Model Summary. 

In the following Table 3 parameter estimates for input and output layer, with their 
corresponding biases, are given. 
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Predictor Predicted 

Hidden Layer 1 Output Layer 

H(1:1) H(1:2) SO2 NO2 

Input Layer (Bias) -0.119 -0.537   

Infant Mortality -0.805 0.752   

GDP 1.033 -3.377   

GDP Growth Rate 0.318 -3.767   

Life Expectancy  
At Birth 

1.646 1.226   

Healthy Life Years 0.567 0.358   

Hidden Layer 1 (Bias)   -0.635 -0.877 

H(1:1)   -0.518 0.116 

H(1:2)   1.396 1.395 

Table 3. MLP Parameter Estimates. 

Linear regression between observed and predicted values 

( 2 2SO SOa b error


   , 2 2NO NOa b error


   ) showed that the MLP network does a 

reasonably good job of predicting emissions of sulphur and nitrogen oxides. Ideally, linear 

regression parameters a and b should have values 0 and 1, respectively, while values of the 

observed-by-predicted chart should lie roughly along a straight line. Linear regression gave 

results for the two output variables 2 2SO 0.114 0.918SO error


    (Fig. 3) and 

2 2NO 0.005 1.049NO error


    (Fig. 4), respectively. There appears to be more error in the 

predictions of emissions of sulphur oxides than in emissions of nitrogen oxides, something 

that we also pointed out in Table 2. Figs 3 and 4 actually seem to suggest that the largest 

errors of the ANN are overestimations of the target values. 

 

Fig. 3. Linear regression of observed values for emissions of sulphur oxides by predicted 
values of MLP. 
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Fig. 4. Linear regression of observed values for emissions of nitrogen oxides by predicted 
values of MLP. 

The importance of an independent variable is a measure of how much the network's model-
predicted value changes for different values of the independent variable. A sensitivity analysis 
to compute the importance of each predictor is applied. The importance chart (Fig. 5) shows  

 

Fig. 5. MLP independent variable importance chart. 
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that the results are dominated by GDP growth rate and GDP (strictly economical QOL 

indicators), followed distantly by other predictors.  

From the RBF analysis, 19 cases (70.4%) were assigned to the training sample, 1 (3.7%) to the 

testing sample, and 7 (25.9%) to the holdout sample. The seven data records which were 

excluded from the MLP analysis were excluded from the RBF analysis also, for the same 

reason. 

Table 4 displays the corresponding information from the RBF network. There appears to be 

more error in the predictions of emissions of sulphur oxides than in emissions of nitrogen 

oxides, in the training and holdout samples. 

The difference between the average overall relative errors of the training (0.132), and 

holdout (1.325) samples, must be due to the small data set available, which naturally limits 

the possible degree of complexity of the model (Dendek & Mańdziuk, 2008). 

 
 

Training Sum of Squares Error 2.372 

Average Overall Relative Error 0.132 

Relative Error for Scale 
Dependents 

Emissions of sulphur oxides 
(million tones of SO2 
equivalent) 

0.161 

Emissions of nitrogen oxides 
(million tones of NO2 
equivalent) 

0.103 

Testing Sum of Squares Error 0.081 

Average Overall Relative Error a 

Relative Error for Scale 
Dependents 

Emissions of sulphur oxides 
(million tones of SO2 
equivalent) 

a 

Emissions of nitrogen oxides 
(million tones of NO2 
equivalent) 

a 

Holdout Average Overall Relative Error 1.325 

Relative Error for Scale 
Dependents 

Emissions of sulphur oxides 
(million tones of SO2 
equivalent) 

1.347 

Emissions of nitrogen oxides 
(million tones of NO2 
equivalent) 

1.267 

aCannot be computed. The dependent variable may be constant in the training sample. 

Table 4. RBF Model Summary. 

In Table 5 parameter estimates for input and output layer are given for the RBF network. 
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Predictor 

Predicted 

 Hidden layer Output layer 

 H(1) H(2) H(3) H(4) H(5) H(6) H(7) H(8) H(9) SO2 NO2 

Input 
Layer 

Infant 
Mortality 

1.708 1.517 -1.064 -1.279 -0.562 -0.491 -0.276 -0.204 -0.132   

GDP -1.092 -0.986 3.098 0.451 0.667 -0.714 -0.101 -0.076 0.161   

GDP 
Growth 
Rate 

1.572 -0.164 0.575 1.390 -0.448 0.924 -0.544 -0.720 -1.212   

Life 
Expectancy  
At Birth 

-1.710 -1.640 0.500 1.169 0.578 -0.611 0.211 0.820 0.461   

Healthy 
Life Years 

-1.245 -1.223 0.497 1.161 1.123 -0.111 -0.346 0.868 -0.831   

Hidden Unit Width 0,606 0.363 0.363 0.363 0.645 0.363 0.576 0.363 0.363   

Hidden 
Layer 

H(1)          -0.552 -0.668 

H(2)          0.463 -0.395 

H(3)          -0.813 -0.773 

H(4)          -0.833 -0.795 

H(5)          -0.617 -0.401 

H(6)          0.970 -0.253 

H(7)          -0.718 -0.547 

H(8)          3.116 3.429 

H(9)          2.698 2.790 

 
 
 
 

Table 5. RBF Parameter Estimates. 

Linear regression between observed and predicted values 

( 2 2SO SOa b error


   , 2 2NO NOa b error


   ) showed that the RBF network does also a 

reasonably good job of predicting emissions of sulphur and nitrogen oxides. Linear 

regression gave results for the two output variables 2 2SO 0.0114 0.8583SO error


     

(Fig. 6) and 2 2NO 0.026 0.7932NO error


     (Fig. 7), respectively. In this case, it is 

difficult to see if there is more error in the predictions of emissions of sulphur or nitrogen 

oxides.  
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Fig. 6. Linear regression of observed values for emissions of sulphur oxides by predicted 
values of RBF. 
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Fig. 7. Linear regression of observed values for emissions of nitrogen oxides by predicted 
values of RBF. 
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Finally, the importance chart for the RBF network (Fig. 8) shows that, once again, GDP 
growth rate and GDP are the most important predictors of sulphur and nitrogen oxides 
emissions. 

  

Fig. 8. RBF Independent variable importance chart. 

4. Conclusions 

The multi-layer perceptron and radial-basis function neural network models, that were 
trained to predict air quality indicators, using life quality and welfare indicators, appear to 
perform reasonably well. Unlike traditional statistical methods, the neural network models 
provide dynamic output as further data is fed to it, while they do not require performing 
and analyzing sophisticated statistical methods (Narasinga Rao et al., 2010). 

Results showed that GDP growth rate and GDP influenced mainly air quality predictions, 
while life expectancy, infant mortality and healthy life years followed distantly. One 
possible way to ameliorate performance of the network would be to create multiple 
networks. One network would predict the country result, perhaps simply whether the 
country increased emissions or not, and then separate networks would predict emissions 
conditional on whether the country increased emissions. We could then combine the 
network results to likely obtain better predictions. Note also that neural network is open 
ended; as more data is given to the model, the prediction would become more reliable. 
Overall, we find that predictors that include economic indices may be employed by 
investigators to represent dimensions of air quality that include, as well as go beyond, these 
simple indices. 

www.intechopen.com



Developing Neural Networks to Investigate  
Relationships Between Air Quality and Quality of Life Indicators 

 

257 

5. References 

Bishop, C. (1995). Neural Networks for Pattern Recognition, 3rd ed. Oxford University Press, 

Oxford. 

Bors, A., Pitas, I. (2001). Radial Basis function networks In: Howlett, R., Jain, L (eds.). Recent 

Developments in Theory and Applications in Robust RBF Networks, 125-153 Heidelberg, 

NY, Physica-Verlag. 

Bresnahan, B., Mark, D., Shelby, G. (1997). Averting behavior and urban air pollution. Land 

Economics 73, 340–357. 

Callan, R. (1999). The Essence of Neural Networks. Prentice Hall, UK . 

Dendek, C., Mańdziuk, J. (2008). Improving Performance of a Binary Classifier by Training Set 

Selection. Warsaw University of Technology, Faculty of Mathematics and 

Information Science, Warsaw, Poland. 

Dogra, Shaillay, K. (2010). Autoscaling. QSARWorld - A Strand Life Sciences Web Resource. 

http://www.qsarworld.com/qsar-statistics-autoscaling.php 

Eurostat. (2010). http://epp.eurostat.ec.europa.eu. 

Fine, T. (1999). Feedforward Neural Network Methodology, 3rd ed. Springer-Verlag, New York. 

Flynn P., Berry D., Heintz T. (2002). Sustainability & Quality of life indicators: Towards the 

Integration of Economic, Social and Environmental Measures. The Journal of Social 

Health 1(4), 19-39. 

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation, 2nd ed. Prentice Hall, UK. 

Hirschberg, J., Esfandiar, M., Slottje, D. (1991). Cluster analysis for measuring welfare and 

quality of life across countries. Journal of Econometrics 50, 131–150. 

Hirschberg, J., Maasoumi, E., Slottje, D. (1998). A cluster analysis the quality of life in the United 

States over time. Department of Economics research paper #596, University of 

Melbourne, Parkville, Australia. 

IBM. (2010). SPSS Neural Networks 19. SPSS Inc, USA. 

Iliadis, L. (2007). Intelligent Information Systems and Applications in Risk Management. 

Stamoulis editions, Thessaloniki, Greece. 

Kecman, V. (2001). Learning and Soft Computing. MIT Press, London. 

Koller, M., Lorenz, W. (2003). Survival of the quality of life concept. British Journal of Surgery 

90(10), 1175-1177. 

Maasoumi, E. (1998). Multidimensional approaches to welfare. In: Silber, L. (ed.). Income 

Inequality Measurement: From Theory to Practice. Kluwer, New York. 

Pandey, M., Nathwani, J. (2004). Life quality index for the estimation of social willingness to 

pay for safety. Structural Safety 26(2), 181-199. 

Picton, P. (2000). Neural Networks, 2nd ed. Palgrave, New York. 

Narasinga Rao, M., Sridhar, G., Madhu, K., Appa Rao, A. (2010). A clinical decision support 

system using multi-layer perceptron neural network to predict quality of life in 

diabetes. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 4, 57–59. 

Ripley, B. (1996). Pattern Recognition and Neural Networks. Cambridge University Press, 

Cambridge. 

Slottje, D., Scully, G., Hirschberg, J., Hayes, K. (1991). Measuring the Quality of Life Across 

Countries: A Multidimensional Analysis. Westview Press, Boulder, CO. 

www.intechopen.com



 
Air Pollution – Monitoring, Modelling and Health 

 

258 

Tao, K. (1993). A closer look at the radial basis function (RBF) networks. In: Singh, A. (ed.). 
Conference Record of the Twenty-Seventh Asilomar Conference on Signals, Systems, and 

Computers. IEEE Computational Society Press, Los Alamitos, California . 

Uykan, Z., Guzelis, C., Celebi, M., Koivo, H. (2000). Analysis of input-output clustering for 

determining centers of RBFN. IEEE Transactions on Neural Networks 11, 851-858. 

WHO: World Health Organization. (2010). http://www.who.int. 

www.intechopen.com



Air Pollution - Monitoring, Modelling and Health

Edited by Dr. Mukesh Khare

ISBN 978-953-51-0424-7

Hard cover, 386 pages

Publisher InTech

Published online 23, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Air pollution has always been a trans-boundary environmental problem and a matter of global concern for past

many years. High concentrations of air pollutants due to numerous anthropogenic activities influence the air

quality. There are many books on this subject, but the one in front of you will probably help in filling the gaps

existing in the area of air quality monitoring, modelling, exposure, health and control, and can be of great help

to graduate students professionals and researchers. The book is divided in two volumes dealing with various

monitoring techniques of air pollutants, their predictions and control. It also contains case studies describing

the exposure and health implications of air pollutants on living biota in different countries across the globe.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kyriaki Kitikidou and Lazaros Iliadis (2012). Developing Neural Networks to Investigate Relationships Between

Air Quality and Quality of Life Indicators, Air Pollution - Monitoring, Modelling and Health, Dr. Mukesh Khare

(Ed.), ISBN: 978-953-51-0424-7, InTech, Available from: http://www.intechopen.com/books/air-pollution-

monitoring-modelling-and-health/developing-neural-networks-to-investigate-relationships-between-air-quality-

and-quality-of-life-indi



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


