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1. Introduction 

Several studies worldwide have reported the effects of air pollution on human health, 
especially those related with exposure to particulate matter 1,8,17,20,21,25, research it is currently 
focussed on studying the acute and short-term effects, especially the mortality and 
morbidity impact due to cardiovascular and respiratory reasons 1,8,17,21,25. 

This has meant that countries take a series of environmental management measures to 
control particulate material emissions and also to generate early prediction of high air 
pollution episodes. Some measures are: a systematic shift to cleaner fuels, restriction of daily 
circulation of a certain percentage of motor vehicles, temporary shutdown of some 
industries, and so on. Air pollution causes are diverse, being anthropogenic activities the 
major contributor to the problem. But the air pollution level is also influenced by other 
factors such as climate and topography. Climate has a decisive influence on the persistence 
of air pollutants, and the winds, temperature and solar radiation drastically alter the 
dispersion and the type of contaminants present at one time. Topography influences the 
movement of air masses and hence the persistence of pollution levels in a given 
geographical area. The combination of these ultimately determines the quality of air 20. 

Prediction of critical episodes of air pollution in large cities has become an environmental 
management tool aimed to protect the health of the population, allowing health authorities to 
know with some certainty the likely levels of air pollution border within a certain time 
interval. This prediction has been addressed through different models combining 
deterministic and probabilistic approaches using various types of information 6,9,13,14,22,28. The 
official methodology in use by the administrative authority of the Metropolitan Region of 
Santiago de Chile to forecast PM10 concentrations is the Cassmassi Model, proposed in 1999 
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by Joseph Cassmassi 2. It uses multiple linear regression to predict the maximum concentration 
of 24-hour average PM10 for the next day (00 to 24 hours). This model includes observed 
meteorological variables, observed and forecasted weather conditions rates, pollutants 
expected concentrations rates of expected variations in emissions and others predictors. 

Different statistical methods have been used in Chile to model airborne PM10 
concentrations of air pollutants including time series 20, neural networks 13,22 and regression 
models based on multivariate adaptive smoothing functions (splines) MARS 23 .The 
predictive efficiency of these models is variable and is closely associated with the behavior 
and evolution of environmental characteristics. Models that use extreme value theory are 
widely used for this purpose, especially for episodes that occur over short periods of time and 
present extreme values or exceedances of emergency limits established by the authority 3. 

The aim of this study is to compare the predictive efficiency of multivariate predictive models 
Gamma vs MARS to predict “tomorrow” maximum concentration of PM10 in Santiago de 
Chile in the period between April 1 and August 31 of the years 2001, 2002, 2003 and 2004. 

2. Methods 

2.1 Information sources 

We used the databases of PM10 collected at the Pudahuel monitoring station, that it is 
element of the MACAM2-RM monitoring network, for the years 2001, 2002, 2003 and 2004. 
For each year measurements were selected from April 1 to August 31, which correspond to 
the time of year with less ventilation in the Santiago basin. We worked with the moving 
average of 24 hours. For missing data, imputed values were generated by a double 
exponential smoothing with a smoothing coefficient α = 0.7 (see Annex 1). We selected this 
monitoring station because most of the year presents the highest levels of PM10 
concentration. It is also the most influential in taking administrative decisions about 
forecasting critical episodes for the next day. Moreover, because of environmental 
management measures implemented when declaring a critical episode of PM10 pollution, 
the behavior of the time series, is affected generating lower levels of concentrations that do 
not reflect actual observed concentration that would have occurred without environmental 
management measures , so we penalize this effect by introducing a correction constant 
given by 

124 24[ ]
I IIC mean CPM CPM


    where 
124 24I I

CPM and CPM


 are the average of 

PM10 concentration on the day before and the day of intervention, respectively, for each 
month of the study period; the number of episodes in excess of 240 (μg/m3) for 2001, 2002, 
2003 and 2004 corresponds to 4 (2.6%), 11 (7.2%) 5 (3.3%) and 2 (1.3%) respectively. For the 
construction of the Gamma models use the statistical program Stata 11.0 and MARS models 
use a demo of the program obtained from the web page of Salford Systems. 

2.2 Procedures 

152 multi-dimensional observations were used; they consisted of a response variable PM10 
and 13 predictors. The modeling includes delays of 1 and 2 days for the variables of interest, 
corresponding (N+1) to tomorrow, i.e. the day to be modeled. The predictor variables for 
today (delay 1) were defined as pm0 the hourly average PM10 concentration at 0:00 hrs of 
day N, pm6 the average hourly PM10 concentration at 6:00 hrs on day N, pm12 the average 
hourly PM10 concentration at 12:00 hrs on day N, pm18 the hourly average PM10 
concentration at 18:00 hrs on day N.  
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Some predictor variables incorporate delays of 2 days; they are: pm10h maximum PM10 
concentration of 24-hour moving average between19 hrs of day N-1 and 18 hrs day N, mth 
maximum temperature between 19 hrs of day N-1 and 18 hrs o day N, mhrh minimum 
relative humidity between 19 hrs of day N-1 and 18 hrs of day N, dth difference between 
maximum and minimum temperature between 19 hrs of day N-1 and 18 hrs of day N, vvh , 
average wind velocity 19 hrs of day N-1 and 18 hrs of day N. The predictors of tomorrow 
(N+1) correspond to: mtm maximum temperature of day N+1, mhrm minimum relative 
humidity of day N+1, dtm difference between the maximum and minimum temperature of 
day N+1 and vvm average speed wind of day. The response in this study (pm10m) is the 
maximum concentration of the 24 hs moving average of PM10 of a day N+1. The values of 
the variables of tomorrow are forecasts validated and reported by the Chilean 
Meteorological Office using models Mesoscale Modeling System (MM5), which is a 
numerical model that uses the equations of physics of the atmosphere for weather 
forecasting in limited areas at the regional level 15, 

The authorities of the National Environment Commission (CONAMA), have defined four 
levels of PM10, in order to make management decisions when critical events occur: good 0 - 
193 (µg/m3); alert 194 - 239 (µg/m3), pre-emergency 240 - 329 (µg/m3) and emergency 
PM10 > 330 (µg/m3) 3. For our study we dichotomized the response into two classes I: 
pm10m < 240 (µg/m3) and II: pm10m > 240 (µg/m3), ie, "good or alert" versus "pre-
emergency or emergency." The aim of the dichotomy is to generate 2 x 2 cross-tabulations 
between the observed and predicted values of the response for each proposed model. 

2.3 Construction of Gamma models and MARS models 

The fit of the models of a given year was validated with the information of the following 
year, thus ensuring the independence of the data used for validation with respect to those 
used in its construction. Therefore no predictions are given for the model year built with 
year 2004 information since there is no information for 2005. Each model was estimated with 
data from the period between April 1 and August 31 of a year and applied to the following 
year's data for the same period, evaluating the fit of these estimates compared with actual 
observations for that second year.  

Gamma regression 

Gamma models are used in situations where the variable has non negative values; were 
originally used for continuous data, but now the family of Gamma generalized linear 
models is used with count data 7. In general, these models consider different ways of how to 
work the response variable, such as exponentiation of the response using the log-gamma 
transformation 12.  

The probability density function for the generalized gamma function is given by  

( )( ; , , ) ; 0
( )

z uf y e y
y


  

  
 


, where 

2 ln( )
, ( )

y
z sign


  


      

 
 

and exp( )u z  . The parameter   is equal to tx   where x is the matrix of predictors 

including the intercept and   is the vector of coefficients. For generalized Gamma 

distribution the expected value conditional on x is given by: 
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 2 2 2ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ) exp[ ( / )ln( ) ln( (1 / ) ( / ) ln( (1 / ))]E y x x               

where 0 1ˆ (1 / ) exp( ln( ( )))i
i

n f x     and ln( )  is parameterized as 0 1 ln( ( ))f x  . 

Since it is required to report estimates and results in the original measurement scale, we 

work with the exponentiation of the model using the log-gamma transformation 

( ) exp( )tE Y x    and ensure that the transformation does not affect the interpretations 

which refers directly to the original scale 12. 

Multivariate Adaptive Regression Splines (MARS) 

MARS is a methodology proposed by Jerome Friedman in August 1991, it tries to build a 
model of non-linear regression that is based on a product of functions called base smoothing 
functions (splines). These functions incorporated into its structure predictors entering the 
model as part of a function, not directly as in classical regression, produces a model for the 
response in study that may be continuous or binary that automatically selects the predictors 
present in the final equation, they are incorporated in the smoothing basal functions 5,10,11.  

Model for a predictor 

The methodology MARS, proposed by Friedman 5 , selects K nodes of the predictor variable 

x, denoted by kt , 1,.......,k K , which could correspond to each of the observations of the 

variable; then K +1 defined regions on the range of x, where it is associated to each node the 

linear smoothing function, generating a family of basis functions:  

 
( )

0,......,
( )

1,.....,

j
q

K q
k

j qx
xB

x t k K

    
   

 

Where ( )q
kx t   it is known as a truncation function . For the approximation of order q, we 

estimate the function ( )

0

ˆ ( ) ( )
K q

q
q k K

K

f x a xB



  , usually the order of smoothing to be taken must 

be less than or equal to three, so the function and its q -1 first derivatives are continuous. 
This restriction and the use of polynomial functions in each subregion produce smooth and 
tight functions. 

Generalization to p predictors 

For the vector of predictors 1 2( , ,...., )px x x x  the smoothing function is defined analogously 

to the univariate case. In this case the space pR  is divided into a set of disjoint regions and 

within each region a polynomial of p variables is fitted. 

For p > 2 disjoint regions are considered to define the smoothing approximation as tensor 
products of disjoint intervals in each of the variables associated to the node location. So 
placing Kj nodes in each variable produces a product of Kj +1 regions, j = 1,..,p. A set of basis 
functions generating the space of smoothing functions for the entire set of regions, is the 
tensor product of the corresponding basal one-dimensional smoothing functions associated 
with the location of the nodes in each variable given by:  
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1

1

1

( )

0 0 1

ˆ ( ) ,......., ( )
p

p j
p

K q pK q
q

q k k jk
k k j

f x a a xB


  

     

The selection of basis functions looks for a good set of regions to define a smoothing 

approach adequated to the problem; MARS generates the basis functions by a stepwise 

process. It starts with a constant in the model and then begins the search for a variable-node 

combination that improves the model. The improvement is measured in part by the change 

in the sum of squared errors (MSE) , adding basis functions is done whenever it reduces 

reduce the MSE. 

To evaluate this model, Friedman proposes using the Generalized Cross Validation statistic  

 2

1

2

ˆ ( )

( )
1

N

i q i

i

y f x

NGCV
C M

N





  
 


 where 1( ) 1 ( ( ) )t tC M trace B B B B  ,  

B is the design matrix, the numerator is the lack of fit on the training data set and the 

denominator is a penalty term that reflects the complexity of the model.  

To compare the models we considered the following statistics: (a) Pearson's linear 

correlation between the observed and the predicted value and (b) mean absolute error ratio 

(mpab) between the observed (obs) and the predicted value (pred) given by 

1

10 10
/

10

n obs pred

obsi

PM PM
mpab n

PM

 
 
 
 

   

that is equivalent to evaluate the average errors committed by both models in the 

predictions. We also considered the concordance proportion in each class. 

In order to compare the settings of the models and the regions selected for predicting the 

response variable two MARS models were constructed to each year, one based on 20 and 

another using 40 base functions, allowing us to choose that pattern which best fits the 

expected response based on the partitions of the predictor variables 11. In the case of Gamma 

regression we used a logarithm link function, with three sets of predictors: the first 

corresponds to all variables, the second set involved yesterday and today variables and the 

third included the variables: pm0, pm6 , pm18, dtm, dth and vvm. This last set of variables 

would better describe the behavior of the pm10 concentrations, as has been described by 

other authors 18. 

3. Results 

Table 1 shows the descriptive statistics of the variables incorporated in the final modeling of 

PM10 concentrations. We can see that the maxima for the years 2001, 2002 and 2003 exceed 

the value of 240 (µg/m3), such behavior is not seen for 2004. 
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 2001 2002 

 Mean (sd) Minimum Maximun Mean (sd) Minimum Maximun 

pm10m 

pm0 

pm6 

pm18 

dtm 

vvm 

122,83 (58,4) 

123,85 (106) 

78,06 (57,9) 

117,50 (83,5) 

10,37 (5,3) 

1,54 (0,48) 

18,50 

1,00 

1,00 

2,00 

2,50 

0,53 

307,80 

492,00 

250,00 

467,00 

23,00 

3,40 

123,90 (67,2) 

133,00 (126,6) 

80,10 (56,9) 

116,70 (83,6) 

11,00 (5,1) 

1,40 (0,4) 

10,40 

1,00 

1,00 

4,00 

0,00 

0,00 

298,00 

625,00 

222,00 

412,00 

24,00 

2,49 

 2003 2004 

 Mean (sd) Minimum Maximun Mean (sd) Minimum Maximun 

pm10m 

pm0 

pm6 

pm18 

dtm 

vvm 

127,50 (50,50) 

133,60 (101,40) 

86,50 (55,20) 

116,10 (72,10) 

11,90 (5,03) 

1,42 (0,40) 

28,38 

1,00 

1,00 

6,00 

2,11 

0,56 

260,30 

450,00 

263,00 

385,00 

22,90 

2,72 

101,00 (43,10) 

105,50 (88,30) 

68,60 (42,30) 

91,40 (59,20) 

11,20 (5,02) 

missing 

20,60 

1,00 

1,00 

1,00 

1,53 

missing 

230,00 

519,00 

202,00 

345,00 

24,00 

missing 

sd: standard deviation;  
pm0, pm6, pm18: PM10 concentration at 00, 06 and 18 previous day, respectively; 
dtm: temperature difference of tomorrow; vvm: wind velocity of tomorrow.  

Table 1. Mean and standard deviation of predictor variables used to model PM10. Years 
2001 to 2004. 

Table No. 2 shows the successes of the class I and II by the Gamma models and the MARS 

models. The correlations are significant for the three models per year, the mpab remain high 

for all models, except the 40 fb MARS 2002 model where we can see a 19% mean absolute 

error similar to the Gamma Model. In general for all three years the Gamma models have 

better performance than MARS for the PM10 concentrations < 240 (µg/m3); MARS models 

have better performance for PM10 exceeding 240 (µg/m3). 

 

 2001 to 2002 2002 to 2003 2003 to 2004 

 Gamma 
MARS 

20 bf 

MARS 

40 bf 
Gamma 

MARS 

20 bf 

MARS 

40 bf 
Gamma 

MARS 

20bf 

MARS 

40bf 

mpab % 

rpearson 

Class I % 

Class II % 

38,00 

0,83 

98,00 

50,00 

44,00 

0,86 

67,00 

97,00 

32,00 

0,74 

44,40 

95,40 

19,00 

0,82 

99,00 

12,50 

29,00 

0,81 

0,00 

98,00 

19,00 

0,86 

100,00 

97,00 

28,00 

0,78 

99,00 

0,00 

14,00 

0,92 

99,00 

100,00 

25,00 

0,82 

99,00 

0,00 

mpab: mean abolute proportion  
bf: basis function. 

Table 2. Results of MARS and Gamma modeling. 
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Fig. 1. Shows that the Gamma model predictions are further away from observed PM10 than 
MARS predictions for high PM10 concentrations for year 2003 using model of 2002, but 
Gamma model gives better predictions for values below 200 (µg/m3). 

 

Fig. 2. Corresponds to the MARS model with 40 basis functions for 2002 and illustrates in 
part (a) the interaction of the basis functions max (0; pm18-137) and max (0; vvm-1, 522) that 
generate the basis function BF8 which represents an interaction surface (Table No. 3) with 
maximum value 165 (µg/m3) . This implies that for PM10 concentrations at 18 pm (pm18) 
above 137 (µg/m3) and wind speed for tomorrow of 1,522 m/s, the contribution to the PM10 
tomorrow concentration due to the interaction has a maximun of 165 (µg/m3). On the other 
hand, figure (b) shows that for concentrations above 240 (µg/m3), the variable pm0 has a 
maximum contribution to the response of 70 (µg/m3), which represents the value with 
which the base function BF4 contributes to the predicted value. 
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Table No. 3 shows the explicit model for the MARS models with 20 and 40 basis functions 

and the Gamma models for the years 2001, 2002 and 2003. The complexity of the model is 

seen in the number of basis functions incorporated into the explicit model, the model for 

2002 has nine basis functions of which five are interactions of univariate basis functions, the 

BF9 and BF8 functions correspond to interactions of the mirror variable for vvm and the 

corresponding basis function associated with pm18. 

 

 

 
 

Fig. 3. Shows MARS model with 20 basis functions for 2003 and illustrates in part (a) the 
interaction of the basis functions max (0;72-pm18) and max (0; vvm-0,56) that generate the 
basis function BF10 which represents an interaction surface (Table N . 3). In the other figure 
(b) shows the surface contour are four regions where the letters A, B, C and D, D represents 
the area for values less than 0,56 meters per second (vvm) and particulate matter 
concentrations at 18 hours greater than 72 micrograms per cubic meter that generated by the 
interaction of both base functions with the maximum contribution values to the response 
variable of interest. 
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Mars

 20 basis function BF1 = max(0;pm18-180) BF7 = max(0; 1,035-vvm)

BF2 = max(0; 180-pm18) BF9 = max(0;1,56-vvm)*BF1

BF3 = max(0; pm6-13) BF10 = max(0; pm0-241)

BF5 = max(0; dtm-2,55) BF15 = max(0;87-pm6)*BF1

BF6 = max(0;vvm-1,03) BF16 = max(0;pm18-183)*BF6

Gamma

Mars 

40 basis function BF1 = max(0; pm18-137) BF7 = max(0; 1,307-vvm)*BF5

BF2 = max(0; 137-pm18) BF8 = max(0; vvm-1,522)*BF1

BF4 = max(0; 240-pm0) BF9 = max(0; 1,522-vvm)*BF1

BF5 = max(0; dtm+ 0,00000512) BF12 = max(0; vvm-0,998)*BF5

BF24 = max(0; vvm-0,867)*BF5

Gamma

Mars

20 bases function BF1 = max(0; pm18-72) BF8 = max(0;212-pm0)*BF1

BF2 = max(0; 72-pm18) BF9 = max(0;pm0-1)*BF3

BF3 = max(0;pm6-16) BF10 = max(0;vvm-0,56)*BF2

BF5 = max(0;vvm-1,07) BF11 = max(0;dtm-8,17)*BF1

BF6 = max(0;1,07-vvm) BF16 = max(0;dtm-2,11)

BF7 = max(0;pm0-212)*BF1 BF17 = max(0;pm18-79)*BF16

Gamma

pm10m=94,2-1,58*BF2-25,99*BF5+111,24*BF6-0,0022*BF7-0,002*BF8+ 0,0009*BF9+0.75*BF10-0,1*BF11+2,02*BF16+0,1*BF17

                                              pm10m=exp(3,885+0,00108*pm0+0,00107*pm6+0,0030047*pm18+0,02658*dtm)

Year 2001

Year  2002

Year 2003

pm10m=exp(4,15+0,00076*pm0+0,00223*pm6+0,00292*pm18+0,02504*dtm-0,20295*vvm)

 pm10m=109,5-0,48*BF2+0,24*BF3+2,98*BF5+204,5*BF7+0,61*BF9+0,26*BF10-0,008*BF15+0,68*BF16

 pm10m=146,343-0,553*BF2-0,286*BF4+7,072*BF7+2,093*BF8+0,537*BF9-22,888*BF12+21,844*BF24

      pm10m=exp(3,818+0,00118*pm0+0,002267*pm6+0,00298*pm18+0,035488*dtm-0,149482*vvm)

 

bf: basis functions;  
pm0, pm6, pm18: PM10 concentration at 00, 06 and 18 previous day, respectively; 
dtm: temperature difference of tomorrow; vvm: wind velocity of tomorrow.  

Table 3. Explicit MARS models for 20 and 40 basis functions and Gamma models for years 
2001, 2002 and 2003. 

4. Discussion 

The MARS modeling selects those significant predictors and detects possible interactions 

between them generating more flexible models from the point of view of interpretation; 

since interactions are always restricted to a subregion, they are expressed algebraically 

through the basis functions, generating a parsimonious model that represents without any 

further transformation the nature of the working variables. This procedure creates nodes or 
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cutting points that act as threshold values for each predictor variable selected, indicating the 

change in the contribution generated by the basis function to the response under study. 

After selecting the optimal model, MARS fits the model removing one variable, in order to 

determine the impact on the quality of the model due to eliminate that variable and assigns 

a relative ranking from the variable most important to the least important. Thus, 

replacement or competing variables are defined in the MARS methodology allowing us to 

treat missing values generating a special basis function for those variables that have no 

information, ie, generate an allocation basis function whose purpose is to impute the 

average value of the predictor without information. 

As could be determined in this study, the MARS models performed similarly in their 

predictive efficiency when changing the number of basis functions, regardless of the year for 

which the model was built and the year used for validation. Partitioning the range of the 

predictor variables did not improve the quality of predictions, showing that sometimes a 

less fine partition (minus subregions) methodology was more robust than a thin partition. 

This could be explained as the time series of PM10 over time show a downward trend and 

variations in lower concentrations since the intervention measures applied 3. 

The Pudahuel monitoring station registered changes in annual and monthly concentrations 
of PM10 between 1998 and 2004. These changes were due mainly to global decontamination 
measures, extraordinary administrative actions on critical air pollution events, use the 
forecast model of critical events to reduce their negative impact and meteorological factors. 
Such changes affect the performance of these models allowing a less complex structure 
without loss of efficiency because the relationship established between the predictors is not 
as complex, this is reflected in the basis functions constructed. In turn there are differences 
from one year to another, which could be influenced by weather conditions of each year, 
such as dry year, El Niño and other climate changes. Another factor to evaluate and that 
could be relevant in this behavior is the increase in car ownership in recent years. 

Additionally, different methodologies have been implemented to model the concentration of 
particulate matter in the metropolitan region of Santiago de Chile. For example, Silva and 
colleagues applying time series using transfer functions involving meteorological variables, 
reported a 40% average ratio of absolute error in the prediction of critical events24. Moreover 
Perez and colleagues, using neural networks with pre-smoothing, reported approximately 
30% mean absolute error in predicting the critical episodes 19. Subsequent work by the same 
author using a neural network shows results superior to classical linear regression 18. 
Furthermore, Silva and colleagues assessed two methodological approaches to the problem 
of predicting air pollution by particulate matter, reporting that MARS generated better 
predictions than the discriminant analysis 23. 

Application of these models to the monitoring station Pudahuel shows that the predictor 
variables that best predict the answer would be (i) some PM10 concentrations: pm0, pm6 
and pm18 and (ii) meteorological variables: vvm dtm; this is consistent since MARS selected 
variables related to persistence of ventilation conditions, which are related to meteorology 23. 

Prediction methodologies give us adequate models to study particulate matter pollution. 

Gamma regression was generally lower in Class II hits than MARS models, except for 

predicting from 2003 to 2004, so MARS appears as a better prediction tool of pollution 
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episodes above the 240 (µg/m3). Additionally, an advantage of the Gamma model is that 

generally makes better predictions for the class I (PM10 < 240 µg/m3), ie, is sensitive to 

values of concentrations of particulate matter associated to air quality good or warning; this 

would be given by the behavior of the variable of interest. For example, for 2001 the 

intervention measures explain the best fit of the Gamma modeling in that year, whereas 

later on these measures had a moderate impact on the values of the series of PM10, making 

these models less efficient compared to MARS, as happens for the years 2002, 2003 and 2004. 

This study basically aims to proposed models being able to detect concentrations above the 
threshold of 240 µg/m3 that mandate periods of epidemiological alert in Santiago de Chile; 
this consideration would place the MARS modeling as a tool statistically more powerful 
than Gamma modeling. This last point is consistent with previous findings showing that 
MARS is more efficient than other techniques 4,23,27. This could be explained by the 
smoothing approximation that uses this methodology generating breakdowns in the 
predictors time series and locally adjusting the basis functions in function on such nodes. 

5. Appendix 1. – Exponential smoothing 

This technique uses a smoothing constant; if the constant is close to 1 it affects very much 

the new forecast and conversely when this constant is close to 0, the new forecast will be 

very similar to the old observation . If you want a sharp response to changes in the predictor 

variable you must choose a large smoothing constant. The formula that relates the 

coefficient and the time series is given by [2] [2]
1(1 )t t tS S S      where 

1(1 )t t tS x S     ; to generate the smoothing is necessary to have the values S0 and St, 

where xt corresponds to the values of the original series 16,26. 
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