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1. Introduction  

The ocean is a highly variable system affected by a large range of processes that spans the 

continuous spectra of spatial and temporal scales (Wunsch, 1996). The spatial scales of 

variation range from basin-wide gyres (thousands of kilometers) to turbulence (less than a 

meter), and the time scales from those that are climate related (decades) to short-term 

processes (seconds). Information on this whole range of processes is required for the 

comprehension of the marine system dynamics. Despite the continuous advances in 

technology, remote sensing is the only observing platform capable of providing continuous 

information on biological and physical properties over vast areas of the ocean. With some 

limitations, the regular and repeated coverage offered by satellites is still unachievable 

through in situ measurements. 

Because the ocean is largely opaque over much of the usable electromagnetic spectrum, the 

ability of satellites to capture ocean properties is generally confined to the surface. 

Nevertheless, satellite-borne sensors provide us with a relatively large range of 

measurements such as sea surface color, sea surface height, sea surface temperature, sea 

surface winds, sea surface salinity, waves, and to a lesser extent, current fields. The 

availability, for the first time, of time series expanding for several years or decades at 

regional and global ocean scales has changed our perception of the ocean (Barber & Hilting, 

2000). A majority of these measurements is restricted to physical properties such as 

temperature, sea level or sea surface roughness and inferred variables (currents, winds, etc.). 

The only routinely acquired satellite measurement providing information on ocean 

biological processes is sea surface color. Since early measurements obtained by the Coastal 

Zone Color Scanner (CZCS), sea color sensors have provided quantitative information on 

the distribution of surface chlorophyll (CHL) concentration (an index of phytoplankton 

biomass) at regional to global scales and its variability in space and time (e.g., Abbott & 

Zion, 1987; Antoine et al., 2005; Behrenfeld et al., 2001). This information is relevant to 

estimate the ocean productivity, a key factor for understanding the dynamics of pelagic 

foodwebs and some aspects of climate change.  
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The merging of ocean color datasets with other satellite measurements providing 
information of ocean dynamics has potential benefits to the understanding of some aspects 
of the coupling between fluid driven processes and plankton dynamics. In this regard, 
altimetry satellite data allows the characterization of sea level anomaly (SLA), containing 
information on the geostrophic current fields, mesoscale eddy variability and changes in the 
thermocline depth (Le Traon et al., 1998; Stammer, 1997). Lehahn et al. (2007) and Leterme & 
Pingree (2008) investigated the effect of the geostrophic velocity derived from satellite SLA 
on the redistribution of satellite CHL. Also, the impact of mesoscale eddies on the spatial 
patterns of CHL has been analyzed by Siegel et al. (1999, 2008). 
Further insight into the basin-scale dynamics affecting CHL and SLA, as an indicator of 

changes in the thermocline depth, in the equatorial Pacific was provided by Wilson & 

Adamec (2001). Correlations between CHL and SLA data using empirical orthogonal 

function (EOF) analysis show different responses associated with El Niño-Southern 

Oscillation phases. In the global ocean, direct correlations between CHL and SLA are 

predominately negative as lower SLA implies thermocline weakening and consequent 

mixing of the water column, which results in increased nutrient flux to the surface layer and 

phytoplankton biomass enhancement (Wilson & Adamec, 2002). However, there are areas in 

all ocean basins where positive correlations suggest that CHL is affected by processes other 

than thermocline variations. For example, Uz et al. (2001) found positive correlations 

between satellite CHL and SLA associated with the propagation of Rossby waves. These 

studies exemplify how multiple satellite observations are used to understand basin-scale 

dynamics and their impacts on the ocean phytoplankton biomass variability. Following 

these works, Jordi et al. (2009) used the singular value decomposition (SVD) analysis of the 

cross-covariance matrix between satellite CHL and SLA to analyze the regional scale 

dynamics in the northwestern Mediterranean Sea. Their results highlight the role of the 

water mass transported by the regional circulation on the variability of the phytoplankton 

biomass. The SVD analysis may be superior to EOF analysis in identifying correlated spatial 

patterns between pairs of spatial time series (Bretherton et al., 1992). 

In the Mediterranean Sea, a semi-enclosed marginal sea with limited geographical 

dimensions (Fig. 1), ocean color data reveals that oligotrophic conditions prevail for most of 

the year (D’Ortenzio et al., 2002). Biological production is mainly regulated by physical 

processes enhancing nutrient supply to surface layers and by allochtonous inputs from the 

continents and the atmosphere (Barale et al., 2008). Satellite ocean color data in the 

Mediterranean Sea has demonstrated dominance of the seasonal cycle in phytoplankton 

biomass (Bosc et al., 2004). With some regional variations, the typical temperate-latitude 

cycle with maximum biomass in late winter-spring and minimum during summer stratified 

conditions occurs throughout most of the basin (Bricaud et al., 2002). Inter-annual variations 

in CHL concentrations are also noticeable both at a local scale and over the whole basin, and 

have been related to climatic fluctuations (D’Ortenzio et al., 2003). 

Complementarily, altimetry satellite data shows that the sea level variability in the 
Mediterranean is a complex combination of a wide range of spatial and temporal scales 
(Cazenave et al., 2001; Larnicol et al., 2002). Besides the marked seasonal cycle in SLA 
caused by the steric effect, important intra- and inter-annual signals are observed associated 
with permanent or transitory oceanographic structures such as frontal currents and 
mesoscale eddies (Jordi & Wang, 2009; Pujol & Larnicol, 2005). The multiple driving forces 
including the ocean–atmosphere interaction, the phenomenology of the deep water 
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formation and water mass hydrological properties, the frontal currents and mesoscale 
eddies, and the topographic and coastal influence, add complexity to the physical-biological 
coupling in the Mediterranean Sea.  
 

 

Fig. 1. Bathymetry of the Mediterranean Sea. The 200 and 2000 m isobaths are shown with 
gray lines. 

In this work, we analyze the basin scale patterns of phytoplankton variability at inter-
annual, seasonal and intra-annual scales and the associated driving forces in the 
Mediterranean Sea based on 12 years of concurrent ocean color and altimetry satellites data. 
The knowledge of the phytoplankton variability and its relation to ocean circulation is 
critical to understand marine ecosystem dynamics and biogeochemical cycles, with 
implications ranging from marine food webs to climate change. The physical mechanisms 
that regulate phytoplankton patterns in the Mediterranean are analogous to those in larger 
oceanic areas and therefore comprehension of the processes occurring therein are pertinent 
to the understanding of larger areas. 

2. Data and methodology 

2.1 Altimetry satellite data 

The satellite-borne altimetry is initially designed to estimate the sea surface height (SSH) by 
measuring the satellite-to-surface round-trip time of a radar pulse. These measurements 
however include the Earth’s geoid which varies by tens of meters across the ocean and is not 
accurately estimated (Fu et al., 1994). This unknown geoid is removed from satellite 
observations by subtracting a long term mean of the altimeter measurements from the 
observations. However, this procedure removes also the mean dynamic SSH and satellite 
measurements refer only to SLA, which contains information on the geostrophic current 
fields, mesoscale eddy variability and changes in the thermocline depth (Le Traon et al., 
1998; Stammer, 1997). Uncertainties on the location of the satellite on its orbit and 
disturbances of the radar pulse by the atmosphere introduce additional errors in the SLA 
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measurement. Because of these errors, the first altimetry satellites such as Seasat or Geosat 
did not provide very usable and useful data. In 1993, the French Centre National d’Etudes 
Spatiales (CNES) and the US National Aeronautics and Space Administration (NASA) 
launched TOPEX/Poseidon satellite, which included a very precise positioning technique. 
Since then, new accurate altimetry missions were launched: ERS1/2 (in 1993), Geosat 
Follow-On (in 2000), Jason-1 (in 2002), TOPEX/Poseidon interleaved (in 2002), ENVISAT (in 
2003) and Jason-2 (in 2008). The combination of these satellites enables high-precision 
altimetry and improves their spatial and temporal resolution. 
It is now generally accepted that at least three altimeter missions are required to resolve the 
ocean mesoscale variability (Le Traon & Dibarboure, 1999; Pascual et al., 2007). However, 
merging multi-satellite data requires consistent SLA data sets. Homogeneous and 
intercalibrated SLA fields in the Mediterranean Sea created by merging TOPEX/Poseidon, 
ERS1/2, Geosat Follow-On, Jason-1/2, TOPEX/Poseidon interleaved, and ENVISAT 
altimeter measurements, are obtained from AVISO (http://www.aviso.oceanobs.com/) for 
the period October 1997 to December 2009. The data set includes 7-day maps of SLA on a 
0.125º x 0.125º regular grid interpolated in time and space using a global objective analysis 
(Le Traon et al., 1998). The length scale of the interpolation and the e-folding time scale were 
set to 100 km and 10 days (Pujol & Larnicol, 2005). The SLA data is re-binned in space onto a 
0.25º x 0.25º to reduce small-scale variability and in time to the satellite CHL 8-day window 
(see below) in order to be consistent with the temporal resolution of CHL data. 

2.2 Ocean color satellite data 

The first instrument that demonstrated the viability of satellite ocean color measurements 

was the US National Oceanic and Atmospheric Administration (NOAA) and the NASA 

CZCS Experiment aboard the Nimbus-7 satellite (Gordon et al., 1983). Although other 

instruments had sensed ocean color from space, their spectral bands, spatial resolution and 

dynamic range were optimized for land or meteorological use, whereas every parameter in 

CZCS was optimized for use over water to the exclusion of any other type of sensing. The 

CZCS ocean color data, available from 1978 to 1986, allowed a considerable progress in the 

knowledge of spatial and temporal variations in surface CHL in various regions of the 

world ocean (Antoine et al., 1996; Behrenfeld & Falkowski, 1997; Platt & Sathyendranath, 

1988). 

The CZCS provided justification for future ocean color missions such as the Japanese 

National Space Development Agency (NASDA) Ocean Color and Temperature Scanner 

(OCTS) aboard the Advanced Earth Observing Satellite (ADEOS) from 1996 to 1997 (Kishino 

et al., 1997) or the NASA Sea Viewing Wide Field of View Sensor (SeaWiFS) aboard the 

Orbital Science Corporation (OSC) Orbview-II satellite from 1997 to 2010 (Hooker & 

McClain, 2000). Presently, the NASA Moderate Resolution Imaging Spectrometer (MODIS-

A) aboard the NASA Aqua satellite (Esaias et al., 1998), and the European Space Agency 

(ESA) Medium Resolution Imaging Spectrometer (MERIS) aboard the ENVISAT satellite 

(Rast et al., 1999), both launched in 2002, provide a global monitoring of the ocean biomass. 

Other missions exist, with more limited coverage however, such as the Indian OCM 

(Chauhan et al., 2002) or the Korean OSMI (Yong et al., 1999). 

To maintain the level of uncertainty of the derived products within predefined 
requirements, SeaWiFS and MODIS-A ocean color observations are calibrated using long-
term in-situ field data (Bailey and Werdell, 2006). The calibration includes an adjustment of 

www.intechopen.com



Using SVD Analysis of Combined Altimetry and Ocean Color 
Satellite Data for Assessing Basin Scale Physical-Biological Coupling in the Mediterranean Sea 

 

127 

the overall response of the sensor, an atmospheric correction algorithm and the application 
of bio-optical algorithms (Gordon, 1997, 1998). The ocean color data used in this work 
consists of level 3 standard processed 8-day maps of CHL from SeaWiFS and MODIS-A on a 
9 x 9 km regular grid in the Mediterranean Sea obtained from NASA’s Ocean Color web site 
(http://oceancolor.gsfc.nasa.gov, see also McClain (2009)). Merging data from SeaWiFS and 
MODIS-A increases the coverage and reduces the uncertainties in the retrieved variables 
(Maritorena et al., 2010). The CHL produced by those ocean color missions are consistent 
over a wide range of conditions (Morel et al., 2007). We interpolate cloud-free CHL data 
onto the SLA grid of 0.25º x 0.25º resolution using objective analysis with a length scale of 50 
km and and e-folding time scale of 10 days. 
Satellite derived CHL through standard algorithms in the Mediterranean Sea is affected by a 
calibration problem displaying a bias when compared to in situ observations (Bosc et al., 2004; 
Volpe et al., 2007). This difficulty is related to the specific environmental bio-optical 
characteristics of the Mediterranean with respect to other oceanic regions having similar ranges 
of CHL. However, in the present work, we use the standard calibration algorithms because we 
are interested in the phytoplankton variability rather than in the absolute biomass values. The 
satellite derived CHL is used as a proxy for the phytoplankton biomass in the mixed layer. 
Although satellite derived CHL is limited to an optical depth, a reasonable correlation exists 
between the depth integrated and the satellite CHL (Morel and Berthon, 1989). 

2.3 Seasonal cycles and inter- and intra-annual anomalies 

The SLA and CHL variability in the Mediterranean are dominated by the seasonal cycle 
(Larnicol et al., 2002; Bosc et al., 2004). As a first step, it is necessary to remove these seasonal 
variations because otherwise they would dominate the resultant correlations. In our case, we 
calculate the seasonal cycles of SLA and CHL by averaging the value for each grid point and 
each 8-day window. We then subtract the seasonal cycles (8-day mean values) to the original 
time series for each grid point to create anomalies. Finally, we apply a low- and high-pass 
Lanczos filter with a cut-off period of 1 year at each grid point to compute the inter- and intra-
annual anomalies, respectively, of SLA and CHL. 

2.4 Correlation coefficient 

The analysis of the relationships between any two satellite data sets involving large number 
of grid points and time series can be performed in different ways. Correlation is a simple 
method available when the spatial and time domains of data sets are equal. The Pearson’s 

correlation coefficient between two time series p(t) and q(t) with means p  and q  and 

standard deviations σp and σq is defined as 

   
1

1

( 1)

T

pq k k
p q k

r p p q q
T   

  
   (1) 

where T is the total number of observations. We compute the Pearson’s correlation 
coefficient for each grid point. 

2.5 Singular value decomposition (SVD) analysis of the cross-covariance 

A more sophisticated method to analyze the relationship between any two satellite data sets 
is the SVD analysis of the cross-covariance matrix between the two data sets with the same 
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data length in time, but not necessarily the same spatial domain (Bretherton et al., 1992). The 
SVD analysis isolates covarying (coupled) spatial patterns of variability that tend to be 
linear related to one another. The SVD analysis is a generalization of empirical orthogonal 
function (EOF) analysis. Rather than extracting the modes that explain the greatest variance 
in a single data set, as in EOFs, the SVD analysis finds the covarying modes that explain as 
much as possible of the covariance between the two data sets. 
Consider two data sets s(x,t) and c(y,t), consisting of SLA anomaly values at Ns grid points 
and CHL anomaly values at Nc grid points (possibly different), both for the same T 
observation times. The data time series s(t) and c(t) at each of the grid points can be 
expanded in terms of a set of N < min(Ns,Nc) vectors or patterns 

 
1

( ) ( )
N

k k
k

t a t


s p  (2) 

 
1

( ) ( )
N

k k
k

t b t


c q  (3) 

The time series ak(t) and bk(t) are the expansion coefficients and the vectors pk and qk are the 
corresponding spatial patterns. The SVD spatial patterns are othonormal. Each pair of 
coefficients and patterns together (for a given k) make up a mode. The coefficients and 

patterns are chosen so that the first mode maximizes 1 1( ) ( )a t b t , the cross-covariance of the 

expansion coefficients, where the brackets denote the time average over the T observation 
times. Successive pairs explain the maximum squared temporal covariance subject to 
orthogonality of the spatial patterns among themselves. The SVD modes are the 
eigensolutions of the cross-covariance matrix between the two time series. 

3. Correlations between SLA and CHL 

Ocean phytoplankton growth mainly depends on the availability of light and nutrients. 

Whereas light is rarely limiting in surface waters of the Mediterranean Sea (exceptions are 

some areas affected by river discharges), nutrient availability generally regulates 

phytoplankton growth. Since nutrient concentrations are higher in the deep ocean, physical 

processes that favor the supply nutrients from deeper layers into the surface euphotic zone 

will stimulate phytoplankton growth. Stratification and mixed layer depth changes are 

important factors regulating deep nutrient-rich waters supply to the upper ocean layer. SLA 

is indicative of changes in the thermocline depth because SLA primarily reflects the first 

baroclinic mode, which is related to the main thermocline (Stammer, 1997; Wunsch, 1996).  

Figure 2 shows the correlation between the seasonal cycles of SLA and CHL at each grid 
point with shaded colors. Correlations that are not statistically significant at the 95% level 
are shaded white. Negative correlations are observed in most of the Mediterranean Sea, with 
highest (absolute) values in the northern part of the Western basin and lowest values 
between the Ionian and Levantine basins. Also, higher correlations are generally observed in 
oceanic water, off from the shelf. Inverse correlations in the seasonal cycles of SLA and CHL 
are typical of temperate regions where summer stratification inhibits the vertical flux of 
nutrients and winter mixing supplies nutrient-rich subsurface waters fueling phytoplankton 
growth. A few areas such as the Adriatic and Aegean basins, the entrance of the Gulf of 
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Gabes and the Nile River delta display positive correlations. The Adriatic basin is essentially 
controlled by the local winter climatic conditions, rather than the nutrient inputs from 
deeper layers or land sources (Santoleri et al., 2003). The Gulf of Gabes signal may be an 
artifact produced by direct bottom reflection in areas of shallow clear waters (Jaquet et al., 
1999). The other regions with positive correlations are located over the continental shelf and 
receive important terrestrial inputs that may override the control of seasonal thermocline 
oscillation on phytoplankton production in open waters. 
 

 

Fig. 2. Correlation coefficient between SLA and CHL seasonal cycles. The correlation in the 
red and blue areas is statistically significant at 95% level or more. 

Although the large-scale patterns in oceanic areas observed in Figure 2 imply that SLA and 
related thermocline variations have key relevance on seasonal CHL, other physical 
processes also modulate the biological response in the Mediterranean. The correlation 
between SLA and CHL anomalies at inter-annual time scale is mostly negative in oceanic 
areas (Figure 3), suggesting the prevalence of the coupling between SLA and CHL typical of 
temperate areas, as observed for the seasonal cycles. However, areas showing positive 
correlations increase with respect to Figure 2. Water discharges from Rhone, Ebro and Nile 
rivers and from the Black Sea cause these positive correlations in their influence areas. 
Interestingly, positive correlations are also found in the southern part of the Western basin. 
This area is characterized by an intense mesoscale activity produced byAlgerian eddies 
detached from the African coast and propagating to the north (Millot and Taupier-Letage, 
2005). Vertical transfer of nutrients through eddy pumping is a dominant process 
modulating the biological activity in this region (Arnone and La Violette, 1986; Taupier-
Letage et al., 2003). 
The correlation between SLA and CHL anomalies at intra-annual time scales is shown in 
Figure 4. Correlations are not statistically significant in most of the Mediterranean Sea. 
Indeed, the values of the significant correlations are notably lower than the correlations 
between seasonal cycles and anomalies at inter-annual time scales, suggesting that direct 
correlation is not adequate to analyze the relationships between SLA and CHL anomalies at 
intra-annual time scales. 
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Fig. 3. Correlation coefficient between SLA and CHL anomalies at inter-annual time scales. 

The correlation in the red and blue areas is statistically significant at 95% level or more. 

 

 

Fig. 4. Correlation coefficient between SLA and CHL anomalies at intra-annual time scales. 

The correlation in the red and blue areas is statistically significant at 95% level or more. 

4. SVD analysis 

4.1 Inter-annual anomalies 

To gain further insight into the relationship between SLA and CHL anomalies at inter- and 
intra-annual time scales, we use SVD analysis. Figure 5 shows the spatial patterns for the 
first mode, which explains 41% of the covariance between the SLA and CHL inter-annual 
anomalies. Both patterns are scaled to represent the amplitude of SLA and CHL anomalies 
associated with one standard deviation of the corresponding expansion coefficients. Large 
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areas of the Mediterranean Sea present the negative covariations (i.e. SLA increases and 
CHL decreases, or vice versa) typical of temperate areas, particularly in the Tyrrhenian, 
Ionian and Aegean basins. In the Levantine basin and in the southern part of the Western 
basin, areas with positive covariations are observed. These regions are characterized by high 
levels of mesoscale eddy variability (Pujol & Larnicol, 2005). Mesoscale eddies have 
important biological and biogeochemical consequences, driving vertical motions of water 
and lifting subsurface nutrients into the surface euphotic layer (McGillicuddy et al., 1998; 
Oschlies & Garçon, 1998). Positive covariations are also observed in the Adriatic basin, 
which is driven by the local winter climatic conditions (Santoleri et al., 2003), and in coastal 
areas such as Rhone, Ebro, Po and Nile river deltas, suggesting the influence of riverine 
inputs. 
 

 

Fig. 5. First spatial patterns of (a) SLA and (b) CHL anomalies at inter-annual time scales. 
The patterns are scaled to represent the amplitude of SLA and CHL anomalies associated 
with 1 standard deviation of the first expansion coefficients. 
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The spatial pattern for the second mode is shown in Figure 6, accounting for 28% of the 
covariance between the SLA and CHL anomalies at inter-annual time scales. The areas with 
negative covariations dominate in the Levantine and Aegean basins. Negative covariations 
are also observed in the Ionian basin, with the exception of the Gulf of Gades, although the 
northern and southern parts behave in opposite ways (i.e. SLA increases in the north and 
decreases in the south, both negatively correlated with CHL). This different behavior occurs 
also in the Western basin, between the eastern and western parts. The Adriatic basin and the 
coastal areas covary positively, as observed in the first spatial pattern. 
 

 

Fig. 6. Second spatial patterns of (a) SLA and (b) CHL anomalies at inter-annual time scales. 
The patterns are scaled to represent the amplitude of SLA and CHL anomalies associated 
with 1 standard deviation of the second expansion coefficients. 

The time evolution of the first two modes of the SLA and CHL inter-annual anomalies is 
shown in Figure 7. The expansion coefficients for the first and second modes are correlated 
at 0.79 and 0.84 (significant at 99% level), respectively. These high values indicate that inter-
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annual variability is dominated by changes in vertical nutrient fluxes, that are regulated by 
the seasonal themocline dynamics. Mesosecale eddies plays also an important role, 
especially in the Levantine basin and the southern area of the Western basin. The Adriatic 
basin behaves completely different as its response is regulated by climatic conditions. 
Finally, riverine inputs influence the biological response in areas under the influence of 
major rivers. 
 
 

 
 

Fig. 7. Time evolution of normalized (a) first and (b) second expansions coefficients of SLA 
(blue line) and CHL (red line) inter-annual anomalies. 
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Fig. 8. First spatial patterns of (a) SLA and (b) CHL anomalies at intra-annual time scales. 

The patterns are scaled to represent the amplitude of SLA and CHL anomalies associated 

with 1 standard deviation of the first expansion coefficients. 

4.2 Intra-annual anomalies 

The spatial pattern for the first mode between the SLA and CHL intra-annual anomalies 
shows a significant positive covariation of SLA and CHL in the whole Mediterranean Sea. 
Note that variations in CHL at this time scale are markedly lower than in other modes. This 
behavior does not agree with that observed at inter-annual time scales, when the winter 
mixing enhances the upward transport of nutrients to the ocean surface. Therefore, other 
physical processes must be regarded in order to explain the biomass enhancement at this 
time scale. One candidate could be a mechanical effect indebted to oscillations in the 
thermocline. The modification of the thermocline depth due to the SLA variation could 
accumulate phytoplankton biomass close to the surface (or vice versa) and thus affect the 
CHL measured by the ocean color satellites without modifying the vertically-integrated 
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biomass. Alternatively, the shoaling of the thermocline could extend the deeper nutrient-
rich layer into the euphotic surface zone, allowing phytoplankton uptake. These 
compression mechanisms of the ocean surface layer would be similar dynamically to the 
compression caused by Rossby waves (Cipollini et al. 2001). This first pattern accounts for 
69% of the total covariance at intra-annual time scales, whereas the second pattern (not 
shown) explains less than 10% of the covariance. 
Figure 9 shows the time evolution of the first mode of the SLA and CHL intra-annual 
anomalies. The figure only shows the period from 2002 to 2006 to facilitate the observation 
of short-term variability. The correlation between the first expansion coefficients for SLA 
and CHL intra-annual anomalies is 0.40 (significant at 99% level). Although the compression 
may play an important role on the enhancement of CHL observed by the satellite, the 
relatively modest value of correlation indicates that processes other than mechanical 
accumulation take place. For example, biological processes related to food web dynamics 
which are not coupled with the SLA should be important. 
 

 

Fig. 9. Time evolution of normalized first expansions coefficients of SLA (blue line) and CHL 
(red line) intra-annual anomalies. 

5. Conclusion 

This study analyzes the basin scale physical-biological coupling in the Mediterranean Sea at 
inter-annual, seasonal and intra-annual time scales based on 12 years of concurrent satellite 
SLA and CHL data. Not surprisingly, the long-term (inter-annual and seasonal) variability 
of SLA and CHL is negatively correlated in most oceanic areas of the Mediterranean Sea. 
This is the typical behavior of temperate regions associated with the availability of nutrients 
in the mixed layer: summer stratification blocks upward entrainment of nutrients from deep 
layers and winter mixing brings nutrients to the surface (Cushing, 1959). In the coastal 
regions, particularly in those areas influenced by major rivers, the biological response is 
controlled by supply of nutrients of continental origin. However, other biological responses 

www.intechopen.com



  
Remote Sensing of Biomass – Principles and Applications  

 

136 

to the thermocline oscillations are also observed. The inter-annual SLA and CHL covary in 
areas dominated by mesoscale eddies, such as the Levantine basin and the southern part of 
the Western basin. Cyclonic eddies can enhance primary production by upwelling of 
nutrient rich water (McGillicuddy et al., 1998; Oschlies & Garçon, 1998). In the intra-annual 
variability, the coupling between SLA and CHL is exerted through a mechanical 
compression mechanism, which concentrates nutrients and phytoplankton cells into the 
surface layer. Nevertheless, the overall influence of the mesoscale eddies and the 
compression mechanism in the enhancement of phytoplankton in the Mediterranean Sea 
deserves further study. 
The SVD analysis to link SLA and CHL is a quick, easily accessible and powerful method for 
assessing the ocean physical-biological coupling. Our results demonstrate its strength over 
the direct correlation. The correlation map indicates the spatial covariability of SLA and 
CHL but cannot provide any details about their temporal variability. SVD analysis extracts 
the dominant temporal and spatial components of covariability between SLA and CHL into 
a series of orthogonal functions or statistical modes, and their time evolution or expansion 
coefficients. In addition, the SVD modes can be related to different coupling mechanism. 
This methodology represents a simple alternative to more sophisticated coupled physical-
biological ocean models. There are also other conceptual methods that isolate coupled 
modes of variability between spatial time series, such as joint EOFs or canonical correlation 
analysis. According to Bretherton et al. (1992), the SVD analysis is simpler and superior than 
these other methods in most situations involving geophysical fields. 
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