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1. Introduction

Before getting into the details of this chapter, let us make some light upon the abiotic/biotic
debate. The issue could be summarized as two main differences between biotic and abiotic:
the first one is the internal regulation of biotic systems and what is generally called by some
researchers "cellular intelligence" related to the possibility of communication between cells.
More precisely, in both types of systems it is possible to identify mass and energy exchanges
(thermodynamic laws control), but within the biotic systems only one can find a certain project
capability, using an ascending informational system (genome towards metabolic networks
and environment adaptation systems) and a descending one (inverse).

The living organisms science gave birth to two main research areas: biomimetics and systemic
biology. Biomimetics is a new discipline based not on what could be extracted from nature but
on what could be learned from it, through the biologic systems or biosystems. Many attempts
on defining systems in general exist. The classic one is the definition given by Bertalanffy: the
system is an "organized complex", delimited by the existence of "strong interactions or non
trivial interactions", i.e. non linear interactions. A biologic system is supposed to replicate
itself and develop a system of reactions to exterior perturbations. This replication is done on
the basis of a non-systemic, not organized or less organized exploitation of the surrounding
environment. As the biologic system "works" as an algorithm, it is quite normal that since
the first days of the molecular biology (1959) the engineers intensified and diversified their
references to biology, even before the general acceptance in the scientific community of the
term nanotechnology. The convergence between biotechnology and nanotechnology is due to
the conceptual statement "bio is nano". Many examples of biomimetics achievements may be
recalled: the artificial pancreas, the artificial retina, biomaterials. The latter is very interesting
because biomaterials are not homogeneous. Biosystems are also used to develop innovating
methods allowing measuring physiologic parameters, to find diagnostics for diseases, and to
evaluate the effectiveness of new therapeutic compounds. Encouraging activities take place
in the biomedical field: the cancer, brain/heart vascular diseases, infectious diseases.
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The biologic systems, as a result of billions of years of evolution, are complex and degenerated
systems and this double characteristic makes their understanding extremely difficult. In
general, for a biologic system, the cyclic issues are related to the measure redundancy, to
variables pertinence and to the significant correlation between the parameters and the type
of the model that has to be used. The difficulty of these models is the intrinsic nature of
some of the constituting elements and their phenomenological reductionism. By giving a few
examples their limited character will better understood: the phenomenological modeling does
not take into account the metabolic capabilities of the system, the stoechiometrical modeling
does not take into account the dynamics of the system, thus a "time-space" analysis is not
possible, etc. Such observations drive us to envisage a new approach of biologic problems:
passing from the analytic paradigm to the complexity paradigm, via the so called approach of
biology of systems or biosystemics or systemic biology.

The systemic biology is, as a simple definition, the integration of mathematics, biology,
physics and computer science for creating new models for the biologic systems. Kitano, one
of the fathers of Biology of Systems defines the biosystemic strategy (13) as:

1. Defining and analysing the structure of these systems;

2. Studying their behaviour and characteristics under different conditions;

3. Studying the regulation processes through which the systems control their equilibrium
states and manage their variations;

4. Identifying the processes that allow building systems that are adapted to a given function

From a purely biologic standpoint, there exist complex groups of interacting proteins,
performing:

1. the metabolism;

2. the synthesis of DNA;

3. information processing;

These interactions are network-like organized. The purpose of this biochemical diagram
where each node represents a specific protein, which regulates the biochemical conversions, is
to explain the cellular physiology starting from the dynamics of the net, in a cells population
context. We can now understand that, in this context, the biologic systems are uncertain and
subordered to viability constraints. From a qualitative dynamics standpoint, the viability
constraints induct two states: the homeostasis and the chaos. The homeostasis defined by
C. Bernard and W. Cannon is the capability of a living system to preserve its vital functions,
by maintaining, in a certain structural stability range, its parameters and, in a certain viability
range, its internal variables. The longevity of this living is a function of this stability. The
chaos, in its common definition, is more opposed the concept of order than to those of
stability and viability. It is possible to continuously pass from order to chaos, by increasing
the complexity of the studied system, and this can be done by simple variations of some
of its bifurcation parameters, variations that might provoke a change in the nature of the
systemÕs dynamics attractors by overriding critical bifurcation values. The two notions are
derived from the notion of attractor of a dynamic system in the context of a wide regulation
network. We can give as an example the nature of biologic regulation: direct, indirect, or
causal, governing the response of these systems. As the evolution of these systems is still
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rather unknown due to the continuous or discrete way of evolution we can suppose the
existence of response thresholds. Biology inspires an analysis of the non-linear dynamics in
terms of feedback loops (positive or negative). A positive feedback loop within the interaction
graph of a differential system is a necessary condition of multistationarity which becomes, in
biology, the cellular differentiation. A negative feedback loop within the interaction graph is
a necessary condition for a periodic stable behaviour, very important in biology. It is quite
possible that the oscillators coupling and multiple feedback loops interaction could lead to
better oscillations coherence. The biologic regulation networks allow, among other things,
to model genes interactions within a cell. Consequence to genome sequency, including the
humain genome sequence, the postgenomics field has the goal to characterize the genes, the
functions and the intercations beetween genes. The network of regulation takes an important
and difficult role to assume the analysis at different scales, which means: "setup of new
models using the biologic data and predicts the behavior of biologic systems from information
extracted from genome sequence". But how Monod had enhanced: "everything which exists
in universe is the result of hazard and necessity which it is not in contradiction with Occam
principle to do not introduce supplementary clauses when it is not necessary. It is important
to mention that the hazard presented in biology is not stochastic which means "to drive"
the hazard but tychastic which describes some phenomenaÕs which escape to all statistic
regularity. Therefore it is impossible to speak about the predictive capacity of the model which
is the final goal of theoretical biology. From a realist view point we have made the hypothesis
that the DNA could not include the finest maps of the organism but only some information
about the iterative process of bifurcation and growth. If the approaches proposed before are
in-silico, in the case of the in vitro the extraction of correct information is primordial. Basically,
the information obtained is realized by direct observation and also by the interpretation of the
response of the system. To be more accurate in this explication this approach is based on
the perturbation of the analyzed system, supposed in a steady state, by a pulse of metabolite
which belongs to the non linear differential model which described the biological system.
Using the response of the system it is possible to deduce the relations between this variable
and some variables of the model. For the complex models the analysis of the picks and the
slope of the response directly link to the concentration of the metabolite it is not possible. The
extraction of the information from responses supposes the cooperation of two parties :

1. the development of a model able to observe the dynamic of the system with a lot of
precision

2. using of the mathematical tools allowing to tune the model to experimental observations

which means to solve a regression problem. If the model is linear the regression is linear
therefore without any theoretical interest. Comparing with linear models the non-linear
models offer infinity of possibility without the difficulties enclosed in the resolution of this
kind of approach. One strategy is the Lotka-Voltera modelling. This method has been
applied in ecology and focuses on the interaction between two species of type predator Ð
prey. The inconvenient of this method in study of metabolic pathway or fermentation is
that he metabolite depends of many compounds. The deduction of a non linear model from
experimental data is an inverse problem which could be solved by a regression method or
genetic algorithms which minimize the error between the model and the data. In practice
the local minima which stop the convergence of the algorithms. One smart solution is
the utilisation of Bayesian Methods or Simulated Annealing when the systems are small
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size, no noise and we use a PC cluster. Another approach is the non linear estimation by
NARMAX but these methods did not work with strong non linearties. The challenge in the
case of the modeling of biological systems is the elucidation of the optimal evolution of the
equations system when initial conditions are incomplete or missing. In this case, the analysis
of the trajectories of the system is the central point to make the difference between regular
trajectories (periodical or quasi periodic) and chaotic paths in the space of phases. The change
of trajectories is directly related to the parameters of the model. Periodic trajectories will be
identified by Poincaré sections and by using the Harmonic Wavelet Transform we will be able
to make the difference between quasi-periodical theoretical and the chaos. The interest of
the analysis by wavelet is the linearization of the model to find the steady states stationary
of the biological system excited by a non-stationary process. The original system will be
decomposed into linear subsystems, each having the response in a frequency band of well
defined. The final response is calculated by the addition of each subsystem response. This
type of analysis allows the studying of the influence of modes of regulation on the time of
relaxation of the cell and to find out the stationary states of the cellular cycle.

Today, the pace of progress in fermentation is fast and furious, particularly since the advent
of genetic engineering and the recent advances in computer sciences and process control.
The high cost associated with many fermentation processes makes optimization of bioreactor
performance trough command control very desirable. Clearly, control of fermentation
is recognized as a vital component in the operation and successful production of many
industries. Despite the complexity of biotechnological processes, biotechnologists are capable
of identifying normal and abnormal situations, undertaking suitable actions accordingly.
Process experts are able to draw such conclusions by analysing a set of measured signals
collected from the plant. The inexistence of satisfactory mathematical models impedes
model-based approaches to be used in supervisory tasks, thus involving other strategies to
be applied. That suggests that, despite the lack of process models, measured data can be
used instead in the supervisory system development. The advances in measurement, data
acquisition and handling technologies provide a wealth of new data which can be used to
improve existing models.

In general, for a biologic system, the cyclic issues are related to the measure redundancy, to
variables pertinence and to the significant correlation between the parameters and the type of
the model that has to be used. The difficulty of these models is the intrinsic nature of some of
the constituting elements and their phenomenological reductionism. Moreover, the dynamic
nature and the inherent non-linearity of bio-processes make system identification difficult.
The majority of kinetic models in biology are described by coupled differential equations
and simulators implement the appropriate methods to solve these systems. Particularly,
analysis of states occuring during experiences is a key point for optimization and control
of these bioprocesses. Thus, model-based approaches using differential equations (26),
expert system (31), fuzzy sets and systems (23), (9), neural networks (8) have been
developed. However, although model-based approaches give more and more accurate results
close to real outputs (10), these methods using simulation techniques can lead to wrong
conclusions, because of lack of description parameters or during an unexpected situation.
Non-model-based methods have an increasing success and are based on the analysis of the
process biochemical signals. The detection and the characterization of the physiological
states of the bioprocess are based on signal processing and statistical analysis of signals. For
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example, methods based on covariance (21) and moving averages (4) have been proposed,
but they do not take account of the changes occurring in the signals. Wavelet transform
is a powerful tool for non-stationary signal analysis due to its good localization in time
and frequency domains. Wavelets are thus sensitive to changes in signals. Bakshi and
Stephanopoulos (3), then Jiang et al. (12) have successfully used wavelets to analyze and detect
states during bioprocesses.

One of the main contribution of Artificial Intelligence to biological or chemical processes turns
out to be the classification of an increasing amount of data. Can we do more than that and can
an AI program contribute to help in discovery of hidden rules in some such complex process.
In fact, even if we can predict, for instance, mutagenicity of a given molecule or the secondary
structure of proteins, with high degree of accuracy, this is not sufficient to give a deep insight
of the observed behavior. In this paper we present a method using Maximum of Modulus
of Wavelets Transform, Hölder exponent evaluation and correlation product for the detection
and the characterization of physiological states during a fermentation fed-batch bioprocess.
Therefore, we consider the estimation of nonoscillating and isolated Lipschitz singularities of
a signal.

2. Yeast biotechnology

The main process we are concerned is a bio-reaction, namely the dynamical behavior of yeast
during chemostat cultivation. Starting from the observation of a set of evolutive parameters,
our final aim is to extract logical rules to infer the physiological state of the yeast. Doing so,
we obtain not only a better understanding of the system’s evolution but also the possibility
to integrate the inferred rules in a full on-line control process. The first thing we have to do
is to capture and analyze the parameters given by the sensors. These signals must be treated
to be finally given to the logic machine. Thus, two things have to be done : first, to denoise
the signals, secondly to compute the local maximum values of the given curves. In fact, we
are more interested in the variations of the signals than in their pure instantaneous values.
We use a method issued from wavelets theory (1) and which tends to replace classical Fourier
analysis. At the end of this purely analytic treatment, we dispose of a set of clean values for
each critical parameter. Now, our idea is to apply Inductive Logic Programming to exhibit,
starting from a finite sample set of numerical observations, a number of logical formulae
which organize the knowledge using causal relationships. Inductive logic programming is a
sub-field of machine learning based upon a first-order logic framework. So instead of giving a
mathematical formula (for instance a differential equation) or a statistical prediction involving
the different parameters, we provide a set of implicative logical formulae. A part of these
formulae can generally be inferred by a human expert, so it a a way to partially validate
the mechanism. But its remains some new formulae which express an unknown causality
relation : in that sense, this is a kind of knowledge discovery. As far as we know, one of the
novelties of our work is the introduction of a time dimension to simulate the dynamic process.
In logic, this time variable is in general not considered except with some specific modal logics.
So, we modelize the time with an integer-valued variable.

The methodology has been applied to a biotechnological process. Saccharomyces Cerevisiae
is studied under oxidative regime (i.e., no ethanol production) to produce yeast under a
laboratory environment in a bioreactor. Two different procedures are applied: a batch
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procedure that is followed by a continuous procedure. The batch procedure is composed
by a sequence of biological stages. This phase can be thought as a start-up procedure.
Biotechnologists state that the behaviour in the batch procedure influences later in induced
phenomena in the continuous phase. So complete knowledge of the batch phase is of great
importance for the biotechnologist. The traditional way to get acquainted of such knowledge
is at present carried out through offline measurements and analysis which most of the time
produce results when the batch procedure has ended, thus lacking of real time performance.
Instead, the proposed methodology allows for real time implementation. This example deals
with the batch procedure. Among the set of available on-line signals the expert chooses
the subset of signals which, according to the expert knowledge contain the most relevant
information to determine the physiological state:

1. DOT : partial oxygen pressure in the medium.

2. O2 : oxygen percent in the output gas

3. CO2 : carbon dioxide percent in the output gas

4. pH.

5. OH- ion consumption : derived from control action of the pH regulator and the index of
reflectivity.

The consumption of negative OH ions is evaluated from the control signal of the pH regulator.
The actuator is a pump, switched by an hysteresis relay, that inoculates a basic solution
(NaOH). The reflectivity, which is measured by the luminance, seems to follow the biomass
density. Nevertheless its calibration is not constant and depends on the run. Yeasts are a very
well-studied micro-organisms and today, such micro-organism like Saccharomyces cerevisiae

which make the object of this study, are largely used in various sectors of the biomedical and
biotechnology industrial processes. So, this is a critical point to control such processes. Two
directions have been explored:

1. the on-line analysis : it does not allow to identify in an instantaneous manner and with
certainty the physiological state of the yeast.

2. the off-line analysis : it allows to soundly characterize the current state, but generally too
late to take into account this information and to adjust the process on the fly by actions of
regulators allowing to adjust some critical parameters such that pH, temperature (addition
of basis, heats, cooling).

To remedy these drawbacks, computer scientists in collaboration with micro-biologists
develop tools for supervised control of the bioprocess. They use the totality of informations
provided by the sensors during a set of sample processes to infer some general rules to which
the biological process obeys. These rules can be used to control the next processes. This is
exactly the problem we tackle in this paper. To sum up, our application focus on the evolutive
behavior of a bio-reactor (namely yeast fermentation) that is to say an evolutive biological
system whose interaction with physical world, described with pH, pressure, temperature,
etc..., generates an observable reaction. This reaction is studied by the way of a set of sensors
providing a large amount of (generally) numerical data, but, thanks to the logical framework,
symbolic data could also be integrated in the future. For an approach based upon classification
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and fuzzy logic, one can see (24) : this work is devoted to discover the different states of the
bio-reactor but not to predict its behavior.

In a yeast culture, measures result of biology phenomena and physical mechanisms. That
is why to bring the culture, it is always decisional between biology and physico-chemical.
The biological reaction is function of the environment and an environmental modification
will improve two types of biological responses. The first one is a quasi steady-state response,
the micro-organism is in equilibrium with the environment. The biological translation of this
state is kinetics of consummation, production and this phenomenon is immediate. The second
biological response is a metabolic one, which can be an oxidative or fermentative mode, or
a secondary metabolism. The characteristic of this response is that the time constants are
relatively long. For cultures, in term of production, the essential parameters are metabolism
control and performance (productivity and substrate conversion in biomass yield). With this
goal, the process must be conducted by a permanent intervention in order to bring the culture
to an initial point to a final point. This control can be done from acquired measures on process,
which are generally gases. Indirect measures show the environmental dynamic, which is
shown by gas balance, with respiratory quotient (RQ) and pH corrector liquid (see figure 1).

Fig. 1. An example of respiratory quotient evolution during a culture. x-axis is the time of the
experience, y-axis is the amplitude of the signal.

Then, there are physical phenomenon, which are associated to real reactors. These
mechanisms can be decomposed in many categories : transfer phenomenon (mass, thermal
and movement quantity), regulation (realised by an operator), introduction of products, and
mixing. These mechanisms interfere with biology and it is significant to notice that relaxation
times of these phenomena are of size order of response time of biological response. With all
these phenomena, a variable can be described by the following equation (see (26)) :

dV

dt
= ∆.

(Vequilibrium − V(t)

τphysical

)

+ rV(t) + ΦV(t) (1)

where:

- dV
dt corresponds to the dynamic of the system.
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- ∆.
(Vequilibrium−V(t)

τphysical

)

is variable variation between biological and physical parameters.τphysical

is the time constant of physical phenomena; this constant can not be characterised because
it depends on reaction progress.

- rV(t) is the volumic density of reaction of the variable V, it is a biological term.

- ΦV(t) corresponds to an external intervention which results of a voluntary action.

Moreover, it is essential to observe that there is a regulation loop between biology and physic
(see figure 2). The problematic is, from measures, to isolate or eliminate perturbations. These
responses depend on physical phenomena or human interventions (process regulation). It
is to quantify biological kinetics and by this way to optimise biological kinetics and control
that is to say identify modifications of the biological behaviour. For example, in the case
of yeast production, it is important to maintain an oxidative metabolism by the control of
glucose residual concentration, fermentative metabolism is prejudicial to the yield. The aim is
to maintain an optimal production to avoid the diminution of substrate conversion yield, that
is to say to remark the biological change between oxidative and fermentative metabolism.

Fig. 2. Interactions between the biological system, the process and the operator.

3. Knowledge based methodology

In learning there is a constant interaction between the creation and the recognition of concepts.
The goal of the methodology is to obtain a model of the process, which can be used in a
supervisory system for condition monitoring. The complexity of this model imposes the
co-operation of data mining techniques along with the expert knowledge. When only expert
knowledge is used to identify process situations or states, any of these situations can arise: Ø
the expert can express only a partial knowledge from process, Ø he does know the existence
of several states but he ignores how to recognise them from on-line data, or/and Ø he doesn’t
have a clear idea on which states to recognise. For example, in the yeast production batch
phase, biotechnologists apply expert rules when recognising some of the physiological states
from on-line data. Nevertheless those rules usually don’t take into account other phenomena
that can change the evolution of signals without any influence in the physiological state. This
leads to wrong conclusions. It is mainly due to the fact that the expert is not able to draw
conclusions from the analysis of multiple signals between which there exist true relationships.
Nevertheless, a classification tool copes well with this drawback. This proves the need of an
iterative methodology to identify the biological states, which refines the expert knowledge
with the analysis of past data sets.
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Initialize : E′ = E (initial set of examples)
H = ∅ (initial hypothesis)

While E′ �= ∅ do
Choose e ∈ E′

Compute a covering clause C for e
H = H ∪ {C}
Compute Cov = {e′ | e′ ∈ E, B ∪ H |= e′} E′ = E′ \ Cov End while

Fig. 3. General Progol scheme

3.1 Standard ILP task

We stay within the pure setting i.e. where programs do not involve negation. In that case, the
meaning of a logic program is just its least Herbrand model, which is a subset of the Herbrand
universe i.e. the full set of ground atoms. In that setting, a concept C is just a subset of the
Herbrand base. As shortly explained in our introduction, an ILP machine takes as input :

• a finite proper subset E =< E+, E−
> (the training set in Instance Based Learning

terminology) where E+ can be considered as the positive examples i.e. the things known
as being true and is a subset of C, E− as the negative examples and is a subset of C.

• a logic program usually denoted B (as background knowledge) representing a basic
knowledge we have concerning the concept to approximate. This knowledge satisfies two
natural conditions : it does not explained the positive examples : B |=\E+ and it does not
contradict the negative ones : B ∪ E− |=\⊥

So the ILP task consists in finding a program H such that H ∪ B |= C. One of the most popular
method is to find H such that H ∪ B |= E+ and H ∪ B ∪ E− |=\⊥. In the field of classification, it
is known that this approach, minimizing the error rate over the sample set (here we have zero
default on the sample set) does not always guaranty the best result for the whole concept C.

Nevertheless, as far as we know, no alternative induction principle is used for ILP. Of course,
as explained in the previous section, an ILP machine could behave as a classifier. Back to
the introduction, the sample set S = {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)} is represented as a
finite set of Prolog facts class(xi, yi) constituting the set E+. The ILP machine will provide an
hypothesis H. Consulting H with a Prolog interpreter, for a given element x, we get the class
y of x by giving the query class(x, Y)? to the interpreter.

3.2 Progol machinery

Back to the standard ILP process, instead of searching for consequences, we search for
premises : it is thus rather natural to reverse standard deductive inference mechanisms. That
is te case for Progol which uses the so-called inverse entailment mechanism ((20)). Progol
is a rather complex machine and we only try to give a simplified algorithm schematizing its
behavior in figure 3. One can read the tutorial introduction of CProgol4.41 from which we
take our inspiration.

The main point we want to update is the choice of the relevant clause C for a given training
example e. Let us precise here how this clause is chosen.

1 available on http://www.cs.york.ac.uk/mlg/progol.html where a full and clear description is given.
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3.3 The choice of the covering clause

It is clear that there is an infinite number of clauses covering e, and so Progol need to restrict
the search in this set. The idea is thus to compute a clause Ce such that if C covers e, then
necessarily C |= Ce. Since, in theory, Ce could have an infinite cardinality, Progol restricts the
construction of Ce using mode declarations and some other settings (like number of resolution
inferences allowed, etc...). Mode declarations imply that some variables are considered as
input variables and other ones as output variables : this is a standard way to restrict the
search tree for a Prolog interpreter.

At last, when we have a suitable Ce, it suffices to search for clauses C which θ-subsume Ce

since this is a particular case which validates C |= Ce. Thus, Progol begins to build a finite
set of θ-subsuming clauses, C1, . . . , Cn. For each of these clauses, Progol computes a natural
number f (Ci) which expresses the quality of Ci : this number measures in some sense how
well the clause explains the examples and is combined with some compression requirement.
Given a clause Ci extracted to cover e, we have :

f (Ci) = p(Ci)− (c(Ci) + h(Ci) + n(Ci))

where :

• p(Ci) = #({e | e ∈ E, B ∪ {Ci} |= e}) i.e. the number of covered examples

• n(Ci) = #({e | e ∈ E, B ∪ {Ci} ∪ {e} |= ⊥}) i.e. the number of incorrectly covered
examples

• c(Ci) is the length of the body of the clause Ci

• h(Ci) is the minimal number of atoms of the body of Ce we have to add to the body of Ci

to insure output variables have been instantiated.

The evaluation of h(Ci) is done by static analysis of Ce. Then, Progol chooses a clause C =
Ci0

≡ arg maxCi
f (Ci) (i.e. such that f (Ci0

) = max{ f (Cj) | j ∈ [1, n]}). We may notice
that, in the formula computing the number f (Ci) for a given clause Ci covering e, there is no
distinction between the covered positive examples. So p(Ci) is just the number of covered
positive examples. The same computation is valuable for the computation of n(Ci) and so
success and failure could be considered as equally weighted.

To abbreviate, we shall denote Progol(B, E, f ) the output program P currently given by the
Progol machine with input B as background knowledge, E as sample set and using function f

to chose the relevant clauses. In the next section, we shall explain how we introduce weights
to distinguish between examples.

4. A boosting-like mechanism for Progol

As explained in our introduction, a Progol machine is a consistent learner i.e. it renders only
hypothesis with no error on the training set : so the sample error at the end of a learning
loop, ǫt = Σ{i|xi misclassified}wt(i), is 0 since each example is necessarily correctly classified. So
we cannot base our solution over the computation of such an error since the nullity of this
error is a halting condition for a standard boosting algorithm. So we introduce a new way
to adjust the weights. Given an example ei, since it is covered we have B ∪ Ht ⊢ e. Given
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an other problem instance e, we claim that the longer the proof for B ∪ Ht ⊢ e, the riskier the
prediction for e.

5. Inductive logic programming : basic concepts

Mathematical logic has always been a powerful representation tool for declarative knowledge
and Logic Programming is a way to consider mathematical logic as a programming language.
A set of first order formulae restricted to a clausal form, constitutes a logic program and as
such, becomes executable by using standard mechanisms of theorem proving field, namely
unification and resolution. Prolog is the most widely distributed language of this class. In
this context, the data and their properties, i.e. the observations, are represented as a finite
set of logical facts E. E could generally been discomposed into the positive examples E+

and the negative ones E−. In case of background knowledge, it is described as a set of Horn
clauses B. This background knowledge is supposed to be insufficient to explain the positive
observations and the logical translation of this fact is : B |=\E+ but there is no contradiction
with the negative knowledge: B ∪ E− |=\⊥. So an ILP machinery ((20)), with input E and B,
will output a program H such that B ∪ H |= E. So H constitutes a kind of explanation of our
observations E. Expressed as a set of logical implications (Horn clauses) c → o, c becomes a
possible cause for the observation o ∈ E. We give here a simple scheme giving a functional
view of an ILP machine.

B

H

ILP machine

E=E+ U E-

Fig. 4. ILP machine functional scheme

It is important to note that a logic program is inherently non deterministic since a predicate
is generally defined with a set of distinct clauses. To come back to our introductive notation,
we can have two clauses of the form (using Prolog syntax) o ← c and o ← c′ : this means
that c and c′ are potential explanations for o. The dual situation o ← c and o′ ← c where the
same cause produces distinct effects is also logically consistent. So this is a way to deal with
uncertainty and to combine some features of fuzzy logic. The main difference is that we have
a sound and complete operational inference system and this is not the case for fuzzy logic.

6. Formalization of our problem

We have 4 potential states for the bio-reactor : we shall denote e1, e2, e3 and e4 these states to
avoid unusefull technical words. e4 will be considered as a terminal state where the bio-reactor
is stable because of the complete combustion of the available ethanol. We add a specific state
e5 corresponding to a stationary situation where the process is going on without perturbation.
The transition between two states is a critical section where the chosen observable parameters
(bio-mass, pH and O2 rate) give rise to great variations.

The predicate to learn with our ILP machine is :

to-state(Ei, Et, P1, P2, P3, T)
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meaning that the bio-reactor is going into state Et knowing that at step T, the current
bio-reactor parameters are the Pi’s and the current state Ei. It is thus clear that we can deal with
as many parameters as we want, but we restrict to 3 in this experiment. As explained in our
introduction, we introduce the variable T to simulate the dynamic behavior of our process. As
far as we know, previous experiments using inductive logic programming generally compute
causal relationship between parameters which do not involve time. So we have to learn a
transition system where we do not know what are the basic actions activating a transition.
Our informations about the system are given by sensors providing numerical signals for p1
(bio-mass), p2 (pH value) and p3 (O2 rate),. These signals are analyzed using a wawelet-based
system, we visualize the curve of the different functions and we extract the values of the
differential for each given function. These values constitutes the input of our learning system.
So, we want to obtain a causal relationship between the transitions of the system and the
values of the differentials of the curve describing the evolution of our parameters.

So, we add a predicate derive(P, T, P1) which expresses the fact that, for the curve of the
parameter P,

at time T, the value of the differential is P1. It is thus easy to describe what is a pike for the
curve describing P : this is included in our background knowledge. These pikes correspond
to

local minima/maxima for the given parameter. So, we are also interested in the sign of

the derivative and we include specific predicates (positive/2, negative/2)

to compute and test this sign.

As background knowledge (corresponding to the B input of our scheme 4), we have the
definitions of predicates derive/3,

positive/2, negative/2, pike/2. Here is an overview of the mode declaration

to describe the potential causes of a state transition.

:- modeb(*,pike(+parameter,-float))?

:- modeb(3,pike(-parameter,+float))?

:- modeb(1,positive(+parameter,+float))?

:- modeb(1,negative(+parameter,+float))?

:- modeb(1,between(+float,+float,+float))?

:- modeb(1,between(-float,+float,+float))?

% a (very little) part of

% our background knowledge.

pike(P,T) :- derive(P,T, P1),P2 is P1, between(P2,-0.001,0.001).

The results in this paper are obtained using the last implementation of Progol, namely
CProgol4.4 freely available on the following site http://www.cs.york.ac.uk/mlg/progol.html.
Of course, we get a lot of rules, depending on the quantity of introduced examples. Some of
them are not really interesting : they only generalize one or two examples. But we get, for
instance, the next one (among the simplest ones to explain) :
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to_state(E,E,A,B,C,T) :- derive(p1,A,T),

derive(p2,B,T), derive(p3,C,T),

positive(p1,T), positive(p2,T),

positive(p3,T).

This rule indicates that there is no evolution of the metabolism state (the bio-reactor remains
in the same state) when the parameters have an increasing slope but that we do not encounter
maxima or minima. In general, the obtained rules are long except those ones generalizing
only one or two examples. Nevertheless, there are some observations where this rule could be
overcame : this means that we need (at least) an other parameter p4 to better understand the
behaviour of the machinery.

7. Detection and characterization of physiological states

In microbiology, a physiological state (or more simply, a state) is, qualitatively, the set of
potential functionalities of a micro-organism, and, quantitatively, the level of expression
of theses functionalities. The environment has a strong influence on the activity of the
micro-organism due, on one hand, to its chemical composition (nature of substrate, pH...) and,
on the other hand to its physical properties (temperature, pression...). Yeast can react on the
availability of substrates such as carbon and nitrogen sources, or oxygen, by a flexible choice
of different metabolic pathway. It is possible to analyze the global metabolism by genetical
analysis, biochemical or biophysical analysis but the complexity of the biological system
requires a simplification of the characterization by the analysis of some functionalities of some
known mechanisms. The quantification of materials and energy interactions flows between
the micro-organism and the environment enables to have a macroscopic characterization of
several intrinsic metabolism of yeast population which, by correlation, enables to differentiate
several physiological states even if the biological characterization is unknown. Thus the
detection, as far as we know, is based on the analysis of biochemical signals measured
during the bioprocess. A bioprocess is the set up of the fermentors protocol. Fermentors
are composed of a number of different components which can be grouped by their functions,
i.e. temperature control, speed control, continuous culture accessories. In this context the
ultimate aim of bioprocess analysis therefore is a detailed monitoring of biological system, the
chemical and physical environment and how these interact. However, no reliable technique
exist to carry out real-time measurement of non-volatile substrates and metabolites in the
fermentor. Several works using various approaches, lead to the conclusion that the limits
of a state are linked to the singularities of biochemical signals: Steyer et al. (31) (using
expert system and fuzzy logic), Bakshi and Stephanopoulos (3) (using expert system and
wavelets) and Doncescu et al. (6) (using inductive logic) show that the beginning and the
end of a state correspond to singularities of the biochemical signals measured during the
process. In a fed-batch bioprocess, a physiological state can occur several times during the
experience. After the detection of states, it is then necessary to characterize these states. The
characterization is often based on the statistical properties of the biochemical signals. Experts
in microbiology characterize the states by analysing and comparing the variations and the
values of different biochemical signals and by a deductive reasoning using " if-then" rules.
These approaches can be linked to mathematical methods based on correlation. Classification
methods based on Principal Components Analysis (PCA) (27), adaptive PCA (15), and kernel
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PCA (14) enable to distinguish and characterize the different states. However, these methods
(except the adaptive PCA) do not take into account the temporal variation of the signals. The
adaptive PCA is a PCA applied directly on wavelet coefficients in order to take into account
the variations of the biological system. It has been shown that it can characterize the Lipschitz
singularities of a signal by following the propagation across scales of the modulus maxima of
its continuous wavelet transform. For identifying the boundaries of states, we propose to use
the Maximum of Modulus of Wavelets Transform (17)(16) to detect the signals singularities.
The singularities are selected according to their Hölder exponent evaluation between -1 and
1. The characterization of the states is based on the correlation product between the signals
on intervals whose boundaries are the selected singularities.

8. Detection and selection of singularities by wavelets and Hölder exponent

The singularities of the biochemical signal correspond to the boundaries of the states. These
signals are non-stationary and non-symmetrical; they are not chirps and have no infinite
oscillations (see figure 5).
Several authors have proposed to use wavelets to detect the singularities of the signals for
the detection of states: Bakshi and Stephanopoulos (3) and more recently Jiang et al. (12).
Besides singularities correspond to maxima of modulus of wavelets coefficients. Bakshi and
Stephanopoulos (3) propose to detect the maxima by analysing the variation of the wavelet
coefficients through a multi-scale analysis but they don’t explicitly characterize the nature of
detected singularities. Jiang et al. (12) propose to select meaningful singularities by using a
threshold on the finest scale, but the determination of the threshold remains empirical. After
the detection of singularities by the Maxima of Modulus of Wavelet Transform, we propose to
use the evaluation of Hölder exponent to characterize the type of singularities and eventually
select meaningful singularities.

The wavelets are a powerful mathematical tool of non-stationary signal analysis, signals
whose frequencies change with time. Contrarily to the Fourier Transform, Wavelet Transform
can provide the time-scale localization. The performance of the Wavelet Transform is better
than of the windowed Fourier Transform. Because of these characteristics, Wavelet Transform
can be used for analyzing the non-stationary signals such as transient signals. Wavelets
Transformation (WT) is a rather simple mechanism used to decompose a function into a set of
coefficients depending on scale and location. The definition of the Wavelets Transform is:

Ws,u f (x) = ( f ⋆ ψs,u)(x) =
∫

f (x)ψ(
x − u

s
)dx (2)

where ψ is the wavelet, f is the signal, s ∈ R+∗ is the scale (or resolution) parameter, and
u ∈ R is the translation parameter. The scale plays the role of frequency. The choice of the
wavelet ψ is often a complicated task. We assume that we are working with an admissible
real-valued wavelet ψ with r vanishing moments (r ∈ N∗).

The wavelet is translated and dilated as in the next relation :

ψu,s =
1√

s
ψ(

t − u

s
) (3)
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Fig. 5. Example of biochemical signals measured during the bioprocess. Pump 1 is a pump
providing substance in the process, CO2 is the measured carbon dioxid and residual S is the
residual substrate of the micro-organisms of the bioprocess. The signals have been
normalized.

The dilation allows the convolution of the analyzed signal which different sizes of "window"
wavelet function. For the detection of the singularities and of the inflexion points of the
biochemical signal, we use the Maxima of Modulus of Wavelets Transform (16). The idea
is to follow the local maxima at different scales and to propagate from low frequencies to high
frequencies. These maxima correspond to singularities, particularly when the wavelet is the
derivative of a smooth function:

ψ(x) =
dθ(x)

dx

Ws,u f (x) = f ∗ ψs,u = f (x) ∗ dθ(x/s)

dx

Yuille and Poggio (35) have shown that if the wavelet is derivative of the Gaussian, then
the maxima belong to connected curves which are continuous from a scale to another. The
detection of the singularities of the signal is thus possible by using the wavelets (see for
example figure 6).

The discretization form of Continuous Wavelet Transform is based on the next form of the
Mother Wavelet :

ψm,n(t) = a−m/2
0 ψ(

t − nb0am
0

am
0

) (4)

By selecting a0 and b0 properly, the dilated mother wavelet constitutes an orthonormal basis of
L2(R). For example, the selection of a0 = 2 and b0 = 1 provides a dyadic-orthonormal Wavelet
Transform (DWT). The decomposed signals by DWT will have no redundant information
thanks to the orthonormal basis.
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Fig. 6. Segmentation of N2 (nitrogen). Each vertical dotted line correspond to a singularity of
the signal detected by wavelets. The wavelet is a DOG (first derivative of Gaussian) and the
scales go from 20 to 23.

Jiang et al. (12) have proposed to select the maxima by using thresholding. Besides, all
the singularities are not relevant only some of them are meaningful. However, as stated
above, the thresholds proposed by Jiang et al. are chosen empirically. To select the
meaningful singularities, we proposed using the Hölder exponent. The Hölder exponent is
a mathematical value allowing characterization singularities. The fractal dimension could
also be used but only the Hölder exponent can characterize locally each singularity. A
singularity in a point x0 is characterized by the Hölder exponent (also called Hölder coefficient
or Lipschitz exponent). This exponent is defined like the most important exponent α allowing
to verify the next inequality:

| f (x)− Pn(x − x0)| ≤ C|x − x0|α(x0) (5)

We must remark that Pn(x − x0) is the Taylor Development and basically n ≤ α(x0) < n + 1.
Hölder exponent measures the remainder of a Taylor expansion and more of this measures
the local differentiability:

1. α ≥ 1, f (t) is continuous and differentiable.

2. 0 < α < 1, f (t) is continuous but non-differentiable.

3. −1 < α ≤ 0, f (t) is discontinuous and non-differentiable.

4. α ≤ −1, f (t) is not longer locally integrable.

Therefore Hölder exponent could be extended to the distribution. For example the Hölder
exponent of a Dirac is equal to −1. A simple computation leads to a very interesting result of
the Wavelets Transform (11):

|Ws,u f (x)| ≃ sα(x0) (6)
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This relation is remarkable because it allows to measure the Hölder exponent using the
behavior of the Wavelets Transform. Therefore, at a given scale a = 2N the Wa,b f (x) will
be maximum in the neighborhood of the signal singularities. The detection of the Hölder
coefficient is linked to the vanishing moment of the wavelet: if n is the vanishing moment of
the wavelet, then it can detect Hölder coefficients less than n (16). We use a DOG wavelet
(DOG: first derivative of Gaussian) with a vanishing moment equal to 1; consequently
we can only detect Hölder coefficients smaller than 1. This is not a real problem because
we are interested (in this application2 by the singularities as step or dirac and the Hölder
coefficient of these singularities are smaller than 1. Moreover, the meaningful singularities of
the fed-batch bioprocess have Hölder exponents smaller than 1 which correspond to sharp
singularities. This type of variations are meaningful for the fed-batch bioprocess fermentation
because of many external regulations of the process. Moreover, for Hölder coefficients greater
than 1 particularly for integer values, there are difficulties to interpret the Hölder coefficient
(see (19) cited in (17)). To evaluate the Hölder coefficient using the wavelets, there are two
main ways:

(1) the graphical method which consists in finding the maximum line i.e. the maximum which
propagates through the scales, and computes the slopes of this maximum line (often using a
log-log representation). The computed slope corresponds to the Hölder coefficient (16).
(2) the minimization method which consists in minimizing a function which has one of the
parameters the Hölder coefficient (17). The function is the following:

∑
j

(

ln2(|sj|)− ln2(C)− j − α(x0)− 1
2

ln2(σ
2 + 22j)

)2

(7)

where sj represents the maximum at scale j, C is a constant depending on the singularity
localized in x0, σ is the standard deviation of a Gaussian approximation (see (17)), and α(x0)
the Hölder exponent.

In (17), a gradient descent algorithm is proposed to solve the minimization, but this technique
is very sensitive to local minima. Recently, a minimization using Genetical Algorithms has
been proposed (18) and used in bioprocess. More precisely it uses Differential Evolutionary
(DE) algorithms. The DE algorithms was introduced by Rainer Storn and Kenneth Price (33).

9. Differential evolution

Differential Evolution (DE)(33) is one of Evolutionary Algorithms (EA) which are a class of
stochastic search and optimization methods including Genetic Algorithms (GA), evolutionary
programming, evolution strategies, genetic programming and all methods based on genetics
and evolution. Through its fast convergence and robustness properties, it seems to be a
promising method for optimizing real-valued multi-modal objective functions. Compared
to traditional search and optimization methods, the EAs are more robust and straightforward
to use in complex problems : they are able to work with minimum assumptions about the
objective functions. These methods are slower because due to the generation of the population

2 However it is always possible to use other wavelets with greater vanishing moment for others
applications in bioprocesses
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and the selection of individuals for crossing. The goal is to obtain the trade-off between
accuracy and computing time.

The generation of the vectors containing the parameters of the model is made by applying an
independent procedure :

Xi,G = X1,i.....XD,i (8)

with i = 1...NP, is the index of one individual of the population; D is the number of
parameters which have to be estimated; NP is the number of individuals in one population;
G is the index of the current population; i is one individual of the population and Xj,i is the
parameter j of the individual i in the population G.

As Genetic Algorithms are stochastic processes, the initial population has been chosen
randomly, but the initialization of the parameters is based on experts knowledge. Trial
parameter vectors are evaluated by the objective function. Several objective functions are
tested to produce results on Hölder coefficient detection. For simple GA algorithms the new
vectors are the result of the difference between two population vectors and the result is added
to a new one. It’s a simple crossing operation. The objective function determines if the new
vector is more efficient than a candidate population member and replace it if this simple
relation is true. In the case of the DE the generation of the new vectors are realized by the
difference between the "old vectors" given an weight to each one.

We have tested and compared different schemes of individual generations :

• DE/rand/1 : For each vector Xi,G a perturbed vector Vi,G+1 is generated according to :

Vi,G+1 = XR1,G + F ∗ (XR2,G − XR3,G)

R1, R2, R3 ∈ [1, NP] : individuals of population, chosen randomly, F ∈ [0, 1] : controls the
amplification (XR2,G − XR3,G)
XR1,G : the perturbed vector. There is no relation between Vi,G+1 and Xi,G. The objective
function must evaluate the quality of this new trial parameter with respect to the old
member. If Vi,G+1 yields a lower objective function value, Vi,G+1 is set to Xi,G+1 in the next
generation or there is no effect.

• DE/best/1 : It is like DE/rand/1 but is generating Vi,G+1 by integrating the most
performante vector :

Vi,G+1 = Xbest,G + F ∗ (XR1,G − XR2,G)

Xbest,G : best vector of population G, R1, R2 ∈ [1, NP] : individuals of population, chosen
randomly. As DE/rand/1, the objective function compares the quality of Vi,G+1 and Xi,G;
the smallest of the two is kept in the next population.

• Hydrid Differential evolution algorithms: As DE algorithms, a perturbed vector is
generated, but the weight F is a stochastic parameter.
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To increase the diversity potential of the population, a crossover operation is introduced.
Xi,G+1 = (X1i,G+1, X2i,G+1.....XDi,G+1) becomes :

Vji,G+1

{

j = (n)D, (n + 1)D, (n + L − 1)D

Xij,G otherwise

n ∈ [1, D] : starting index, chosen randomly
(n)D = n mod D
L ∈ [1, D] : number of parameters which are going to be exchanged

10. Use of GA for Hölder’s coefficients detection

10.1 Implementation

The cost function we have to minimize is the following (17):

∑
j

(

log2(|aj|)− log2(C)− j − h(x0)− 1
2

log2(σ
2 + 22j)

)2

(9)

In the Holder objective function three parameters have to be estimated : h(x0), C and σ. Thus,
one individual X in GA’s population is represented by the vector Xh, XC, Xσ. In our case, the
size of population equals 30.

Using the graphical method and the DE, the Hölder coefficient found is quite close to -1,
whereas the value computed by gradient descent is not correct. Moreover, if we consider
the Hölder coefficient of the Step function, only DE provides quite good results while the
graphical method and the values of the gradient descent are too far from the theoretical value.
The last median square is not so accurate as DE’s. The results obtained indicate that the DE

can be used for the analyzed data .

For this simulation, the results are summarized in the following table :

Singularity Dirac Step 1 Step 2

Theoritical Hölder Coef. -1 0 0
Hölder Coef. by Graph. Method -0.5 0.51 0.51
Hölder Coef. by Grad. Descent 0.26 0.89 0.89
Least Median Square -0.5 0.802301 0.802301
Hölder Coef. by AG -0.5 -0.03 -0.04

We note that the graphical method is the fastest and used method, but the evaluation of the
Hölder coefficient is sometimes imprecise as noted in (34), (22).

On a simple signal (see figure 7), this new method using DE provides better results than those
of existing methods as shown in table 1.
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Fig. 7. Simple signal with singularity (step, cups, ramp and dirac) whose Hölder exponents α
are known .

Singularity Dirac Step cups Ramp
theoritical Hölder coef. -1 0 0,5 1
Hölder exponent by -1,13 0,16 0,61 0,84
graphical method
Hölder exponent by -0,24 0,39 0,74 1,20
gradient descent
Hölder exponent by -1,02 0,02 0,52 1,0007
DE

Table 1. Results of Hölder exponent evaluation by several methods. The wavelet used here is
a LOG (second derivative of Gaussian).

11. Characterization by correlation product and classification

Once the states are bounded by the detected and selected singularities using the wavelets,
they are characterized by the analysis of the correlations between the biochemical signals. On
each interval defined by the singularities, a product of correlation is computed between all
pairs of signals. The correlation coefficient (also called Bravais-Pearson coefficient, see (30)) is
given by the equation:

1
n ∑

n
i=1(xi − x)(yi − y)

σxσy
(10)

where xi represent the values of one parameter (in a given interval), yi the values of the second
parameter (in the same interval), n the number of elements, x the average of the elements xi

(of the first biochemical signal), y the average of the elements yi (of the second biochemical
signal), et σx et σy the standard deviation of each of the two signals.
The correlation coefficient is equivalent to the cosine of the scalar product between two
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biochemical signals projected in the correlation circle of a PCA realized between the two
biochemical signals. On each interval, the sign of each correlation coefficient between two
signals is kept. Each interval is thus characterized by a set of positive of negative signs. The
intervals with the same set of signs are put in the same class as illustrated in the figure 8.

Fig. 8. Principle of the classification method based on wavelets, Hölder exponent and
correlation coefficient

Ruiz et al. (27) propose a classification method based on PCA for a neighboring application
(wastewater treatment): the data are projected in the space generated by the two first principal
components. The method enables to reduce the size of the data space and to take account of
the correlation of the signals. However the PCA doesn’t take account of the time: the temporal
evolution of the process is not taken into account. Ruiz et al. propose to use time analysis
window of fixed size. But as the window has a fixed size, it doesn’t really take account of the
changes occurring during the bioprocess. So the method proposed in this article seems to be
more adapted if it is necessary to take account of the variation of the process.

12. Experimental results

Tests have been done on two fed-batch fermentation bioprocesses and the first results have
been presented in (25). The two bioprocesses are biotechnological processes using yeast called
Saccharomyces Cerevisiae. In the first bioprocess we have applied the method to differentiate
intrinsic biological phenomena from reactions of micro-organism to extern actions (changes in
the environment). In the second bioprocess we directly use the method to detect and classify
the states of the bioprocess. For the two fed-batch, the maximum scale is chosen empirically.
Mallat and Zhong (17) propose to use as maximal scale log2(N) + 1 where N is the number of
measured samples of the signals. However if we use this maximal scale, several singularities
would be removed. The empirical value which has been found it is 12. Concerning the Hölder
exponent we are interested by the singularities between -1 and 1. For the evaluation of Hölder
exponent using Genetical Algorithms, tests have shown that 100 iterations are sufficient for
an acurate evaluation (18).

12.1 Differentiation between biophysical and biological phenomena

The first bioprocess is a bioprocess lasting about 25 hours. 12 biochemical signals have been
measured during the bioprocess.
In a fed-batch bioprocess, there are two kinds of signals: the signals given by parameters
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regulated by an extern action (expert in microbiology or control system) and the signals given
by non regulated parameters. An example of regulated parameter is the agitation which is
the speed of the rotor of the bioreactor and an example of non regulated parameter is the N2
(nitrogen). The actions on regulated parameters induce modifications of the physiology of the
micro-organisms and physical changes in the bioreactor: there are biophysical phenomena.
On the other hand, during the bioprocess, the micro-organisms have intrinsic physiological
behavior: there are biological phenomena.
Is it possible to distinguish biophysical phenomena and biological phenomena?
To answer this question, we propose the following steps:

1. search the variations of the regulated signals. These variations are sharp variations which
correspond to singularities as Dirac or step.

2. compare the sign of correlation product between regulated signals and non regulated
signals before and after each detected singularity of the regulated signals. If the sign is
the same before and after, there is no influence: it is a biological phenomenon. If the sign
changes before and after, there is an influence: it is a biophysical phenomena.

We must note that:

- only the singularities of the regulated signal are detected and selected,

- to compare the sign of correlation product before and after each singularity, me must
choose a reference temporal interval. Besides, the first temporal interval (delimited by
the detected singularities) is considered as a biological interval as the bioprocess begins
and the initial conditions are considered as biological.

An example of comparison between the agitation and the nitrogen is given in figures 9 and ??.
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Fig. 9. An example of intervals (horizontal lines are singularities and correspond to
boundaries of the temporal interval) with the segmentation given by the detection of
regulated signals. This example has a duration of one hour (from 9 hours to 10 hours) taken
from the first fed-batch. There are 14 intervals. Signals are agitation (stars) expressed in
rotation per minute (rpm) and the percentage of nitrogen N2 (solid line).

Results confirm the observations of the expert. All the intervals considered as biological
by the proposed method are considered as biological by the expert. Particularly, the last
interval is considered as a biological phenomenon, which is well known by experts, as at
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the end of a bioprocess, regulated signals are not modified. Another example is given by
biological intervals located in the middle of the bioprocess which correspond to spontaneous
oscillations.

12.2 Detection and classification of states

We have studied Saccharomyces cerevisiae dynamical behaviour during fed-batch aerated
cultivation in oxidative metabolism. The maximal growth rate of this yeast was calculated to
0,45 h-1. The aim of our work was to determine by on line analysis, different physiological
states of the yeast behavior only with the available sensors (pH, temperature, oxygen Ě).
Off-line metabolites and intracellular carbohydrate reserve analysis help in a first approach to
identify the physiological states. State recognition is performed by signal processing technics.
The second bioprocess is a bioprocess lasting about 34 hours. 11 biochemical signals have
been measued during the bioprocess.
We recall the used method for the characterization of intervals for the classification is given
in section 4 and summarised in figure 8. The classification provided by the method gives
interesting results shown in the figure 10. Once again, results obtained correspond to the
experts observations. Particularly, the most interesting result concerns the detection and
the characterization of a state resulting of an external action. Besides, the class number 8
corresponds to the addition of an acid3 (the acid is not a regulated parameter as in the first
example, but is directly introduced by the expert during the experience) in the bioprocess. All
apparition of class 8 correspond exactly to an acid addition. These results were confirmed and
validated. As far as we know, it is the first time that this kind of non-model-based approach
can find and characterize automatically the addition of acid in a fed-bacth process. The results
are promising and further analysis of the classification is necessary.
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Fig. 10. Classification provided by the method. The wavelet is a DOG and the scales go from
20 to 210.

13. Discussion and conclusion

We apply logical tools to get explanation rules concerning the behavior of a bio-reactor. The
ability to incorporate background knowledge and re-use past experiences marks out ILP as a

3 because of industrial confidentiality, we are not allowed to gives more information
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very effective solution for our problem. Instead of simply giving classification results, we get
some logical rules establishing a causality relationship between different parameters of the
bio-machinery. Among these rules, some ones are validated by expert knowledge, but some
new ones have been provided. It yet appears that some previous rules have to be removed or
modified to fit with new observations.

One of the main interest of this kind of approach is the fact that the resulting theory is easy to
understand, even for a non specialist : the first order logic is, from a syntactic viewpoint, close
to the natural language.

Intelligibility of resulting explanations is an other argument in favor of the ILP tools. A
drawback of standard logic is the difficulty to deal with the time dimension : in some sense,
standard logic is static and thus, not well suited to described dynamic process. One could
hope that modal logic would be of some help, but it remains to design an inductive machine
dealing with the temporal modalities, i.e. a way to reverse temporal logic inference system.
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