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1. Introduction

It is considered that living organisms are subject to physical laws. Forces and stresses
importantly influence the development of tissues and cells. In order to manipulate
physiological and patophysiological states of the organism, it is necessary to understand
the underlying mechanisms. Experience has led to mechanical hypothesis stating that some
diseases or disorders are a consequence of unfavorable load distribution which is expressed
by biomechanical parameters (e.g. forces, stresses, load - bearing areas). Since 1993 we have
considered contact stress in the hip joint. We took part in development of a mathematical
model for determination of the contact hip stress distribution (Iglič (1993b); Ipavec (1999))
and in population studies which were performed to validate the model. Different diseases and
disorders of the hip were considered by this model: hip dysplasia (Mavčič (2002; 2008); Pompe
(2003; 2007)), slipped epiphysis of the femoral head (Zupanc (2008)), avascular necrosis of the
femoral head (Daniel (2006); Dolinar (2003)), postoperative changes in hip geometry (Herman
(2002); Kralj (2005); Vengust (2001)) and osteoarthritis of the hip (Rečnik (2007; 2009a;b)). The
method HIPSTRESS was put forward consisting of mathematical model for resultant hip force
(Iglič (1990; 1993a)), mathematical model for contact hip stress (Iglič (1993b); Ipavec (1999))
and the corresponding software. The models require as an input geometrical parameters of the
hip and pelvis. These parameters can be assessed from images as for example from standard
anteroposterior radiograms. As appropriate images are available from clinical practice and
from the archives, prospective and retrospective studies of the development of different
diseases can be performed. A thorough survey on resultant hip force and the corresponding
stress has recently been published (Daniel (2011)).

Albeit the HIPSTRESS method is of limited repeatability and accuracy, the population studies
have shown that biomechanical parameters are useful in reaching better understanding of
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mechanisms taking place in different diseases and in predicting the outcome of the treatment,
on the level of populations. In particular, the results indicated that long lasting elevated
contact stress is connected to degeneration of the hip articular cartilage and development
of hip osteoarthritis (Dolinar (2003); Kralj (2005); Mavčič (2002; 2008); Pompe (2003); Rečnik
(2007; 2009a;b)).

The physical content of the model for hip stress used in these studies is simple and clear. The
model states that the resultant hip force is distributed over the load - bearing area according
to the corresponding normal stress in the cartilage which is subject to Hooke’s law. The
equations that must be solved to obtain the relevant forces, stresses and load - bearing area
are transparent while the solution of the problem is almost analytical. Moreover, a user -
friendly software HIPSTRESS was developed which by fast determination of biomechanical
parameters of the hip and pelvis enables analyses of large populations of hips.

However, due to space limitations in journals, the full derivation of the model equations
was not encouraged in our previously published papers. Presenting only the final short
and elegant equation for determination of stress parameters may lead the readers to think
that the model itself is also simple. To elucidate the derivation and the model assumptions,
we present in the first part of this work a detailed derivation of the model for contact hip
stress distribution within the HIPSTRESS method, and indicate the connection between an
unfavorable stress distribution and osteoarthritis development. In the second part, we present
new results indicating the contact hip stress distribution as an etiological factor in avascular
necrosis of the femoral head.

2. Determination of hip stress distribution by mathematical model

The femoral head is represented by a fraction of a sphere (the femoral head sphere) and the
acetabulum is represented by a half of a spherical shell (the acetabular sphere). An articular
spherical surface is imagined. This spherical surface is an abstract object rather than a physical
one and extends beyond the load - bearing area. The load - bearing area is however a part of
the articular spherical surface.

The shear stresses in the hip joint are neglected because of the small value of the frictional
coefficient corresponding to forces acting in the hip joint (Eberhardt (1991); Lipshitz (1979);
McCutchen (1962)) so that only the normal stress is considered. We refer to the normal stress
as to the contact hip stress.

When the hip is unloaded, the femoral head sphere and the acetabular sphere are concentric
(Fig.1A). Upon loading the femoral head moves towards the acetabulum thereby squeezing
the cartilage in between (Fig.1B). The femoral head sphere and the acetabular sphere are no
longer concentric and the surfaces are shifted with respect to each other. The point on the
articular sphere corresponding to the closest approach of the femoral head sphere and the
acetabular sphere is called the stress pole (denoted by P in Fig.1B).

The radius vector from the centre of the femoral head sphere to the selected point at the
acetabular sphere after the loading is denoted by r, the respective radius vector before the
loading is denoted by r′ and the penetration of the centre of the femoral head is denoted by d.
The coordinate system is rotated so that the side view plane is defined by the three vectors.
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Fig. 1. Schematic presentation of the relative shift of the acetabular sphere and the femoral
head sphere. A: before loading, the two spheres are concentric. B: after loading, the femoral
head sphere penetrates towards the acetabular sphere.

It follows from trigonometric relations that

r2 = r′2 + d2 − 2r′d cos γ (1)

where γ (Fig. 1B) is the angle between the radius vector from the origin of the coordinate
system at the centre of the articular sphere to the pole and the radius vector to the selected
point on the articular surface while r, r′ and d are the magnitudes of the vectors r, r′ and d.
It is considered that the deformation of the cartilage is very small i.e. that the distance of
penetration d is much smaller than distances r and r′, so we can neglect the quadratic term in
Eq.(1),

r =
√

r′2 − 2r′d cos γ (2)

and use the approximation for small x,
√

1 + x ≃ 1 + x/2,

r = r′(1 − cos γ
d

r′
). (3)

The deformation and the strain of the cartilage are proportional to the difference r′ − r,

r′ − r = d cos γ. (4)

As the normal stress at a particular point on the articular sphere (p) is taken proportional to
strain in the cartilage, it can be written as (Brinckmann (1981))

p = p0 cos γ (5)

where the proportionality constant p0 is the value of stress at the pole.

Considering the resultant hip force R to be known, it is connected to the hip stress distribution
by

∫

p0 cos γdS = R, (6)

where dS is the vector form of the area element pointing in the direction normal to the surface.
The integration is performed over the load - bearing area.

349Role of Biomechanical Parameters in Hip Osteoarthritis and Avascular Necrosis of Femoral Head
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Fig. 2. Schematic presentation of the articular sphere and the coordinate system.

The coordinate system is adjusted to the geometry of the load-bearing area. The coordinates
of a selected point (T) are (Fig.2A)

x = r cos ϕ sin ϑ, (7)

y = r sin ϕ, (8)

z = r cos ϕ cos ϑ. (9)

The infinitesimal element of the surface area is given by

dS = r2 cos ϕ(cos ϕ sin ϑ, sin ϕ, cos ϕ cos ϑ)dϕdϑ. (10)

The space angle γ is the angle between the radius vector to the stress pole and the radius vector
to the selected point on the articular surface, hence we can use the dot product to define the
angle,

cos γ =
r · rpole

r2 , (11)

where
r = r(sin ϑ cos ϕ, sin ϕ, cos ϑ cos ϕ), (12)

and
rpole = r(sin Θ cos Φ, sin Φ, cos Θ cos Φ). (13)

The dot product yields

r · rpole = r2(sin ϑ cos ϕ sin Θ cos Φ + sin ϕ sin Φ + cos ϑ cos ϕ cos Θ cos Φ) (14)

so that
cos γ = sin ϑ cos ϕ sin Θ cos Φ + sin ϕ sin Φ + cos ϑ cos ϕ cos Θ cos Φ. (15)

In the chosen coordinate system, the position of the pole is given by two angles (Φ and Θ).
However, for clarity and simplicity we rotate the hip in the coordinate system so that the pole
is at the top of the articular sphere (Fig.2B),

cos Θ̃ = 1, (16)
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and
sin Θ̃ = 0, (17)

while Φ̃ = 0 so that
cos Φ̃ = 1, (18)

and
sin Φ̃ = 0. (19)

It follows from Eqs.(15) and (16)– (19) that in the rotated system

cos γ = cos ϕ cos ϑ. (20)

2.1 Contact hip stress in relation to resultant hip force

Using expressions (5), (6), (10) and (20), the components of the vector equation for the resultant
hip force in the rotated system are expressed as

Rx = p0r2
∫

cos3 ϕdϕ
∫

cos ϑ sin ϑdϑ, (21)

Ry = p0r2
∫

cos2 ϕ sin ϕdϕ
∫

cos ϑdϑ, (22)

Rz = p0r2
∫

cos3 ϕdϕ
∫

cos2 ϑdϑ. (23)

In order to calculate the coordinates of the pole Θ and Φ and the value of stress at the pole p0
we must solve the above system of equations. For this we must define the boundaries of the
load - bearing area within the articular surface.

We take for simplicity that the lateral border of the load - bearing area is defined by the lateral
rim of the acetabulum. Neglecting the detailed anatomy of the border and taking that the
rim presents a part of a circle on the sphere with the centre at the centre of the sphere, the
rim is described by an intersection of the articular sphere and a plane passing through the
center of the sphere. The plane is inclined by an angle ϑL with respect to the vertical axis.
The coordinate system is then rotated for an angle −Φ so that the lateral border is symmetric
with respect to the frontal plane through the centre of the articular sphere. Stress represents
loading only if it is positive. Therefore the medial border of the load - bearing area is defined
at points on the articular sphere where stress vanishes,

cos γ = 0. (24)

This condition includes points which are for π/2 away from the stress pole.

Consider a hip with the lateral coverage ϑL and the pole of stress (given by angles Θ and
Φ) located laterally with respect to the sagittal plane through the centre of the femoral head.
The coordinate system is rotated for angles −Θ and −Φ, so in the rotated system, the lateral
border is at ϑ = ϑL − Θ. As the pole is at the top of the rotated system, the medial border in
the rotated system is at ϑ = −π/2. Parameter ϕ is bounded within the interval [−π/2, π/2].

351Role of Biomechanical Parameters in Hip Osteoarthritis and Avascular Necrosis of Femoral Head
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Taking into account that
∫

cos3 ϕdϕ = sin ϕ − 1
3

sin3 ϕ, (25)
∫

cos ϑ sin ϑdϑ =
1
2

sin2 ϑ, (26)
∫

cos2 ϕ sin ϕdϕ = − 1
3

cos3 ϕ, (27)
∫

cos ϑdϑ = sin ϑ, (28)
∫

cos2 ϑdϑ =
1
2
(ϑ +

1
2

sin 2ϑ), (29)

and considering the boundaries, the components of the force are

Rx = −p0r2 2
3

cos2(ϑL − Θ) (30)

Ry = 0 (31)

and
Rz = p0r2 2

3
(ϑL − Θ +

π

2
+

1
2

sin 2(ϑL − Θ)). (32)

The resultant hip force is given by the vector

R = R(− sin ϑR cos ϕR, sin ϕR, cos ϑR cos ϕR) (33)

which is in the rotated system expressed as

R = R(− sin(ϑR + Θ), 0, cos(ϑR + Θ)) (34)

since
Φ = −ϕR. (35)

The ratio Rx/Rz yields

tan(ϑR + Θ) =
cos2(ϑL − Θ)

(ϑL − Θ + π
2 + 1

2 sin 2(ϑL − Θ))
. (36)

Eq.(36) is a nonlinear equation for Θ which can be solved numerically, for example by using
the Newton method. The value of stress at the pole is then expressed from Eqs.(30) and (34),

p0 =
3R

2r2
sin(ϑR + Θ)

cos2(ϑL − Θ)
. (37)

The solution (Eqs.(36) and (37)) first appeared in (Ipavec (1999)). Due to the geometry of the
articular sphere, the first choice of coordinates were spherical coordinates. In such coordinate
system, the load - bearing area was subject to boundaries in which the two angles were related,
so the load - bearing area had to be divided into 6 segments with different types of boundary
shapes. Although yielding the same relatively simple result (Eq.(36)), the calculation was
tedious and due to many terms in the integrals the probability of making the mistake was

352 Applied Biological Engineering – Principles and Practice

www.intechopen.com



Role of Biomechanical Parameters in Hip Osteoarthritis and Avascular Necrosis of Femoral Head 7

increased. The derivation of the result was practically inaccessible by simply following the
instructions given in (Ipavec (1999)). Probably this added to the fact that a typing mistake in
the equations in (Ipavec (1999)) was deleterious for potential users of the model. The authors
are indebted to W. Wilson and B.V. Rietbergen from Eindhoven University of Technology, who
found the mistake while they were trying to repeat the derivation. An erratum was published
in J. Biomech. (Ipavec (2002)), however, a thorough description of the model is still required
as to help the potential users of the model to verify all steps.

In attempting to develop models with slightly more sophisticated load - bearing areas (such
as after the Chiari osteotomy in which additional load - bearing area is created by a roof
created by the cut iliac bone) the spherical coordinates used in (Ipavec (1999)) were found
of practically no use and finding a more convenient coordinate system was prerequisite for
description of the system. The coordinates presented above yielded considerably simpler
derivation which was then first published in (Herman (2002)).

It can be seen that the simple, transparent and almost analytical form of the system of
equations (35) - (37) does not mean that the model and the derivation of equations are simple.
The simplicity and elegance of the result is primarily a consequence of the symmetry of the
load - bearing area and of the stress distribution function.

It can also be mentioned that another choice of configuration preceded the above models.
Inspired by Brinckmann et al., (Brinckmann (1981)), we chose the configuration in which the
system was rotated so that the resultant hip force would point in the vertical direction (Iglič
(1993b)). This model was however restricted to resultant hip force lying in the frontal plane of
the body. It was a major achievement of the improved model described in (Ipavec (1999)) that
regardless of the direction of the resultant hip force, within the described model, a coordinate
system can always be found in which the above defined load-bearing area is symmetric.

To assess contact hip stress by a single numerical value, peak stress on the load - bearing area
pmax is given. If the stress pole is located inside the load - bearing area, pmax is equal to the
value of stress at the pole p0. If the stress pole lies outside the load - bearing area, contact
stress is the highest at the point of the load - bearing area which is closest to the stress pole
and can be determined by using Eq.(5).

pmax = p0 cos(ϑL − Θ). (38)

2.2 Index of the hip stress gradient and functional angle of load-bearing area

Not only stress, but also stress differences between adjacent cell layers can be important in
development of tissues (Daniel (2003)). These differences are expressed by the stress gradient,

∇p = (
∂p

∂r
,

1
r

∂p

∂θ
,

1
r sin θ

∂p

∂φ
) (39)

where r is the magnitude of the radius vector while θ and φ are the polar and the azimuthal
coordinates of the spherical system (Fig.3).

In this system
x = r cos φ sin θ, (40)

353Role of Biomechanical Parameters in Hip Osteoarthritis and Avascular Necrosis of Femoral Head
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Fig. 3. Schematic presentation of the articular sphere in the spherical coordinate system.

y = r sin φ sin θ (41)

and
z = r cos θ, (42)

while the coordinates of the pole are

xp = r cos φp sin θp, (43)

yp = r sin φp sin θp (44)

and
zp = r cos θp. (45)

The space angle derived from the dot product is

cos γ = cos θ sin φ cos φp sin θp + sin φ sin θ sin φp sin θp + cos θ cos θp. (46)

As in the rotated system the stress pole is at the top of the sphere, θ̃p = φ̃p = 0, the above
expression simplifies into

cos γ = cos θ. (47)

It follows from Eqs.(39) and (47) that the gradient is

∇p = (0,− p0

r
sin θ, 0). (48)

Here, r is the radius of the articular sphere. The stress gradient is a vector pointing in the
direction of strongest change of stress. It would however be convenient to assess the gradient
by a single numerical value. By mapping the three dimensional problem onto two dimensions
we introduced the index of the hip stress gradient at the lateral acetabular rim Gp (Daniel
(2002); Pompe (2003)),

Gp = − p0

r
sin(ϑL − Θ). (49)

The absolute value of Gp is equal to the magnitude of stress gradient ∇p at the lateral
acetabular rim. If the pole of stress distribution lies outside the load - bearing area (i.e., if

354 Applied Biological Engineering – Principles and Practice
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Θ > ϑL) then Gp > 0. If the pole of stress distribution lies inside the load - bearing area (i.e.,
if Θ < ϑL) then Gp < 0.

We defined another biomechanical parameter which describes the size of the load - bearing
area: the functional angle ϑF. The functional angle is equal to the load - bearing area divided
by 2r2,

ϑF =
π

2
+ ϑCE − Θ. (50)

The index of the hip stress gradient at the lateral acetabular rim Gp is in a simple way
connected to the size of the load-bearing area which is proportional to the functional angle
of the load-bearing area,

Gp =
p0

r
cos ϑF. (51)

2.3 Clinical relevance of hip stress with respect to osteoarthritis development

Population studies have shown that long lasting high peak stress is unfavorable and leads to
osteoarthritis of the hip, however, even if the peak stress is not very high, large positive index
of the hip stress gradient at the lateral acetabular rim and small functional angle of the load -
bearing area express unfavorable stress distribution.

Index of the hip stress gradient at the lateral acetabular rim Gp characterizes the slope of the
contact stress distribution at the lateral border of the load - bearing area while the functional
angle of the load-bearing area ϑF describes the amount of the articular sphere occupied by
the load - bearing area. To illustrate these parameters Fig.4 presents stress distribution and
parameter ϑF in two hips with different pelvic geometry: normal hip (A) and dysplastic hip
(B). In hip A the pole of stress distribution lies within the load - bearing area and contact
stress increases from the lateral edge in the medial direction, reaches its maximum and then
decreases towards the medial border of the load - bearing area. The corresponding value of
Gp is negative and the functional angle of the load - bearing area ϑF is large. In hip B the pole
lies outside the load - bearing area so that at the lateral edge of the load - bearing area stress
steeply decreases in the medial direction. The corresponding value of Gp is positive and the
functional angle of the load - bearing area ϑF is small. The lower (more negative) the index
of gradient and the larger the functional angle of the load - bearing area, the more favorable
is stress distribution. In a population study it was shown (Pompe (2003)) that the change
of sign of Gp correlates well with clinical evaluation of hip dysplasia, i.e. positive values of
Gp correspond to dysplastic hips. The functional angle of the load-bearing area ϑF which
does not critically depend on the size of the pelvis and femur was proved the most relevant
in samples with large scattering in the size of the geometrical parameters, as for example
in a group of children (Vengust (2001)) or if there is a possibility that the magnification of
radiographs varies considerably. In these cases the effect of the parameters R, pmax and Gp

(strongly dependent on the magnification of radiographs) can not be envisaged due to large
scattering and concomitant poor statistical significance.

Population studies have shown that in dysplastic hips, the peak stress is on the average for
a factor 2 higher than in healthy hips (Mavčič (2002)) while the index of stress gradient at
the lateral acetabular rim is negative in normal hips and positive in dysplastic hips (Pompe
(2003)). The differences were statistically significant (p < 0.001). In a study including 65 hips

355Role of Biomechanical Parameters in Hip Osteoarthritis and Avascular Necrosis of Femoral Head
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Fig. 4. Stress distribution in a frontal plane through the centre of the femoral head. The
length of the line indicates the value of stress. The functional angle of the load - bearing area
is shown. A: normal hip, B: dysplastic hip.

that underwent total hip replacement due to idiopathic osteoarthritis of the hip, the age at the
replacement negatively correlated with peak stress (p < 0.001) (Rečnik (2009a)). These results
indicate that contact hip stress plays an important role in progression of osteoarthritis.

3. Hip stress as etiological factor for avascular necrosis of femoral head

3.1 Introduction

Avascular necrosis of the femoral head (AN) is characterized by deterioration of the bone
tissue (Figs.5,6). It represents together with secondary osteoarthritis a serious orthopaedic
problem affecting mostly young and middle - aged populations (Mont (1995)). In spite
of numerous studies, mechanisms leading to ischemic and necrotic processes are not yet
understood. In about one third of patients the risk factors cannot be determined (Mahoney
(2005)) while disorders and risk factors connected to the onset of AN include alcoholism (Mont
(1995)), corticosteroid therapy in patients with connective tissue diseases and transplants
(Mont (1995)), sickle cell anemia (Herndon (1972)), HIV (Miller (2002); Mahoney (2005)),
antiphospholipid syndrome (Tektonidou (2003)) pregnancy (Cheng (1982); Mahoney (2005))
and some others (Bolland (2004); Macdonald (2001); Rollot (2005)). It was suggested
that recidivant microfractures in the region of highly loaded femoral head may lead to
microvascular trauma and thereby induce development of AN (Kim (2000)). A question can
therefore be posed whether biomechanical parameters such as stresses in the hip are important
in the onset of AN. It is the aim of this work to investigate the role of the above biomechanical
parameters in the onset of AN.

356 Applied Biological Engineering – Principles and Practice
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A B C

Fig. 5. A: healthy hip, B: initial phase of avascular necrosis of the femoral head when the
femoral head is still spherical, C: advanced phase of avascular necrosis of the femoral head in
which the femoral head is deformed while the femoral head is unable to bear load.

Fig. 6. Bilateral necrosis of the femoral head in an advanced stage.

3.2 Methods

From the archive of the Department of Orthopaedic Surgery, Ljubljana University Medical
Centre we selected standard anterior - posterior radiograms of pelvis and proximal femora
of 32 adult male persons (32 hips) who were treated due to AN between 1972 and 1991. It
was assumed that prior to necrosis both hips had had the same geometry. As the necrotic
process had already caused changes in the geometry of some hips, the hips contralateral to
the necrotic ones were considered in the study. For comparison, we selected radiograms of 23
male persons (46 normal hips) pertaining to patients who had had a radiogram of the pelvic
region taken at the same institution for reasons other than hip joint disease (e.g. lumbalgia).
In our study we have considered only male hips. As the values of peak hip stress importantly
depend on the gender (Kersnič (1997)) it is important to have gender-matched groups in
statistical analysis.

357Role of Biomechanical Parameters in Hip Osteoarthritis and Avascular Necrosis of Femoral Head
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Fig. 7. Geometrical parameters of hip and pelvis which are needed to determine the resultant
hip force within the HIPSTRESS method.

The three-dimensional biomechanical model for resultant hip force (Iglič (1993a)) and the
above described model for hip stress were used to estimate the magnitude of the resultant hip
force in the representative body position (one - legged stance) (Debevec (2010)). The contact
stress distribution was given by its peak value pmax, location of its pole Θ, index of the contact
stress gradient at the lateral acetabular rim Gp and functional angle of the load - bearing area
ϑF. The input parameters of the model for the resultant hip force are geometrical parameters
of the hip and pelvis: interhip distance l, pelvic height H, pelvic width laterally from the
femoral head center C and coordinates of the effective insertion point of abductors on the
greater trochanter (point coordinates Tx, Tz) in the frontal plane (Fig.7).

The model of the resultant hip force is based on the equilibria of forces and torques acting
between the body segments. To calculate the resultant hip force the three-dimensional
reference coordinates of the muscle attachment points were taken from the work of Dostal
and Andrews (Dostal (1981)) and scaled with regard to the pelvic parameters (l, C, H, Tx, Tz).
To calculate stress, additionally, the radius of the articular surface (taken as the radius of the
femoral head) and the angle of the lateral coverage of the femoral head (taken as the centre -
edge angle of Wiberg ϑL ≡ ϑCE) were assessed from anterior - posterior radiograms for each
individual subject. In some radiograms of the patients with AN the upper part of the pelvis
was not visible. In these patients the contour was extrapolated on the basis of the visible parts.
As in some hips with AN the femoral head was considerably flattened superiorly, centers of
rotation on both sides corresponding to the pre - necrotic situation were determined by circles
fitting the outlines of the acetabular shells.

To describe stress distribution, we determined biomechanical parameters R, pmax, Gp and
ϑF for each hip. The parameters R, pmax and Gp were normalized to the body weight (WB)
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to outline the influence of hip geometry on stress. The respective average values in the test
group and the control group were compared by the pooled two - sided Student t - test.

3.3 Results

Parameter (SD) Test group Control group ∆ (%) p

ϑF [degrees] 105 (13) 113 (13) 7 0.008
Θ [degrees] 15.4 (7.2) 11.8 (7.6) 27 0.037

Gp/WB [103 m−3] -17.32 (17.16) -26.05 (16.85) 40 0.028
pmax/WB [m−2] 2172 (785) 2090 (502) 4 0.604

R/WB 2.49 (0.21) 2.53 (0.18) 2 0.382

Table 1. Mean biomechanical parameters with standard deviation in brackets in the test
group (32 hips contralateral to the necrotic hips) and in the control group (46 normal hips).

Table 1 shows the biomechanical parameters: functional angle of the load bearing area
ϑF, position of the stress pole, normalized index of the contact stress gradient (Gp/WB),
normalized peak stress (pmax/WB) and normalized resultant hip force (R/WB) in the test
group and in the control group. Hips in the test group are on average less favorable with
respect to ϑF, Gp/WB and pmax/WB. The differences in ϑF (7%), Θ (27%) and Gp/WB (40%)
are statistically significant (p = 0.008, p = 0.037 and p = 0.028, respectively) while the difference
in pmax/WB (4%) is not statistically significant (p = 0.604). The magnitude of the resultant hip
force R is smaller (more favorable) in the test group, however the difference is very small (2%)
and statistically insignificant (p = 0.382).

Parameter (SD) Test group Control group ∆ (%) p

C [mm] 60.0 (10.0) 58.5 (8.6) 3 0.463
H [mm] 163.0 (19.6) 162.4 (9.8) 0.4 0.867
l [mm] 203.1 (17.5) 199.6 (8.9) 2 0.305

Tx [mm] 12.5 (7.6) 7.6 (6.4) 49 0.002
Tz [mm] 74.7 (11.3) 69.7 (7.7) 7 0.033
r [mm] 28.5 (3.1) 27.7 (1.7) 3 0.187

ϑCE[degrees] 30.4 (5.6) 34.7 (6.1) 13 0.002

Table 2. Mean geometrical parameters with standard deviation in brackets in the test group
(32 hips contralateral to the necrotic hips) and in the control group (46 normal hips).

In order to better understand the differences in biomechanical parameters, the differences
in geometrical parameters used in the models for the above biomechanical parameters were
studied (Table 2). The center-edge angle ϑCE is smaller (less favorable) in the test group
than in the control group, the difference (13%) is statistically significant (p = 0.002). The
lateral position of the insertion point of the effective muscle on the greater trochanter (Tz)
is statistically significantly more favorable in the test group than in the control group (p =
0.033), while its inferior position (Tx) is considerably (49%) and statistically significantly more
favorable in the control group (p = 0.002). The differences in other geometrical parameters are
small and statistically insignificant.
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3.4 Discussion

Our results show that the peak contact hip stress pmax/WB in the group of hips contralateral
to necrotic ones and in the group of normal hips are not statistically significantly different,
however, the shape of the stress distribution (given by parameters ϑF and Gp/WB) is
statistically significantly less favorable in the group of hips contralateral to necrotic ones.

The differences in the biomechanical parameters can be explained by the differences in
the geometrical parameters. The difference in pelvic height H and width C and in the
interhip distance l were very small (below 3%) and statistically insignificant while the
difference in the vertical coordinate of the insertion of the effective muscle on the greater
trochanter (Tx) was statistically significant, but this parameter does not influence much the
biomechanical parameters (Daniel (2001)). The differences in the remaining three parameters
(lateral coordinate of the insertion of the effective muscle on the greater trochanter, radius
of the femoral head and center-edge angle) can however contribute to the explanation of the
differences in biomechanical parameters. The centre - edge angle CE is the most important
parameter in determination of contact stress distribution. Larger CE corresponds to lower
pmax/WB and smaller Gp/WB. Table 2 shows that ϑCE is statistically significantly lower in
the test group (p = 0.002) indicating that pmax/WB and Gp/WB would be higher in hips
contralateral to the necrotic ones. However, pmax/WB and Gp/WB strongly depend also on the
radius of the femoral head (pmax/WB is inversely proportional to the square of r and Gp/WB
is inversely proportional to the third power of r). Although the difference in the radii of the
two groups is not statistically significant (p = 0.187), the difference (3%) is in favor of hips in
the test group. Further, the lateral position of the insertion of the effective muscle is for 7%
statistically significantly larger (more favorable) in the test group than in the control group
(p = 0.002). The effect of the smaller center-edge angle is therefore counterbalanced by the
effect of larger femoral head and more laterally extended greater trochanter. The shape of the
stress distribution (described by ϑF and Gp/WB) is on average considerably and statistically
significantly different in both groups. In the test group the distribution is steeper, the pole
lies more laterally, the gradient index is larger (less negative) and the functional angle of the
load-bearing area is smaller than in the control group. This renders hips with increased risk
for AN less favorable regarding the stress distribution. However, we did not find a statistically
significant difference in pmax/WB.

The magnification of the radiograph was not known, as no unit with known length was visible
in the picture. As the magnification may vary considerably contributing to the scattering in
the measured distances, poor statistical significance in parameters pmax/WB and R/WB can
be the consequence of the lack of knowledge of magnification of the radiograms.

It has been hypothesized that transient osteoporosis of the bone marrow oedema syndrome
may be the initial phase of osteonecrosis of the femoral head (Hofmann (1994)) and that
there may be a common patophysiology. Transient osteoporosis is connected to recidivant
microfractures and microvascular trauma at highly loaded regions of the bone leading to the
ishemia of the affected part of the bone (Ficat (1981)). Higher contact hip stress may increase
the probability and extent of microfractures of the affected bone thereby making the repair
more difficult. Furthermore, the replicative capacity of osteoblast cells of the intertrochanteric
area of the femur in osteonecrosis patients was found to be significantly reduced compared to
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patients with osteoarthritis (Gangji (2003)). Thereby, stresses in the hip including the contact
hip stress could contribute to the acceleration of the processes leading to AN.

4. Conclusion

Unfavorable stress distribution importantly influences development of the hip and may
present a risk factor for osteoarthritis progression as well as for progression of the avascular
necrosis of the femoral head.
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