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1. Introduction 

Radiotherapy plays an important role in the treatment for patients with solid tumors. 
Recently, the advantages in high-precision radiotherapy enable focusing of higher radiation 
energy (dose) to the tumor region while minimizing unwanted radiation exposure to 
surrounding normal tissue to avoid radiation injury. Intensity-modulated radiation therapy 
(IMRT) varies the intensities and profiles of beams from various directions to fit the tumor 
size and shape. This technique greatly improves dose concentration on target region and 
normal tissue sparing. Image-guided radiation therapy (IGRT) uses advanced imaging 
technology such as on-board imaging system to achieve precise and accurate dose delivery. 
Many studies have reported inter-fractional organ motions and efficacy of IGRT in reducing 
targeting errors using daily CT images (Den et al. 2009, Wang et al. 2009, Houghton et al. 
2009, Pawlowski et al. 2010, Varadhan et al. 2009, Greene et al. 2009). Owing to these 
techniques, errors in patient set-up and dose delivery can be reduced to some extent. 
However, as radiotherapy typically takes several weeks, tumor and normal tissues may 
deform due to therapeutic effect or loss of body weight during treatment period. Shapes and 
locations of the tumor and the surrounding organs would be quite different from those 
when the treatment was planned. This results in overdosage of surrounding normal tissue 
or underdosage of target region. To overcome this issue, it would be useful to precisely 
analyse and predict the changes in three-dimensional (3D) geometries of tumors and normal 
tissues through the treatment. 

However, even methodology to evaluate 3D tumor shapes has not been established yet. At 
present, tumor diameter is commonly used as an indicator to evaluate therapeutic response 
in cancer patients. Since the 1970s, the World Health Organization (WHO) had suggested to 
assess tumor response by measurement of maximum diameter and largest perpendicular 
diameter (World Health Organization, 1979). The response evaluation criteria in solid tumor 
(RECIST) guideline proposed to use only maximum diameter in categorizing therapeutic 
response (Therasse et al. 2000, Werner-Wasik et al. 2001). Some researchers have reported 
that this difference in diagnostic criteria often resulted in different categorization of 
therapeutic response. Rohbe et al. stated that volumetric measurement with CT might help 
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to evaluate therapeutic response more accurately (Rohbe et al. 2007). For more precise 
assessment, it would be useful to examine 3D tumor morphological features.  

For the purpose of prediction of therapeutic effect, various computational methods have been 
proposed for simulation of tumor growth and shrinkage as the effects of radiotherapy. Almost all 
of these method consider tumor as concentration of huge number of cancer cells and calculate the 
death or birth of these cells pursuant to some rules based on the cell biology (Dionysiou et al. 
2004, Stamatakos et al. 2010, Kolokotroni et al. 2011). These approaches look attractive, however 
it seems to be difficult to implement them into clinical situation because therapeutic effect cannot 
be evaluated accurately only by the number of cancer cells. Usable method for prediction and 
evaluation of therapeutic response of tumors has been required strongly. 

Authors have proposed novel numerical simulation method to predict changes in tumor 
volume in radiotherapy (Takao et al. 2009a). We have also established the methodology to 
evaluate 3D tumor shape visually using color map called surface geometry map (Takao et al. 
2009b and 2011). From these knowledge, we proposed simulation method to predict changes 
in 3D tumor shape through the treatment duration and evaluated tumor geometry visually 
and quantitatively. 

2. Analysis of three-dimensional tumor geometry 

It would be valuable if changes in 3D tumor shapes during treatment can be evaluated 
visually and quantitatively. Quantitative evaluation could be performed using geometric 
factors such as volume, surface area, and radius. For visual evaluation, we introduce some 
color map called surface geometry map to represent 3D tumor geometry (shape) into two-
dimensional plane. The volume of tumor is also represented as size of the map. Therefore, 
this surface geometry map is useful to understand how the tumor shrinks during treatment.  

2.1 Geometric factor 

For quantitative (or numerical) analysis of tumor geometry, volume V, surface area S were 
measured and evaluated based on the 3D surface models of the tumors constructed from CT 
image sets taken once a week during treatment. From the values of V and S, spherical shape 
factor (SSF) which represents degree of sphericity was calculated by following equation 
(Choia HJ and Choi HK 2007). 

 
2

3

36 V
SSF

S


  (1) 

If SSF=1, the tumor has a perfect sphere. As surface roughness increase, the value of SSF 
decreases. Tumor radius R(θ, φ) was also measured in all directions from the gravitational 
canter of the tumor.  

2.2 Surface geometry map 

We introduced surface geometry map like a global map to visualyze changes in 3D tumor 
shape (Takao et al. 2009a). Distances from the center of the gravity to its surface, i.e. radius 

R(, φ) were measured in the spherical coordinate system O-Rφ, with the origin is set at the 

tumor center. The angle  represents the azimuthal angle (-180° ≤  ≤ 180°), and the angle φ 
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represents the polar angle (-90° ≤ φ ≤ 90°). Radius R(θ, φ) was sampled at 10° intervals in 
both the polar and azimuthal directions. To enable a visual understanding of the features of 
the 3D geometry of the tumor, the values of radius R(θ, φ) were represented in a color scale 

and plotted in the - plane: red indicates the maximum radius and blue the minimum 
within the tumor. The warm colors (red and yellow) represent convex region and cool colors 
(blue) represents concave areas (Fig. 1).  

Further, to evaluate changes in tumor geometry quantitatively, the image correlation was 
analyzed. Surface geometry maps were converted into grayscale, therefore the intensities in 
the maps represented the tumor radius. The intensities at every position in the maps created 
from CT images taken during the treatment were compared with those of the corresponding 
position in the map before the treatment, and correlation coefficient was calculated. Similar 
analysis was performed to evaluate our simulation method, especially calculation 
considering tumor heterogeneity (discussed later). 

 

Fig. 1. Coordinate system in radiotherapy and representation of 3D tumor geometry using 
2D surface geometry map 

3. Simulation of changes in tumor geometry 

3.1 Equations for tumor deformation 

Equations for describing changes in 3D tumor geometry were established using analogy 
with deformation of continuous body in solid mechanics (Takao et al. 2009b) (Fig. 2). The 
relationship between radiation dose D and cell mortality fraction M is described as follows,  

 
ij ijkl kldM C dD  (2) 

Radiation dose and mortality fraction are tentatively treated as tensor quantities in 
formulation process so that direction of shrinkage can be considered. Cijkl is the parameter of 
radioresistance and varies as the function of radiation dose.  
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Fig. 2. Tumor deformation due to radiotherapy estimated from solid mechanics.  
Xi: Exposure dose, Dij: absorbed dose, Mij: cell mortality, Ri: therapeutic displacement,  

Ti: external force, ij: stress, ij: strain, ui: displacement. Absorbed dose and cell mortality are 
defined as tensor quantities. Boundary conditions are prescribed on area SX and SR. 

Radiation dose D should obey following equations in accordance with the rule in solid 
mechanics. 

 
 

0
ij

j

D

x





 (3) 

Assuming that cancer cells killed by irradiation are removed from the tumor, decrease in the 
number of cancer cells, i.e., cell mortality directly relates to the changes in tumor volume 
and shape. The relationship between cell mortality M and the displacement of tumor 
boundary R is formulated as follows, 

 
   1

2

ji
ij

j i

dRdR
dM

x x

   
  
 

 (4) 

The boundary condition that prescribes the amount of radiation dose transmitted through 
the tumor boundary is given by 

 i ij jdX dD n  (on SX, SX; irradiation boundary) (5) 

The geometrical boundary condition is given by 

 i idR dR  (on SR, SR; geometrical boundary) (6) 

Equations (2)-(6) express tumor response to irradiation in clinical situation. These equations 
can be solved numerically by means of discretization method such as finite element method 
(FEM). Assuming that tumors locally (in a sub-millimeter scale) have an isotropic property, 
Cijkl parameter in Eq. (2) for radioresistance is represented by two parameters; reduction 

resistance E and reduction ratio . The values of E and  should be determined based on the 
radiobiological model describing the relationship between radiation dose and therapeutic 
effect. Here we use the linear-quadratic (LQ) model, which is widely accepted and used in 
the field of radiobiology. According to the LQ model, cell survival fraction S is expressed by 
following equation, 

 2exp( )S D D     (7) 
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where  and  are parameters of radiosensitivity. In standard radiotherapy, fractionated 
irradiation, which gives small radiation dose in many times, is performed for reducing 
radiation damage to normal tissue. Cell survival after n times irradiation (total dose of D, 
administered in fractionated dose of d) is denoted as follows, 

  exp ( )S d D     (8) 

This formula is rewritten as the relationship between radiation dose and mortality fraction 
and in incremental form as, 

     expdM d d D dD        (9) 

Equation (9) denotes mortality fraction as the function of radiation dose in terms of 
radiobiology. Equally equation (2) represents same quantity based on the analogy with solid 
mechanics. Therefore, right-hand sides of both two equations can be equated and following 
relationship can be derived. 

       
23 1 2 1 2

1 expD d d D
E E

     
       

 
      (10) 

Equation (10) gives the condition that the parameters E and  must satisfy. When the values 

of E and  are determined, therapeutic displacement Ri can be calculated by means of 
numerical discretization method such as finite element method. 

3.2 Heterogeneity of tumor radiosensitivity 

Tumor shows internal heterogeneity of radiosensitivity, and it may result in uneven tumor 
shrinkage. For example, cancer cells under hypoxic environment are likely to be 
radioresistant, therefore tumor tissue in this region usually does not shrink obviously. 
Tumor radiosensitivity also varies depend on many other factors such as cell cycle phase or 
growth rate of each cell. Because of its complexity, it still seems difficult to measure or 
estimate the distribution of radiosensitivity in tumor tissue. In this study, intratumoral 
distribution of radiosensitivity is estimated from the degree of tumor shrinkage in the early 
stage of treatment. The site where tumor radius decreases greatly is considered to be more 
radiosensitive, and the site where tumor radius decrease slightly is more radioresistant. 
Therefore tumor radiosensitivity can be represented as the function of position within the 
tumor. As radiosensitivity is represented by E parameter in this model, heterogeneity of 
radiosensitivity can be expressed by the distribution of the values of E.  

3.3 Simulation procedure 

Simulation flow-chart for calculation of tumor geometry is shown in Fig. 3. First, finite 
element (FE) models of the tumor at the start of the treatment was constructed from the CT 
images taken for the purpose of treatment planning. Next the values of parameters for 

tumor radiosensitivity in LQ model,  and , were set as  = 0.1 and  = 0.01 (/=10.0) as 
suggested by Thames et al. (Thames et al. 1990). Other simulations parameters were 

consecutively determined The reduction resistance  was tentatively set to 0 assuming that 
the relationship between tumor response and radiation dose would entirely obey the LQ 
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model. After then, the reduction resistance E was calculated from Eq. (10) using , , 
cumulative dose D, and daily dose d. The E parameter was initially considered to be 
uniform throughout the tumor. Using these parameters, changes in tumor volume was 
calculated by means of FE analysis software. Calculated tumor volumes were compared 
with corresponding tumor volumes measured from CT image sets for treatment follow-up. 

Followed by this process, the value of reduction ratio , which represents interpatient 
variation in radiosensitivity, was adjusted for each case so that the discrepancy between the 
calculated and the actual tumor volumes obtained from follow-up CT would decrease. If the 

calculated volume was less than the actual volume, the value of  was incremented and then 
the tumor volume was recalculated. This iterative process was continued till the root mean 
square (RMS) error of the calculated and actual tumor volumes reached a minimum.  

* VM : Measured tumor volume, VC : Calculated volume

* * RM : Measured tumor radius, RC : Calculated radius

START

Determine  and 

Calculate E 
from , , D, and d

Set  =  0

Calculation

Modify 

Construct the FE model

Compare calculated and 

measured tumor volumes

CT Images during 

RT (CT1)

Yes

No
(VM – VC)2 is minimized*

No
(RM – RC)2 is minimized* *

Compare calculated and measured 

tumor radius at each evaluation point
Modify E at each 

element

Yes

CT Images before 

RT (CT0)

Calculation

CT Images during 

RT (CT2)

CT Images during 

RT (CT3)

CT Images at 

the end of RT

END

Compare calculated and 
measured tumor 

geometry for evaluation

 

Fig. 3. Flow chart illustrating simulation steps to calculate and predict changes in 3D tumor 
shape during radiotherapy. 
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After that, similar process was performed to determine the distribution of the parameter E 
(reduction resistance) to represent intratumoral heterogeneity of radiosensitivity. The E 
parameter was so far considered to be uniform throughout the tumor. In following 
calculation, the value of E parameter was set for each element, which constitutes the whole 
3D tumor model for FEA calculation, as the function of azimuthal angle and polar angle φ. 
Depending on the distance from the gravity center of the tumor to surface, the value of E at 
(θ, φ) was determined by following equation.  

 1 ( , )
( , ) ( , )

( , )
n nM

C

R
E E

R

    
 

          (11) 

where, superscript represents the number of iteration, R(θ, φ)M is measured tumor radius at 
(θ, φ), and R(θ, φ)C is calculated tumor radius at the corresponding point.  

4. Clinical cases 

4.1 Patient characteristics 

The subjects of this study were three clinical cases (case A, B, and C) of metastatic cervical 

lymph nodes in three patients with nasopharyngeal cancer treated at the Hokkaido 

University Hospital, Sapporo, Japan between February 2007 and August 2007. Of the 

patients, case A and B were undifferentiated carcinoma and case C was squamous cell 

carcinoma. Initial volumes of lymph nodes were 3.5, 55.1, and 10.4 cm3, respectively. Case A 

and C were treated with IMRT; patient B received conventional radiotherapy. The dose 

distribution before radiotherapy intended each node in this study to be homogeneously 

irradiated with a dose of 66 Gy (case A) to 70 Gy (case B, C) in 2.0 Gy fractions delivered five 

times a week. 

Pre-treatment CT images (CT0) were taken for the treatment planning. The slice thickness of 

the pre-treatment CT images was 2 mm. After the start of treatment, follow-up CT images 

were taken at weekly intervals (CT1, CT2, CT3, etc). The slice thickness of the follow-up CT 

images was 5 mm. All patients were immobilized by thermoplastic masks during the CT 

scanning and treatment. Additionally, in the head and neck IMRT treatments in our 

hospital, A mouthpiece with three fiducial markers (2 mm diameter gold pellets) was used 

for the fluoroscopic verification of the patient set-up by means of real-time tumor-tracking 

radiotherapy (RTRT) system. This study was conducted with written informed consent 

obtained from all patients and was approved by the institutional ethical committee at 

Hokkaido University Hospital. 

4.2 Finite element modeling of tumors 

Three-dimensional finite element (FE) models of tumors were constructed based on the CT 
images taken before and during treatment (Fig. 4). One radiation oncologist determined and 
contoured the boundary of metastatic cervical lymph nodes on the CT images by means of a 
treatment planning system (Xio). A group of sequential cross-sectional profiles of the tumor 
was then loaded into biomedical imaging software and interpolated to 1 mm intervals. After 
file format conversion with in-house software, the data was imported into the finite element 
analysis software (ANSYS 11.0), and the 3D FE models of the tumors were constructed. 
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Fig. 4. Process of finite element modelling of tumor. (a) tumor region (red edging) on CT 
images (b) tumor profiles in each sectional image (c) 3D surface model (d) 3D finite element 
model 

5. Results 

This study first aimed to evaluate changes in 3D tumor shapes during treatment visually 
and quantitatively. We constructed surface model of tumors and then analysed the 3D 
shapes by geometric factors for quantitative evaluation. Two-dimensional surface geometry 
map was also proposed for visual evaluation of 3D morphological features of tumors. Other 
main aims of this study was to propose simulation method to predict changes in 3D tumor 
shape during radiotherapy. 

5.1 Analysis of three-dimensional tumor geometry 

5.1.1 Geometric factors 

This study investigated geometric factors to accurately evaluate therapeutic response in 
radiotherapy. Tumor volume, surface area, radius, and spherical shape factor (SSF) were 
used to quantitatively evaluate tumor geometry. Fig. 5-7 show changes in geometric 
factors of tumors through treatment duration for quantitative analysis of 3D tumor 
morphology. Changes in tumor volume and surface area are shown in Fig. 5 and 6. Tumor 
volume at the end of the treatment period was 8.7% of its initial volume in case A, 15% in 
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case B, and 23% in case C. Changes in tumor surface area showed similar tendency with 
changes in tumor volume. Tumor surface areas at the end of the treatment were 20%, 28%, 
and 37% for case A, B, and C, respectively. Changes in SSF are shown in Fig. 7. The values 
of SSF were about 0.8 through the treatment duration and did not vary widely in all three 
cases.  

Fig. 8 shows changes in average, maximum, and minimum tumor radius through the 

treatment period. At the start of treatment, each average radius was 9.8 mm, 24.6 mm, and 

14.4 mm in tumor A, B, and C. The tumor radius ranged from 7.3 mm to 13.3 mm (75 % to 

137 % of average radius) in tumor A, 17.4 mm to 34.4 mm (71 % to 140 %) in tumor B, 9.2 

mm to 20.3 mm (64 % to 142 %) in tumor C, respectively. At the end of the treatment, 

average radius decreased to 4.5 mm, 13.5 mm, and 8.9 mm, respectively. The ranges of 

radius were 3.3 mm to 5.8 mm (73 % to 129 % of the average radius at the end of the 

treatment) in tumor A, 9.4 mm to 18.2 mm (70 % to 135 %) in tumor B, 6.3 mm to 12.5 mm 

(71 % to 140 %) in tumor C, respectively. In Fig. 8, all values are represented as percentages 

of each initial average radius. 
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Fig. 5. Changes in tumor volume during radiotherapy. Tumor volumes at each evaluation 
point are represented as the percentage of initial volume. 
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Fig. 6. Changes in tumor surface are during radiotherapy. Tumor surface area at each 
evaluation point are represented as the percentage of initial surface area. 
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Fig. 7. Changes in spherical shape factors in radiotherapy. 

 

 

Fig. 8. Changes of average tumor radius during the treatment in tumor A, B, and C. Vertical 
lines represent ranges from minimum to maximum. 

5.1.2 Surface geometry map 

This study also proposed representation and evaluation method for changes in 3D tumor 
geometry using 2D surface geometry map. Distances from the geometrical center to 
surface were represented in color scale for visual understanding of 3D tumor shape. Fig. 9 
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shows the changes in tumor geometry through treatment duration using surface geometry 
map. The red end of the color scale is convex region and blue is concave region. Therefore 
surface geometry map can provide information about 3D geometrical feature of the 
tumor. The patterns of color distribution are found to be similar in each case. This result 
means that tumor shrunk uniformly keeping their original morphological features 
through the treatment duration.  

5.2 Simulation of changes in tumor geometry 

A computational simulation method to predict changes in 3D tumor geometry during 

radiotherapy was proposed. Simulation parameters were determined based on the changes 

in tumor geometry in the early stage of the treatment (first 19 days in case A and B, 22 days 

in case C). Using these parameters, tumor geometries in the latter half of the treatment 

period were calculated sequentially.  

Simulation results are shown in Fig. 10-12. Simulation could represent tendencies of tumor 

geometrical changes in the first 19 or 22 days in each case. Calculation to predict tumor 

geometries in the rest of the treatment was performed subsequently. The predicted tumor 

geometries were compared with corresponding actual tumor geometries by surface 

geometry maps. The calculated tumor geometry at the end of the treatment was found to 

conform to actual tumor geometry. The discrepancy between calculated and actual tumor 

geometry could be quantitatively evaluated by tumor radius R(θ, φ). The discrepancies 

between calculated and actual tumor radius (calculated tumor radius - actual tumor radius) 

at the end of the treatment were 0.2 mm (maximum), -1.4 mm (minimum), and 0.5 mm 

(average absolute value) for tumor A, 3.4 mm, -6.3 mm, and 2.1 mm for tumor B, 0.4 mm, -

4.3 mm, and 1.3 mm for tumor C, respectively, while average of actual tumor radius was 5.4 

mm for tumor A, and 13.2 mm for tumor B, 8.4 mm tumor C, respectively. 

6. Discussion 

Precise assessment of therapeutic response in radiotherapy has been an important issue in 
the field of radiation oncology. To understand how tumor geometries change during the 
treatment would be useful for not only determination of prognosis but for treatment plans 
as well. However, there has been no research which visualized 3D tumor geometries and 
evaluated the therapeutic response based on the changes of tumor geometries. In this study, 
we proposed a method to represent 3D tumor geometry in 2D color map, and evaluated 
therapeutic response through the treatment period, as well as geometric factors representing 
therapeutic response quantitatively.  

Surface geometry map introduced in this study could indicate 3D morphological features of 

the tumors in color scale. These figures show that tumors shrank evenly maintaining their 

original shape. This would be valuable information for determining the optimal radiation 

field in the latter half of the treatment. The degree of tumor shrinkage, i.e. decrease in tumor 

radius (shown in Fig. 8), varied approximately plus or minus 20 % depending on tumor 

region. This variation was considered to represent intratumoral heterogeneity. These 

findings cannot be obtained from commonly-used geometric factor, i. e., tumor volume or 

maximum diameter measured on CT images.  
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Fig. 9. Changes in 3D tumor geometries represented in surface geometry maps. 
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Fig. 10. Comparison of tumor geometries calculated in this method with actual tumor 
geometries using 2D surface geometry map (case A). 
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Fig. 11. Comparison of tumor geometries calculated in this method with actual tumor 
geometries using 2D surface geometry map (case B). 
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Fig. 12. Comparison of tumor geometries calculated in this method with actual tumor 
geometries using 2D surface geometry map (case B). 
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A simulation method proposed here enabled to predict changes in 3D tumor geometry 

considering intratumoral heterogeneity of radiosensitivity therefore would be more 

valuable for treatment planning or diagnosis of prognosis. The simulation method could 

predict tumor shapes at the end of the treatment within 2.1 mm discrepancy in radius 

(absolute average) by considering tumor heterogeneity. As the limitation of present method, 

these calculations were performed on the assumption that tumors were irradiated evenly. 

Although dose distribution in IMRT is considered to be uniform to a certain extent, actual 

dose distribution should be taken into consideration for more precise calculation.  

Calculated tumor geometries in the latter half of the treatment strongly depended on 

changes in tumor geometries in the early stage of the treatment, because values of parameter 

E were determined only from early tumor geometries. Our present method cannot handle 

the cases that tumor geometry changes drastically during treatment. We should investigate 

factors affecting tumor radiosensitivity e.g. angiogenesis, hypoxia, or cell cycle, and 

appropriately determine the values of E parameter considering these factors. 

7. Conclusion 

In this work, tumor geometries were analysed visually and quantitatively from several 

perspectives. The effectiveness of surface geometry map proposed here was confirmed as the 

tool for precise assessment of therapeutic response based on the 3D tumor geometry. It was 

revealed that tumors shrunk uniformly keeping their initial morphological features during 

radiotherapy. This finding cannot be obtained from traditional evaluation by measuring 

diameters of the tumors on CT images. This study also proposed a novel simulation method to 

predict changes in 3D tumor geometries during radiotherapy considering intratumoral 

heterogeneity of radiosensitivity. The simulation results were found to conform to actual 

changes in tumor geometry. Although some difficulties still remain to be solved, tumor 

geometries could be predicted using our approach. It would lead to the idea of “Computer 

associated radiotherapy (CART)”, which is the highly-advanced integration of computational 

technology and radiotherapy to achieve more precise and safety treatment. 

8. Future directions 

The role of computer technology in recent advanced radiotherapy has rapidly increased. 

Calculation of 3D dose distribution in patient is indispensable for precise treatment. 

Imaging techniques, especially image registration technique, are expected as tools for 

adaptive radiotherapy, which modifies original treatment plan to fit the actual patient 

condition. Through this research, great contribution of our computational analysis and 

simulation method for changes in 3D tumor geometry has been confirmed. These methods 

are expected to play a great important role in putting adaptive radiotherapy into practice. It 

would be a first step for achievement of computer associated radiotherapy (CART), and 

attainment of more effective and safety treatment.  
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