
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



1. Introduction

Electrical Bioimpedance Analysis (BIA) is an important tool in the characterization of organic
and biological material. For instance, its use may be mainly observed in the characterization
of biological tissues in medical diagnosis (Brown, 2003), in the evaluation of organic and
biological material suspensions in biophysics (Cole, 1968; Grimnes & Martinsen, 2008),
in the determination of fat-water content in the body (Kyle et al., 2004) and in in vivo
identification of cancerous tissues (Aberg et al., 2004), to name a few important works. It is
also natural to have different computational approaches to bioimpedance systems since more
complex computational techniques are required to reconstruct images in electrical impedance
tomography (Holder, 2004), and this would open a myriad of other computational and
mathematical questions based on inverse reconstruction problems.

In many practical cases, the obtained bioimpedance spectrum requires that the produced
signal be computationally processed to guarantee the quality of the information contained
in it, or to extract the information in a more convenient way. Such algorithms would allow the
removal of redundant data or even the suppression of invalid data caused by artifacts in the
data acquisition process. Many of the discussed computational methods are also applied in
other areas that use electrical impedance spectroscopy, as in chemistry, materials sciences and
biomedical engineering (Barsoukov & Macdonald, 2005).

BIA systems allow the measurement of an unknown impedance across a predetermined
frequency interval. In a typical BIA system, the organic or biological material suspension or
tissue sample to be characterized is excited by a constant amplitude sine voltage or current and
the impedance is calculated at each frequency after the other parameter, current or voltage,
is measured. This technique is called sine-correlation response analysis and can provide a
high degree of accuracy in the determination of impedances. By using the sine-correlation
technique, the spectrum is determined either by obtaining the impedance real and imaginary
parts, or by directly obtaining its modulus and phase. For this purpose, analog precision
amplifiers and phase detectors provide signals proportional to modulus and phase at each
frequency, and the interrogated frequency range is usually between 100 Hz up to 10 MHz. In
such BIA systems the current signal used in the sample excitation is band-limited, because
the output impedance of the current source and the open-loop gain of its amplifiers are
low, especially at high frequencies (Bertemes-Filho, 2002). Some of these limitations may be
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avoided by using digital signal processing techniques that may take the place of the electronic
circuitry that have frequency constraints.

In the BIA electronics, when considering the phase detection part of analog circuits used,
a high-precision analog multiplier provides a constant signal proportional to the phase of
its input. However, the frequency response of the circuit is usually limited, for example, to
1 MHz and such multipliers require the excitation source signal as a reference. A software
solution would provide an alternative to the use of such phase detectors, where in some cases
an algorithm may be capable of calculating the phase spectrum from the acquired modulus
values. With this system configuration, phase/modulus retrieval algorithms may be used to
obtain the phase or modulus of an impedance, considering that one of these sets of values has
been electronically obtained.

In electrical bioimpedance spectroscopy applied to medical diagnosis, research groups cite
the use of the Kramers-Kronig causality relations Kronig (1929) to obtain the imaginary part
from the real part (or equivalently phase/modulus from modulus/phase parts) of a causal
spectrum (Brown, 2003; Nordbotten et al., 2011; Riu & Lapaz, 1999; Waterworth, 2000). A
similar procedure occurs when obtaining the modulus from the phase, or vice-versa, using the
Hilbert transform in a causal signal (Hayes et al., 1980). With constraints on the characteristics
of the acquired phase or modulus spectrum, the use of these algorithms may allow the
calculation of the missing part of an electrical bioimpedance spectrum. In addition, such
algorithms may be used to validate the obtained experimental impedance spectrum (Riu
& Lapaz, 1999). However, there may be restrictions to the signals that can be processed
with these techniques, specifically with the Fourier-transform based phase/modulus-retrieval
algorithms (Paterno et al., 2009), even though it may provide a computationally efficient
solution to the problem.

Still related to the multi-frequency BIA systems, after the raw non-processed information
is acquired, the choice of an appropriate numerical model function to fit the experimental
data and generate a summary of the information in the spectrum condensed in a few
parameters is also another niche where computational techniques may be used. The choice
of an efficient fitting method to be used with experimental data and with a non-linear
function, as the Cole-Cole function, is a problem that has been previously discussed in
the literature (Halter et al., 2008; Kun et al., 2003; 1999). It is natural to think that once
such algorithms work for the fitting with a non-linear Cole-Cole function, they will also
work with other different non-linear functions in bioimpedance experimental data. With
this in focus, an algorithm is demonstrated that shows novelties in terms of computational
performance while fitting experimental data using the Cole-Cole function as part of the fitness
function and particle-swarm optimization techniques to optimally adjust the model function
parameters (Negri et al., 2010). Other computational intelligence algorithms are also used for
comparison purposes and a methodology to evaluate the results of the fitting algorithms is
proposed that uses a neural network.

The experimental data in this work were obtained with a custom-made multi-frequency
bioimpedance spectrometer (Bertemes-Filho et al., 2009; Stiz et al., 2009). Samples of biological
materials were used like bovine flesh tissue and also raw milk, that may constitute a
suspension of cells, since the samples of raw milk may have cells, for example, due to mastitis
infection in sick animals. Other characteristics of milk, which are currently important in the
dairy industry, could be evaluated, as, for instance, a change in the water content or even the
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Efficient Computational Techniques in Bioimpedance Spectroscopy 3

presence of an illegal adulterant, like hydrogen peroxide (Belloque et al., 2008). The problem
was then to characterize the raw milk with such adulterants using the bioimpedance spectrum
either fitted to a Cole-Cole function or not (Bertemes-Filho, Valicheski, Pereira & Paterno,
2010). The neural network algorithm may be in this particular case a useful technique to
classify the milk with hydrogen peroxide (Bertemes-Filho, Negri & Paterno, 2010).

As a summary, the authors provided a compilation of problems into which computational
intelligence and digital signal processing techniques may be used, as well as the illustration
of new methodologies to evaluate the processed data and consequently the proposed
computational techniques in bioimpedance spectroscopy.

2. Materials and methods

2.1 The BIA system to interrogate bioimpedances

The used BIA system is based on a bioimpedance spectrometer consisting of a current source
that injects a variable frequency signal into a load by means of two electrodes. It then
measures the resulting potential in the biological material sample with two other electrodes
and calculates the transfer impedance of the sample. The complete block diagram of the
spectrometer system is shown in fig. 1. A waveform generator (FGEN) board supplies a
sinusoidal signal with amplitude of 1 Vpp (peak-to-peak) in the frequency range of 100 Hz
to 1 MHz. The input voltage (Vinput) is converted to a current (+I and −I) by a modified
bipolar Howland current source (also known as voltage controlled current source) (Stiz et al.,
2009), which injects an output current of 1 mApp by two electrodes to the biological material
under study. The resulting voltage is measured with a differential circuit between the other
two electrodes by using a wide bandwidth instrumentation amplifier (Inst. Amp. 02). The
amplitude of the injecting current is measured by another instrumentation amplifier (Inst.
Amp. 01) while using a precision shunt resistor (Rshunt) of 100 Ω. A custom made tetrapolar
impedance probe was used to measure the bioimpedance and is composed of 4 triaxial
cables. The outer and inner shields of the cables are connected together to the ground of
the instrumentation. The tip of the probe has a diameter of 8 mm (D), and the electrode
material is a wire of 9 carat gold with a diameter of 1 mm (d). The wires are disposed in
a circular formation about the longitudinal axis. Finally, a data acquisition (DAQ) board
measures both voltage load and output current by sampling the signals at a maximum
sampling frequency of 1.25 MSamples/s for each of the possible 33 frequencies in the range.
Data are stored in the computer for the processing of the bioimpedance spectra. Although
the modulus and phase of the load are electronically obtained, one of the parameters can be
used to experimentally validate the phase/modulus retrieval technique while comparing the
calculated and measured values.

For completeness purposes, if one decides to use the bioimpedance spectrum points at
frequencies which were not used in the excitation or were not acquired, the value at this
frequency can be determined by means of interpolation, since the evaluated spectra are
usually well-behaved.

The nature of the experimental bioimpedance spectra is important for the use of the
algorithms described in this work. It is assumed here that the experimental sample
bioimpedance spectrum may have its points represented by a Cole-Cole function in the
interrogated frequency range. This is a plausible supposition, since it is a function that
represents well many types of bioimpedance spectra associated with cell suspensions and
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Fig. 1. BIA system complete block diagram for the interrogation of electrical bioimpedances.

many types of organic tissues and materials (Cole, 1940; 1968; Grimnes & Martinsen, 2008).
When the Cole-Cole function shown in the following equations is not an appropriate model
function to fit the experimental data, the data are not processed with these algorithms and are
used in phase/modulus retrieval or in the neural network without further processing.

2.2 Cole-Cole fractional order impedance function

Tissues or non-uniform cell suspensions have bioimpedance spectra that are not well
represented by a Debye-type single-pole (single-relaxation) function. In any case, the
bioimpedance may be represented as a complex number in polar or cartesian, as in eq. 1:

Z(s) = |Z(s)|ejθ = ZR(s) + jZI(s) (1)

where s = jω, ω represents the angular frequency and j =
√
−1. The cartesian form takes

its graphical representation in the complex impedance plane where the ordinate axis is the
negative of the impedance imaginary part (-reactance) and the abscissa axis is the real part
of the impedance. Usually different configurations of a semi-circular arc in the complex
impedance plane may represent the experimental bioimpedances spectra or they may be
depicted by plotting the modulus and phase versus frequency.

In addition, the bioimpedance function used in this work is going to be represented within a
limited frequency range in terms of a distribution function of relaxation times, τ, which would
correspond to the spectrum of cell sizes, particles or molecules in a suspension or tissue. This
distribution function approach was proposed by Fuoss and Kirkwood (Fuoss & Kirkwood,
1941) where they extended the Debye theory from which a relation can be obtained between
the distribution function, G(τ), and a transfer function, Z(s), that corresponds in this case to
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a bioimpedance. This relation is given by:

Z(s) =
∫ ∞

0

G(τ)

1 + sτ
dτ (2)

By using eq.2, the relation between Z(s) and G(τ) is stressed:

Z f rac(s) =
R0 − R∞

1 + (sτ0)α
= (R0 − R∞)

∫ ∞

0

G(τ)

1 + sτ
dτ (3)

In eq. 3, the frequency dependent part of the impedance in the Cole-Cole type model function,
Z f rac(s), is represented, where R0 is the impedance resistance at very low frequencies, R∞

is the resistance at very high frequencies, and the function containing the fractional order
term, (sτ0)

α can be represented by an integral of the distribution function G(τ) (Cole & Cole,
1941), and α is a constant in the interval [0, 1] and τ0 is the generalized relaxation time. G(τ)
is a distribution function for the fractional order Cole-Cole model function and is explicitly
represented by Cole & Cole (1941):

G(τ) =
1

2π

⎡

⎣

sin [(1 − α)π]

cosh
[

α log( τ
τ0
)
]

− cos [(1 − α)π]

⎤

⎦ (4)

The complete model developed by Cole and Cole consists of an equation, an equivalent circuit
and a complex impedance circular arc locus, and in terms of impedances, after integrating
eq. 3, one obtains the Cole-Cole function to represent the evaluated impedance spectrum:

ZCole(ω) = R∞ +
R0 − R∞

1 + (jωτ0)α
(5)

In eq. 5, the variable ZCole(ω) is a complex impedance and is a function of the angular
frequency ω. The Cole-Cole function was obtained by the Cole and Cole brothers when
they also introduced the distribution function of eq. (4). It is worth noticing that the function
containing the fractional order term, (sτ0)

1−α instead of the (sτ0)
α, was originally used in a

model for dielectrics (Cole & Cole, 1941).

For the use of the phase/modulus retrieval algorithm in ZCole(s) the independent term
corresponding to the resistance, R∞, causes the frequency dependent function to satisfy
neither the phase- nor the modulus-retrieval algorithm conditions (Hayes et al., 1980; Paterno
et al., 2009). In other words, the experimental points to be used with the phase/modulus
retrieval algorithm must be previously tested with known bioimpedance spectrum data to
verify if the process is applicable. Consequently, the algorithm has limitations of use if the
resistance at very high frequencies is not zero, or if the condition of minimum phase in the
spectrum is not satisfied. In addition to that, for the reconstruction of phase and modulus
of ZCole(s), the experimental data must correspond to a Cole-Cole spectrum that may be
fitted to a specific set of values of α (Paterno et al., 2009), otherwise the algorithm may
not converge to the correct values. Fortunately, these values of α with which the algorithm
properly works correspond to a broad class of tissues, cell suspensions and organic materials
to be evaluated in practical cases. In the limit, when α ≈ 0, Z f rac(s) becomes a pure resistance
having minimum-phase. For values of α in the interval (0, 1), the modulus retrieval algorithm
may be capable of producing a limited error, as demonstrated elsewhere (Paterno et al.,
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2009). For the use of instrumentation to characterize the spectrum of organic material, this
conditions are usually met, as in the illustration case of bioimpedances obtained from mango,
banana, potato and guava, shown in the results in section 3. These are illustrative examples
of organic material to have its impedance phase measured and used as input to the algorithm
that determines the bioimpedance modulus. In this case, both parameters were measured to
validate the results (Paterno & Hoffmann, 2008).

2.3 Phase/modulus retrieval algorithm description

The algorithm is based on the flowchart in fig. 2. It starts by being fed with the modulus
sequence vector (in the phase retrieval algorithm) provided by electronic means. In the case
of using the modulus retrieval procedure, phase and modulus must be interchanged in the
algorithm. A vector containing the N modulus samples equally spaced in frequency is saved
in |ZOR(k)| and a vector that contains the estimated phase samples is initialized with random
values. The initial impedance Fourier transform spectrum is a vector represented by the N
values, ZOR(k) = |ZOR(k)| ejθest . In the following step, the real part of an M-point inverse
fast-Fourier transform (IFFT) algorithm is used to produce a sequence in the time-domain,
zest[n]. An M-point IFFT is used, where the constraint M ≥ 2N guarantees the algorithm
convergence. Only the real part of the M-point IFFT is used because the input signal is real in
the time-domain Quartieri & Oppenheim (1981), and has an even Fourier transform, allowing
half of the samples (N samples) to represent the bioimpedance spectrum.

z (n)est

M-point
IFFT

Z (k)=|Z (k)|eOR OR

j (k)�est

Z (k)=|Z (k)|eest+1 est

j (k)�est+1

Z (k)=|Z (k)|eest+1 OR

j�est+1(k)

z

0

est(n)=0

if N n M-1

and n

� �

�

M-point
FFT

|Z (k)| |Z (k)|est OR�

Causal z (n)est

Fig. 2. Flowchart representing the processing steps in the modulus-retrieval algorithm for the
BIA system.
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Causality is imposed in the fourth block while a finite length constraint on the time-domain
sequence sets zest(n) to zero for n > N − 1. The M-point FFT of the data set containing z(n)
produces the estimates of the bioimpedance spectrum. This flowchart indicates the process
that is repeated until the root-mean squared value of the difference between two consecutive
estimated vectors is less than a stopping parameter, ǫ. It was set equal to ǫ = 10−6, which
is a much lower value than the necessary modulus or phase resolution in BIA systems. The
length of the input vector sequences is a power of 2, since the iterative solution uses uniformly
spaced samples Quartieri & Oppenheim (1981) and the Fast-Fourier Transform (FFT) radix-2
algorithm (Proakis & Manolakis, 2006).

2.4 Computational intelligence algorithms in electrical bioimpedance spectroscopy

In this section computational intelligence algorithms will be briefly described such as to be
used in an application to fit experimental data obtained with BIA systems using particle
swarm optimization techniques; additionally, artificial neural networks (ANN) are described
to provide a methodology to evaluate the fitting algorithms. The performance testing is
implemented by associating the training phase of the ANN to previously known information
contained in the bioimpedance spectrum. For example, in the evaluated sample. The presence
of different adulterants in raw milk, specifically water and hydrogen peroxide, and the
characterization of the type of bovine flesh tissue are samples that were interrogated with
the BIA system. The ANN is used to evaluate how much information the fitting process may
extract from the experimental data such as to condense it into the parameters of the used
function model, namely, the Cole-Cole function that contains four parameters (R0, R∞, τ and
α) as in eq.5 with the information of the electrical bioimpedance spectrum.

2.4.1 The Particle-Swarm Optimization (PSO) experiment

The particle swarm optimization algorithm was used to extract the Cole-Cole function
parameters, R0, R∞, τ0 and α from experimental data. For this experiment, the previously
described bioimpedance spectrometer injected a sinusoidal current via the two electrodes
of a tetrapolar probe into bovine liver, heart, topside, and back muscle samples. A cow
was killed in a slaughterhouse, where the samples were extracted and immediately headed
to the laboratory where the bioimpedance measurements were performed. The measured
bioimpedance spectrum points contained 32 modulus and phase values at frequencies in
the range from 500 Hz up to 1 MHz. A set of 20 pairs of reactance and resistance points
corresponding to the lowest frequencies (from 500 Hz up to 60 kHz) was processed with a
PSO algorithm.

2.4.1.1 The PSO algorithm

PSO is inspired by bird flocking, where one may consider a group of birds that moves
through the space searching for food, and that uses the birds nearer to the goal (food) as
references (Xiaohui et al., 2004). PSO algorithms to fit a known function to experimental data
is a technique similar to the one using genetic algorithms (GA). PSO has however a faster
convergence for unconstrained problems with continuous variables such as the addressed
fitting problem of the Cole-Cole function and has a simple arithmetic complexity (Hassan
et al., 2005). Briefly, the PSO algorithm can be separated in the following steps:

1. Population initialization;

9Efficient Computational Techniques in Bioimpedance Spectroscopy
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2. Evaluation of the particles in the population by a heuristic function, where in this case the
particles are formed by a vector with the Cole-Cole function parameters;

3. Selection of the fittest particles (set of parameters) to lead the population towards the best
set and

4. Update of the position and velocity of each particle by repeating the steps from 2 to 4 until
a stopping condition is satisfied (Xiaohui et al., 2004).

Each parameter of the optimized function, in this case the fitting of the Cole-Cole function in
eq. 5 to an experimental bioimpedance spectrum, can be represented as one dimension in the
search space. The velocity update rule for the i-th particle is given by:

vid = w × vid + c1 × rand()× (pid − xid) + c2 × rand()× (pnd − xid) (6)

where vid is the velocity of the i-th particle in the dimension d; w is the inertia weight, in the
[0, 1) range; c1 and c2 are the learning rates, usually in the [1, 3] range; rand() is a random
number in the [0, 1] interval, pid is the best position of the i-th particle for the d-th dimension
and pnd is the best neighborhood position for the d-th dimension. The particle position is
updated by summing the present position to the velocity.

Each particle is made by a vector with the parameters [R0, R∞, τ0, α] of the Cole-Cole function,
that are randomly initialized with arbitrary values in an interval corresponding to the physical
limits of the system. A parameter restart step for the global search, inspired by the genetic
algorithm mutation operator, was added to the code to prevent the premature convergence of
the algorithm.

Like a genetic algorithm, the PSO enhances the solution based on a heuristic function, named
fitness function, that measures the difference between the experimental spectrum and the
fitted one. The fitness function is shown in eq. 7

f itness(p) = − 1
N

N

∑
i=1

abs(Zi − Ai)
2 (7)

It is defined by the modulus of the difference between the original complex bioimpedance
experimental points, Zi, and the fitted spectrum, Ai. As a consequence, resistance and
reactance are taken into account in the function, and therefore, in the fitting.

2.4.2 Artificial neural networks and the fitted functions of the bioimpedance spectrum

Artificial neural networks (ANN) were implemented such as to evaluate the behavior of the
fitting algorithms to experimental data. This was developed to determine, comparatively, how
much information the extracted parameters from the fitted Cole-Cole function may contain
that represents correctly the experimental bioimpedances.

2.4.2.1 ANN as used in BIA

One of the important features of a neural network resides in its capability to learn the
relationships in a given data mapping, such as the mapping from the bioimpedance spectra
to the type of the analyzed sample. This feature allows the network to be trained to perform
estimations and classify new samples according to the learned pattern.

10 Applied Biological Engineering – Principles and Practice
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An ANN is composed of interconnected artificial neurons, each neuron being a simple
computer unit (Haykin, 1999). Although a single neuron can perform only a simple operation,
the network computational power is significant (Cybenko, 1989; Gorban, 1998) and can tackle
any computable problem (Siegelmann & Sontag, 1991), under certain circumstances.

In a perceptron-like network such as the ones employed in this work, each neuron performs
the operation shown in eq. 8, where y is the output value, defined as the result of the activation
function φ evaluated with the summation of m input signals xi, each one multiplied by a
weight wi (also seen in fig. 4). All neural networks had neurons using the symmetric sigmoid
activation function (Haykin, 1999). It is mathematically represented with its input in eq. 8. In
eq. 9, the description of the sigmoid function is shown, and in fig. 3 a graphical illustration
of its output is depicted as a function of its input for different steepness parameters. For
this work, the steepness parameters were determined empirically. In the classification
experiments, the parameter is stp = 0.65 in the bovine flesh classification and stp = 0.5 in
the milk classification.

y = φ

(

m

∑
i

xiwi

)

(8)

φ(x) =
2

1 + e−2stp x
− 1 (9)

 !
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Fig. 3. Symmetric sigmoid function for distinct steepness stp values. In the experiments,
stp = 0.65 and stp = 0.5.

Fig. 4. Artificial neuron diagrammatic representation.

The ANN learns by adjusting its weights wi. These weight changes are performed by using a
training algorithm in the training stage (offline training), feeding the network with the input
values and comparing the outputs with the expected result values, which would provide an

11Efficient Computational Techniques in Bioimpedance Spectroscopy
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error measure. The calculated error is the information used to modify the weights of the
connections, in order to reduce the errors on the next run. This procedure can be executed
many times until the error converges to a minimum. The training procedure for the networks
employed in this work are based on the following steps (error backpropagation procedure):

1. Feed the input data (Cole-Cole parameters or raw bioimpedance spectrum points) to the
network;

2. Compute the output value of all neurons from the current layer and then propagate the
results to the next layer (forward propagation);

3. Compare the network outputs at the output layer with the expected ones to have an error
measure;

4. Propagate the measured errors to the previous layers, in a way that each neuron has a local
error measure (back propagation);

5. Adjust the connection weights of the network, based on the local errors;

Different training algorithms can be used to adjust the weights of an ANN. It is common
to supervised training algorithms to follow the same steps as the error backpropagation
procedure, differing only in the weight adjusting step (Haykin, 1999). As an example,
while the classical backpropagation has only a centralized learning rate, the iRPROP
algorithm (Anastasiadis & Ph, 2003) has a learning rate for each connections and uses only
the sign changes in the local error to guide the training. Other algorithms like NBN (Neuron
by Neuron) uses the local errors to estimate second-order partial derivatives, which in some
cases can lead to a faster training (Wilamowski, 2009).

In the bovine tissue classification experiment, two different fully connected cascade (FCC)
topologies were employed. Both topologies had two hidden layers (with one neuron each) and
an output layer with 4 neurons. The first one diagrammatically depicted in fig. 5(a) employed
only 3 neurons in the input layer, for the R0, τ and α fitted Cole-Cole parameters, while the
other one depicted in fig. 5(b) used 40 input neurons, corresponding to 20 impedance and
reactance pairs. Both topologies had the goal of mapping the input data into one of 4 classes.
To implement this, 4 output neurons were used, each one corresponding to a class. The NBN
training algorithm was used to adjust the synaptic weights for the network to predict the
correct beef classes.

The milk adulterant detection experiment employed a multilayer perceptron (MLP) topology
(as in fig. 5(c)), with 30 input neurons (15 impedance and reactance pairs), one hidden layer
with two neurons and an output layer with 3 neurons. Each output neuron corresponds to
one class (one of C classes coding). The ANN was trained with the NBN algorithm.

2.4.2.2 Experiments with the ANN testing

The evaluated experimental data were also added to artificial noise such as to determine
the robustness of the ANN classification when trained with the raw experimental points,
with and without artificial noise, and also with the extracted parameters using different
fitting techniques. Additionally, a genetic algorithm to similarly extract Cole-Cole function
parameters (Halter et al., 2008) and the least-squares minimization algorithm for the
fitting (Kun et al., 2003; 1999) were implemented to provide comparative results using
the same methodology. It is expected that the stochastic algorithms may produce a set
of parameters with small variances and with approximately the same mean values when
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(a) 3–2–4 FCC topology employed in the
bovine tissue classification experiment.
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(b) 40–2–4 FCC topology employed in the
bovine tissue classification experiment. The
input layer has 40 neurons condensed in the
box or 20 times 2 (’x20’).
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(c) 30–2–4 MLP topology employed in the milk
adulterant detection experiment. The input
layer has 30 neurons condensed in the box or
15 times 2 (’x15’).

Fig. 5. Topology of artificial neural networks used in the experiment of bioimpedance spectra
classification with bovine tissue and adulterated milk.

executed several times with the same set of experimental data. This would happen if
the Cole-Cole function were an appropriate representation of the acquired bioimpedance
spectrum data.

The resulting fitted parameters were used as input to the neural networks such as to classify
the data by means of its known type (liver, heart, topside, or back muscle). Another neural
network performed the same classification, but using the unprocessed spectrum points as
inputs. The input signal was incrementally added to white-gaussian noise (AWGN) such as
to produce different signal to noise ratios. A total of 24 electrical impedance measurements

13Efficient Computational Techniques in Bioimpedance Spectroscopy
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were divided into two sets. The first set is formed by 15 measured spectra and is used for the
neural network training, while the second set formed by the remaining 9 measurements were
used for the neural network validation test. Another 11 sets were created with AWGN having
signal-to-noise ratio (SNR) from 2 to 32 dB with steps of 2 dB, forming the base validation set
where each spectrum was used more than once to sum a total of 20 spectra in each set. Four
ANN were created, one for each fitting algorithm and another for the raw spectra. Each neural
network was trained with the spectra from the training set and tested with the validation sets,
using the corresponding results from the extracted Cole-Cole parameter output or the raw
spectra as input. The neural networks for the use with the testing of fitting algorithms have
a 3 − 2 − 4 fully connected cascade (FCC) topology to allow a better generalization in the
ANN (Wilamowski, 2009), as diagrammatically illustrated in fig. 5, with the 3 input neurons
corresponding to the [R0, τ0, α] parameters and the 4 output neurons corresponding to the
confidence level of each bovine tissue type.

The neural network that uses the set of bioimpedance spectrum points as input with a 40 −
2 − 4 FCC topology had the 40 inputs corresponding to the real and imaginary parts of the 20
input spectrum points associated with the lowest frequencies in the experimental spectrum
which would correspond to a maximum frequency of 60 kHz.

One ANN was trained with the parameters fitted by the PSO algorithm using the training set,
by exposing the ANN to the sample values associated with the input that corresponds to the
extracted Cole-Cole parameters. After that, the neural network performance was measured to
classify the sample type correctly. The rate of correct classifications was calculated by using
the extracted parameters and also the raw data from 11 spectrum and using the corresponding
trained ANN.

2.4.3 Raw milk evaluation through bioimpedance spectra

In the dairy industry, conductivity measurements are made to test for abnormal milk. This is
somehow similar to the process of obtaining a bioimpedance spectrum from a milk sample.
However, in conductivity tests the sample is usually interrogated at a single frequency
and the results give false positives and negatives (Belloque et al., 2008). Conductivity,
therefore bioimpedance (Piton et al., 1988), and acidity measurements are also used to measure
microbial contents of the milk, being indirect and rapid methods (Belloque et al., 2008;
Hamann & Zecconi, 1998). The drawbacks of these methods are associated with the lack of
sensitivity and specificity. In addition, the conductivity test is also included in screening tests
to detect mastitis. Since mastitic milk contains pathogens and spoilage microorganisms, and it
is also characterized by an increase in Na+ and Cl− as well as leucocytes (Kitchen, 1981), this
may be indicated by changes in bioimpedance spectrum (Bertemes-Filho, Negri & Paterno,
2010) as discussed here, and it would also characterize the analysis of raw milk as of a cell
suspension.

Other changes in the milk, which may not have its causes in a sick animal, could also be
indicated by changes in the bioimpedance spectrum, as when the milk has water or hydrogen
peroxide, for example, added to it for fraudulent purposes (Bertemes-Filho et al., 2011). The
modulus and phase of the bioimpedance along a frequency range containing more than one
frequency point is therefore an extension of the typical measurement of conductivity in the
process of milk quality evaluation and is justified by previous published results.
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2.4.3.1 Detection of water and hydrogen peroxide in raw milk

Milk may be adulterated by the addition of water, food coloring, conservants and substances
used for the milk thickening, as for example the hydrogen peroxide. The commonest method
of adulterating milk may be the dilution of water and a common method to detect it is by
measuring its freezing point and use this value to calculate the percentage of the diluted
water (Belloque et al., 2008). Another indication of water content would be provided by
changes of bioimpedance spectra from the milk. To illustrate it, the bioimpedance spectra
from raw milk with and without added water and hydrogen peroxide were determined and
compared with each other.

An ANN is subsequently used to classify the milk sample by using the points of the
bioimpedance spectrum. For this purpose, samples of raw milk from 27 Holstein cows in
lactation were obtained in a local farm. The sample sets were divided into two groups. The
first group (A) was used to train the neural network with 16 samples. From this set, 4 samples
were randomly taken and had distilled water added to them in a volumetric concentration of
10%; other 4 samples had hydrogen peroxide added to them in a volumetric concentration of
3%. In the second group (B), 11 samples were used for the ANN validation, this is, to test if
the trained algorithm correctly classifies the samples, that were also equivalently adulterated.
Before the measurements, the samples were kept in a refrigerator at a temperature of 4◦C for
4 hours.

The ANN used the multilayer perceptron topology of fig.5(c) with 30 neurons corresponding
to resistance and reactance input values at 15 different frequency points in the bioimpedance
spectrum. The output layer was formed by 3 neurons corresponding to a defined class (raw
milk, milk with water and milk with hydrogen peroxide). If the bioimpedance spectrum of a
sample containing H2O2 is fed to the ANN, this output neuron must have the largest value
output among the other two output neurons.

The ANN was trained using the Neuron by Neuron (NBN) algorithm by using 24 spectra, in
which 4 samples were adulterated with water and other 4 with H2O2. For the ANN validation,
30 milk bioimpedance spectra were measured in a different data set producing another data
set different from the one used in the training. The validation spectra were then separated
into three different classes associated with the evaluated types of samples and the percentage
of correct classifications were calculated.

2.4.3.2 Evaluation of mastitic milk

The bioimpedance spectra of raw milk were acquired in samples from 17 Holstein cows,
three of them with mastitis infection. Three milk samples of 100 ml from each animal
were collected and stored in a refrigerator at a temperature of 4◦C. Four hours later, the
bioimpedance spectrum from each sample was collected and the material was sent to an
accredited laboratory to characterize the presence of somatic cells and bacteria by using flow
cytometry1. Selected samples had the acquired bioimpedance spectrum data points processed
and the experimental points and Cole-Cole parameters analyzed and shown for illustration
purposes of the changes presented in the mastitic and raw milk spectra.

1 The laboratory managed to follow the International Dairy Federation Standards 148:2008 and 196:2004.
These standards specify, respectively, methods for the counting of somatic cells and for the quantitative
determination of bacteriological quality in raw milk.
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3. Results and discussion

3.1 Retrieving modulus from phase in experimental bioimpedance spectra

In the experiment to illustrate the effectiveness of modulus retrieval from the data acquired by
the bioimpedance spectrometer, four vegetables were excited by a signal from the tetrapolar
probe. Phase and modulus were acquired in the previously specified range at non-uniformly
distributed frequencies. The first procedure in the experimental data was the interpolation
to produce uniformly spaced points in the frequency range. The values of phase from the
bioimpedance spectrum fed the algorithm to retrieve modulus. It is seen that the impedance at
high frequencies is a small value tending to zero in one of the vegetables. However both data
allowed the recovery of modulus from phase with an average error as shown in table 1 and as
shown in fig. 6, where the behavior of the estimated modulus error is shown with the modulus
from phase and the actual acquired phase for mango, banana, potato and guava. A higher
error was observe in low frequencies since the lowest measured frequency was 500 Hz. In this
experiment, the constraints for the use of the algorithm are such that it allowed the modulus
recovery from the phase with a well-behaved error, and one can also infer that depending on
the evaluated sample, the response of the algorithm may provide smaller errors.

As a general rule, the resistance at infinite frequencies must tend to zero for the algorithm
to converge. In the case of an organic material suspension or a sample with a previously
known bioimpedance and whose spectrum are not supposed to change much during its
interrogation, the algorithm may be a convenient choice to substitute modulus measurements
in bioimpedance interrogations while reading only phase. The resulting magnitude value
associated with the modulus is normalized, since it is produced differently from the actual
impedance value to a scale factor, requiring calibration.

Vegetable Mean Error Deviation σ

Mango 2.34% 2.84%
Banana 1.54% 2.86%
Potato 5.2% 6.06%
Guava 2.94% 1.96%

Table 1. Mean errors in modulus retrieval and standard deviation for the evaluated interval
for mango, banana, potato and guava.

3.2 PSO fitting using the Cole-Cole function in bovine flesh bioimpedance

Due to the noise incorporation characteristics (convergence to the mean noise level) caused by
the presence of a constant value in the model function, the R∞ parameter is neither included
in the results, nor in the classification experiment. Since the signal-to-noise ratio (SNR) of
the experimental data was changed by adding white gaussian noise to the experimental data
points, this would be another reason not to include the R∞ parameter in the performance
tests. The R0 and α parameters did not show any significant fluctuation differences when they
resulted from any of the tested fitting algorithms, either the PSO or the Genetic Algorithm or
the Least-Squares ordinary fitting, implemented as proposed in the literature (Halter et al.,
2008; Kun et al., 2003; 1999). The results of the computational performance experiment
depicted in table 2 contains both the mean and sample standard deviation of the required
iterations for the convergence of the PSO algorithm and also for comparison purposes, the
iterations needed for the convergence of the Genetic Algorithm and for the execution of the
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Fig. 6. Modulus retrieval obtained with the phase/modulus retrieval algorithm previously
described. The input data was the interpolated 64 points of phase from the mango, banana,
potato and guava.

Least-Squares (LS) fitting. Since the LS method is not stochastic, the deviation statistic is not
applicable in this case. In fig. 7, the percentage of correct classification rate is depicted for the
trained artificial neural networks using as inputs the parameter sets resulting from each of the
fitting methods. The unprocessed bioimpedance spectrum points (raw) were used as inputs
to an ANN with 40 input neurons, and the classification rate is also depicted in fig.7 together
with the results from the testing of the PSO, LS and GA for an ANN with three input neurons.

Fitting Method n̄ σn

PSO 30 5.63
LS 134 Not applicable
GA 600 402.33

Table 2. Mean number of iterations, n̄, for convergence of each fitting method producing a
parameter set for the ANN input and its standard deviation for the stochastic fitting
methods, σn.

From fig. 7, one may infer that the GA and proposed PSO methods demonstrate a higher
accuracy and noise tolerance than the LS method, since under a higher SNR the used
parameters provide the information for the correct classification of the samples. The LS
method does not provide a better accuracy since for higher values of SNR, the experimental
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Fig. 7. Neural network classification rate when using as inputs the parameters from the
fitting methods (PSO, GA and LS) and also the unprocessed bioimpedance spectrum points
(Raw).

data still have distortions caused by artifacts or external effects in the system that may cause
its parameters to provide a wrong guess in the classification. The Cole-Cole parameters
with any fitting technique also produce improved results than when using a data set with
the raw spectrum points in the classification. The quality of the LS fitting performance is
influenced by its noise sensitivity. When tested with experimental points that have distortions
from the electronic system or errors caused during the acquisition process from the material
sample, the LS algorithm converged prematurely, producing parameter sets that deteriorated
the classification. As the inputs provided by the PSO and GA methods produced a better
classification rate and resulted in networks with reduced neurons and synaptic connections
than using the full spectrum points, it is possible to recommend their use for bioimpedance
classification systems even under worse SNR then usual.

In addition, the used model function was such that it was appropriate for the proposed
methodology and allowed the verification of a conformity between the experimental
bioimpedance spectrum and the Cole-Cole function to a certain degree, even with AWGN and
other unavoidable artifacts. In the case of the experimental points without artificial AWGN
added to the data, the results of the fitted spectra are depicted in fig. 8. In this case, it is also
observed that the PSO/GA methods produce a better approximation to the experimental data,
intrinsic distortion of the used BIA system notwithstanding.

It is equivalently shown in table 2, about the performance of the algorithms, that the PSO
method converges faster, requiring less iterations than the GA method. The PSO algorithm
also has a linear complexity per iteration with respect to the input data vector size. Due to
implementation characteristics and its deterministic nature, the LS algorithm has the fastest
performance, two orders of magnitude faster than what is obtained with the PSO and GA. It is
possible to infer that the LS method has a superior computational performance than the other
two fitting methods, and is followed respectively by the PSO and GA methods.
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Fig. 8. Experimental data points containing modulus and phase of bioimpedance spectra of
liver and heart samples from bovine flesh tissue. Experimental points are shown with the
curves associated with the fitted Cole-Cole functions using PSO, LS and GA.

3.3 Abnormal milk testing with bioimpedance

3.3.1 Spectra of adulterated milk

In fig. 9(a),(b) and (c), the bioimpedance spectra from the pure raw milk, and raw milk
adulterated with water and hydrogen peroxide are depicted. The data were processed with
the three fitting algorithms, and it is evidenced that the LS algorithm did not allow a proper
fitting to the experimental points since one may observe a larger error along a wide frequency
interval in the fitting. Since the PSO and GA have an equivalent qualitative performance,
but a better computational performance in the PSO, the Cole-Cole parameters may represent
more properly the information contained in the bioimpedance spectra. For higher frequencies,
the Cole-Cole function is not capable of representing the experimental points characteristics
in the phase spectrum, due to non-ideal characteristics and intrinsic artifacts and distortions
inserted by the BIA system and the probe.

Comparatively one can observe some improvement in the fitting while using the PSO/GA
algorithms in these data. However, distortions and artifacts produced by stray capacitance
may cause a deviation in the resistance at high frequencies while obtaining the Cole-Cole
parameters. Such changes may be observed in the complex impedance arc locus diagram
plotted as the imaginary part of the bioimpedance as a function of its real part. The capacitive
effect causes a hook like form in this diagram and the fitting process it may also produce
a set of Cole-Cole parameters with negative resistances at high frequencies, as illustrated in
fig. 9 (d).

In fig.10(a), the proportion of correct classification when using the raw data points to the
trained ANN that classify adulterated milk is depicted and the average value of correct
classifications is depicted as the total rate. It is observed that, if no other substance in the
milk is related to the bioimpedance changes, except for the adulterants, the ANN is capable of
properly characterizing the presence of water or hydrogen peroxide with a low error rate. The
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(d) Complex impedance arc locus plot
example of the bioimpedance spectrum
from raw milk

Fig. 9. Experimental bioimpedance spectrum and the results from the fitting with PSO, GA
and LS algorithms. Data were obtained from raw milk and from raw milk adulterated with
distilled water and with hydrogen peroxide. The complex impedance arc locus plot is
depicted in fig. 9(d) associated with the raw milk sample.

used bioimpedance data have artifacts that were not corrected, and this was partly responsible
for the non-null error in the classification rate.

In this evaluation of raw milk, it is possible to evidence the presence of artifacts that may
invalidate the bioimpedance spectra. In order to avoid discarding spectra that may be
corrupted mainly by impedance stray effects, usually the experimental data shown to have
a hook-like form in the impedance plot at high frequencies requires that the data points be
multiplied by a linear phase factor corresponding to a delay in the time domain. This would
fit the experimental data with such distortions by multiplying the impedance function, i.e.,
an exponential factor e−jωTd (De Lorenzo et al., 1997). It would be equivalent to a delay of
Td s in the impedance time domain function if Td is real and it would partly compensate the
high frequency artifacts. The only problem in this compensation resides in the choice of the
optimal Td value, which is usually done on a trial-and-error basis.
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Fig. 10. ANN correct classification rate for adulterated milk when using raw spectrum points
as inputs to the ANN.

3.3.2 Spectra of mastitic milk

In the evaluation of the mastitic milk with different concentrations of cells, the graphs showing
two examples of complex impedance arc locus are depicted in fig.11 (a) and (b). The somatic
cell concentration (SCC) of the 17 milk samples as obtained from the accredited laboratory
is shown in fig.11(c). The concentrations of 3000 cells per milliliter and 1.274 millions of
cells per milliliter, as determined by the characterization in the laboratory, illustrate that the
impedance spectra may confirm the differences between a mastitic milk sample with low cell
concentration and mastitic milk. The impedance spectrum differences may be observed in
the Cole-Cole parameters obtained in the fitting with the PSO technique while using also the
compensation to reduce stray impedance effects, as depicted in fig. 11(a) and (b). The values of
the fitting are depicted in table 3 for illustration purposes only and not to be used as references
of mastitic milk bioimpedances. The compensation of stray impedance effects, however, may
be used in any bioimpedance spectrum containing distortions due to stray impedances at high
frequencies. The technique that shows how the optimal time delay for this compensation is
obtained will be published elsewhere. The used Td s are also shown in table 3 together with the
mean squared error after the convergence of the algorithm and visually shows that the mean
squared error between experimental points and fitted curves are reduced after correction.
The resistances obtained by the model function fitting are also naturally reduced to zero,
as observed in table 3. The parameters that change after time delay compensation may be

Parameters Mastitic milk Compensated mastitic milk Raw milk Compensated raw milk
R∞ [Ω] −14.6 0 −11.7 0
R0 [Ω] 94.9 94.8 100.3 100.7

α 1 1 0.99 0.96
τ [μs] 0.552 0.515 0.711 0.672
Td [μs] 0 0.100726 0 0.110161

Mean Squared Error 14.6 9.2 31.6 26.9

Table 3. Cole-Cole parameters and final fitting mean squared error from the fitting with PSO
algorithm for the spectra of mastitic milk samples and the bioimpedance from the raw milk
sample, also containing the parameters from the fitted spectra compensated with specific
time delays Td.
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(a) Complex impedance diagram of
mastitic milk with 3000 cells per milliliter
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(b) Complex impedance diagram of
mastitic milk with 1, 274 millions of cells
per milliliter

(c) Somatic cells concentration (SCC) for
the 17 Holstein cows milk samples, given
in thousands of cells per milliliter for
each cow sample.

Fig. 11. The complex impedance arc locus diagram for two samples of milk with tolerable
concentration of mastitis cells in fig. 11(a), a concentration above the limit characterizing
mastitic milk in fig. 11(b). Experimental points and fitted curves with PSO and with the
modified model function using the Td parameter. In fig. 11(c), SCC for the evaluated samples.

markedly observed in the relaxation constant in the Cole-Cole function. The reciprocal of the
relaxation constant would be related to the characteristic frequency of the sample that changes
from 1.811 MHz to 1.941 MHz in the mastitic milk and in the compensated parameters. This
indicates also that the experimental bioimpedance spectrum does not contain this frequency,
requiring a wider frequency interval to evaluate more accurately the characteristics of the
sample. In the low cell concentration mastitic milk, the parameters reflect a change in the
frequency from 1.406 MHz to 1.488 MHz, that shows the same limitation in the experimental
points, requiring a more detailed study where the spectrum will be analyzed with an analyzer
in a wider frequency spectrum range.

In the results shown in table 4, the same compensation with a proper chosen time delay
is applied to the Cole-Cole fitting and is compared to the parameters fitted with the PSO
algorithm without compensation. One may observe that the low frequency resistance and
the dispersion parameter α is not affected by the compensation, but the compensated high
frequency resistances are no longer negative. The improvement in the mean squared error of
the final fitting procedure is significantly reduced, more than in the case of the compensation
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(a) Complex impedance diagram of raw
milk
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(b) Complex impedance diagram of milk
with water

 

!

" 

"!

# 

#!

$ 

$!

%"  " # $ & ! ' ( 

%)
*+
,-
+.
,*
//0
1
2

)*343-+.,*/012

567
567/84-9/:*;+<
=>?*@4A*.-+;

(c) Complex impedance diagram of milk
with hydrogen peroxide

Fig. 12. The complex impedance arc locus diagram for samples of milk adulterated with
water and hydrogen peroxide. The plots show the experimental points, the curve fitting with
the Cole-Cole model function, and also the curve fitting containing the phase factor with the
properly chosen time delay parameter.

Parameters Raw milk
Compensated

Raw Milk
Milk +
H2O

Compensated
Milk + H2O

Milk +
H2O2

Compensated
Milk + H2O2

R∞ [Ω] −8.8 0 −9.7 0 −5.9 0
R0 [Ω] 60.6 59.9 83.5 82.7 62 62.4

α 1 1 1 1 1 0.95
τ [μs] 2.446 2.014 3.019 2.575 1.882 1.733
Td [μs] 0 0.595 0 0.631 0 0.301
Mean

Squared
Error

24 4.7 39.3 13.4 10.8 6.7

Table 4. Cole-Cole parameters and final fitting mean squared error from the fitting with PSO
algorithm for the spectra of adulterated milk samples and the bioimpedance from a raw milk
sample, also containing the parameters from the fitted spectra compensated with specific
time delays Td.

of the mastitic milk data. The complex impedance arc locus of the evaluated cases can be seen
in fig. 12. It is evident from fig. 12 that the compensating time delay improves the fitting,
indicating that the stray impedance effect is responsible for an important contribution to the
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hook-like behavior of the complex impedance arc locus. Observing the dispersion parameter
α, it is usually close to unity in every sample, compensated or not. This is an indication
that the milk may be modeled by a single pole function with fitting errors of the same order
of magnitude as shown in table 4 and 3. Differently from the mastitic milk analysis, the
reciprocal of the relaxation constant is in the experimental frequency interval obtained with
the BIA system. The characteristic frequency of the samples in the raw milk changes from
408 kHz to 496 kHz after compensation. Equivalently for adulterated milk with water and
hydrogen peroxide, the changes occur from 331 kHz to 388 kHz and from 531 kHz to 577 kHz,
respectively. These variations indicate an increase in the compensated characteristic frequency
when the stray effects are compensated this way.

4. Conclusion

The authors report the use of computational intelligence and also well known digital signal
processing algorithms in bioimpedance spectroscopy. The BIA analysis of data obtained
from a custom made spectrometer were processed with a modulus retrieval algorithm from
phase of bioimpedance spectra of vegetables showing the feasibility of using this specific
and well known algorithm in a practical case. This would also allow the BIA system
hardware to be simplified. In this case, since only the phase of the bioimpedance is going
to be acquired to obtain the complete modulus of the bioimpedance spectrum, the involved
electronic circuitry, as expected, may be reduced and the instrumentation amplifiers to
measure modulus would be unnecessary. This would pave the way to embed algorithms in a
much more simplified electronics for bioimpedance systems designed for specific applications
as in the characterization of fruits, for example.

The bioimpedance data may also be processed with computational intelligence techniques.
The authors improved already known techniques to fit experimental bioimpedance spectrum
data to a specific model function. This is common practice in bioimpedance spectroscopy
and is already implemented in commercial systems, however they do not use the techniques
proposed here, only the least-squares algorithms, but no other more elaborate algorithms,
like evolutionary techniques and particle-swarm optimization procedures. It is shown that
the PSO technique has advantages over the already proposed procedures. The comparison of
such techniques was implemented and artificial neural networks were used for the specific
purpose of comparing them. The use of an Artificial Neural Network that receives as
input the parameters produced by the fitting illustrates that different techniques, specifically
the least-square fitting, simply would not be capable of allowing the identification of the
correct tissue or the sample experimentally evaluated. The genetic algorithm and the
particle-swarm optimization were capable of allowing the correct classification of the samples
with experimental data added to noise in a much better proportion than the least-squares
algorithm. Considering that the number of iterations in the PSO is much less than the genetic
algorithm, and since they provide the same qualitative results in terms of classification, the
PSO shows a superiority with respect to performance. The arithmetic complexity of the PSO
is also an important characteristic that could facilitate embedded implementations.

Still in the dairy food applications, the idea of using bioimpedance to classify milk with
the previously described techniques was also illustrated. Milk with different concentrations
of mastitis cells were evaluated and the differences in the phase and modulus of the
bioimpedance spectrum are noticed. However, the selectivity of the BIA system could
not be demonstrated, and this would force one to use other additional sensing systems to
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evidence the interesting characteristic. During the evaluation of adulterated milk with typical
adulterants, like water and hydrogen peroxide, the information would be present in the
bioimpedance spectrum, but an identification of the exact adulterant or its quantity would
require other sensing systems.

The experimental data produced with the milk evaluation have also other characteristics
not related to the sample itself, but to the instrumentation and also to reactions occurring
between the sample and the electrode. The hook like figure in the complex plane arc locus
in the milk measurements demonstrate the effect. Such a behavior may be considered due
to adsorption in the impedance electrode in some types of samples. However, the hook-like
characteristic of the spectrum may be due to impedance stray effects, either from the cables,
electrodes or the electronic circuitry. This may be corrected in some cases with a change in
the model, by considering the effect of a phase corresponding to a complex exponential in
the model function. The optimal values were determined for the correction and the error
in the fitting was significantly reduced in those sets of data. Specifically in the raw mastitic
and adulterated milk, the Cole-Cole parameters were compared and the fitting algorithms are
once again shown to be efficient in illustrating the computational power of the techniques in
bioimpedance spectroscopy.

5. Future directions

The idea of determining efficient and simple algorithms to process bioimpedance spectra is
a topic that may allow the implementation of sophisticated algorithms in embedded systems
and could also improve the quality of the analysis produced by simple equipment. One can
mention that in the case of the phase/modulus retrieval algorithms, since the technique is
based on the use of the well-known fast-Fourier transform algorithm, it would be natural
to implement it in embedded systems. However, the applications could not be restricted to
such systems, since the use of the proposed algorithms may help improve the bioimpedance
spectrum analysis while correcting experimental data and retrieving the more convenient
information from the improved fitting algorithms. The methodology that uses artificial
neural networks to evaluate the performance of the algorithms could also be used in systems
that require automated analysis of bioimpedance spectra, as in an industrial environment to
characterize samples of milk or beef, for example.

As a direction to the future research efforts, a final goal for the use of such algorithms would
be their implementation in reconfigurable hardware, more specifically, in field-programmable
gate arrays (FPGA). Commercial systems already use such technologies, like the FPGA
in bioimpedance spectrometers (Nacke et al., 2011). Therefore the evaluated techniques
are suggested to be implemented in hardware, since the particle swarm optimization
algorithms would be a good choice for this purpose. The arithmetic operations in the
particle-swarm optimization update step requires only random number generation, and a
series of summations and multiplications. In the phase/modulus retrieval algorithm case, the
FFT could also be easily instantiated from the core provided by the FPGA company.
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