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Polygonal Approximation of Digital Curves 
Using the State-of-the-art Metaheuristics 

Peng-Yeng Yin 
Department of Information Management, National Chi Nan University  

Taiwan

1. Introduction    

Representation of digital planar curves is an important step prior to many image analysis 
tasks, such as object recognition, image matching, target tracking, etc. Polygonal 
approximation is an important technique to digital curve representation since the main 
information of curves is preserved at the corner points, it is desired to approximate a digital 
curve by an appropriate polygon to reduce the memory storage and the processing time for 
subsequent analyses. The design of a polygonal approximation algorithm not only impacts 
on the compression ratio of the data volume but also affects the accuracy of the subsequent 
image analysis tasks. There are several possible criteria with which the polygonal 
approximation can be performed, one of the most broadly used can be described as “given a 
digital curve and an error tolerance, the algorithm approximates the curve with a polygon 
by taking a subset of the points on the curve as the vertices such that the number of vertices 
is minimized and the approximation error between the curve and the corresponding 
polygon is no more than the error tolerance.” (Yin, 2006) 
An exact method to the polygonal approximation problem is impractical due to the 
intensive computations involved. An attempt using the dynamic programming technique 
had been made (Dunham, 1986), however, it required a worst-case complexity of O(N4)
where N is the number of data points. Early solutions to reduce the amount of computations 
rely on local search heuristics, namely the sequential scan-along approaches (Wall & 
Danielsson, 1984; Ray & Ray, 1993), split-and-merge approaches (Ansari & Delp, 1991; Ray 
& Ray, 1995), and dominant point detection approaches (Teh & Chin, 1989; Zhu & Chirlian, 
1995). However, the quality of the approximation result depends upon the initial condition 
where the heuristics take place and the metric used to measure the curvature.  
Metaheuristics are alternatives to solve complex combinatorial optimization problems. Fred 
Glover first coined the term metaheuristic as a strategy that guides another heuristic to search 
beyond the local optimality such that the search will not get trapped in local optima. 
Metaheuristics combine two components, an exploration strategy and an exploitation 
heuristic, in a framework. The exploration strategy searches for new regions, and once it 
finds a good region the exploitation heuristic further intensifies the search for this area. In 
this context, metaheuristics encompass several well-known approaches such as genetic 
algorithm (GA), simulated annealing (SA), tabu search (TS), scatter search (SS), ant colony 
optimisation (ACO), particle swarm optimisation (PSO), just to name a few. Most of the 
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central metaheuristics have been applied to the polygonal approximation problems and 
attained promising results. Instead of describing all the methods, this chapter will focus on 
the more recently proposed metaheuristics, ACO and PSO, and give their comparative 
evaluations.
The remainder of this chapter is organized as follows. Section 2 presents the formulation of 
the polygonal approximation problem. Section 3 renders the details of the ACO- and the 
PSO-based methods. In Section 4, we present the experimental results and discussions. 
Finally, a conclusion is given in Section 5. 

2. Problem Formulation 

Given a digital curve represented by a set of N points, S = {x0, x1, ..., xN-1} where x(i+1)  mod N is 
considered as the succeeding point of xi. We define arc xixj as the collection of those points 

between xi and xj, and chord 
jixx  as the line segment connecting xi and xj. If we 

approximate xixj by 
jixx , the incurred approximation error, denoted by e(xixj, jixx ), can be 

measured by any distance norm; for here, the L2 norm, i.e., the sum of squared 

perpendicular distance from every data point on xixj to 
jixx , is adopted. Thus a polygon 

with the vertex set T = {
0p

x ,
1p

x , …, 
1−Mp

x }, where T ⊂ S and 3 ≤ M ≤ N, can approximate 

the given curve with a total error E = ( )
−

=
++

1

0
mod)1(mod)1(

,
M

i

pppp MiiMii
xxxxe , and our aim is to 

construct a polygon with the minimal vertex set and the incurred approximation error is less 
than the pre-specified tolerance. Formally, the polygonal approximation problem can be 
formulated as follows. 

T
ST⊂

minarg  subject to 3 ≤ T ≤ N and E ≤ ε, (1) 

where T  denotes the cardinality of T and ε is the pre-specified error tolerance. 

3. Polygonal Approximation Using Metaheuristics 

Metaheuristics have shown many successful applications in diverse domains and the 
effectiveness and the malleability of metaheuristics are proven to be significantly better than 
most of the traditional local search heuristics. Metaheuristics are attractive to researchers 
because of their common features: natural metaphor, adaptivity, parallelism, easy 
implementation, and high quality result. In the following we illustrate the polygonal 
approximation application using two state-of-the-art metaheuristics: ant colony 
optimization (ACO) and particle swarm optimization (PSO). 

3.1 ACO-based method 

The basic framework of ant colony optimization (ACO) was first introduced in Dorigo’s 
Ph.D. dissertation (Dorigo, 1992). Since then many ACO applications have been investigated 
such as the travelling salesman problem (Dorigo & Gambardella, 1997), quadratic 
assignment problem (Maniezzo et al., 1994), and combined heat and power economic 
dispatch problem (Song et al., 1999). The ACO is inspired by the research on the real ant 
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behavior. Ethologists observed that ants are able to construct the shortest feasible path from 
their colony to the feeding source by the use of pheromone trails. An ant leaves some 
quantities of pheromone on the ground and marks the path by a trail of this substance. The 
next ant then senses the pheromone laid on different paths and chooses one with a 
probability proportional to the amount of pheromone on it. The ant traverses the chosen 
path and leaves its own pheromone. This is an autocatalytic (positive feedback) process 
which favors the path along which more ants previously traversed. To apply the ACO to 
circumvent the problem, we need to define the path space and the pheromone field that 
play central roles in the algorithm (Yin, 2003).  

3.1.1 Graph representation  

Ideally, we can construct a graph G = <S, E*>, where S is the set of data points on the given 
curve and E* is the ideal edge set that has the desired property that any closed circuit 
through E* which originates and ends at the same node represents a feasible solution to the 
problem, i.e., the polygon consisting of the edges and nodes along the closed circuit should 

approximate the curve with E ≤ ε. However, it is impossible to generate E* in practice. An 

alternative is to generate a pseudo-ideal edge set Ê , such that, E* Ê⊆ . For the constructed 

circuits which violate E ≤ ε, we can decrease the intensity of pheromone trails on the circuits 

to make them less attractive. Ê  is constructed as follows. First, an empty edge set is created, 

i.e., ∅=Ê . For every node Sxi ∈ , we examine each of the remaining nodes, Sx j ∈ , in 

clockwise order. The directed edge ji xx  is added to Ê  if the approximation error between 

the arc jixx  and the line segment 
jixx  is no more than ε. The reason for using a directed 

edge is to avoid the ants walking backward. Now, the problem of polygonal approximation 

is equivalent to finding the shortest closed circuit on the directed graph G = <S, Ê > such 

that E ≤ ε.
For the convenience of presentation, we define some notations as follows. Let the closed 

circuit completed by the kth ant be denoted ktour , the number of nodes visited in ktour  be 

ktour , and the approximation error between the original curve S and the approximating 

polygon corresponding to ktour  be ),( ktourSE .

3.1.2 Starting node selection  

Each ant chooses a starting node in the graph and sequentially constructs a closed path to 
finish its tour during each iteration. We establish a selection table for the starting node 
which is a linear array of N entries denoted by Ti, i = 1, 2, …, N. Initially, we let each Ti = 1. 
The probability with which the ith node is chosen as a starting node, denoted Selecti, is 

estimated as the entry value Ti divided by the sum of all entry values, 

=

=
N

j

jii TTSelect
1

.

The ties with respect to Selecti are broken randomly. Apparently, at the beginning of the first 
cycle, every node has equal probability of being chosen as a starting node since 

Selecti N1= . We then update the entry value of the selection table at the end of each cycle. 
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Let the set of ants which start with the ith node at the current cycle be Ant_Starti, and the 

size of Ant_Starti be 
iStartAnt _ . We update entry Ti based on a trade-off between the 

average quality of current solutions constructed by those ants in Ant_Starti and the value of 
Selecti derived from older cycles. Thus, we let 

+
−

← ∈

,

,
1

_

)1(

_

i

i

StartAntj jii

T

Selectr
tourStartAnt

r

T
i

 (2) 

where )1,0(∈r  is the parameter which controls the relative contribution of each 

component.  

3.1.3 Node transition rule  

The node transition rule is a probabilistic one determined by the pheromone intensity 
ijτ

and the visibility value 
ijη  of the corresponding edge. In the proposed method, 

ijτ  is equally 

initialized to N1  (actually, any small constant positive value will suffice), and is gradually 

updated at the end of each cycle according to the average quality of the solutions that 
contain this edge. On the other hand, the value of 

ijη  is determined by a greedy heuristic 

which encourages the ants to walk to the farthest accessible node in order to construct the 
longest possible line segment in a hope that an approximating polygon with fewer vertices 

is obtained eventually. This can be accomplished by setting 
jiij xx=η , where 

jixx  is the 

number of points on 
ji xx . The value of 

ijη  is fixed during all the cycles since it considers 

local information only. 

We now define the transition probability from node i to node j through directed edge 
ji xx

as

∀

=

i

hi
x
xx

ihih

ijij

ijp

from

)()(

)()(
βα

βα

ητ

ητ
. (3) 

Also, the ties with respect to 
ijp  are broken randomly.

3.1.4 Pheromone Updating Rule  

The intensity of pheromone trails of an edge is updated at the end of each cycle by the 
average quality of the solutions that traverse along this edge. In particular, the pheromone 
intensity at directed edge 

ji xx  is updated by 

if the ith node was chosen as a 
starting node at current cycle 

otherwise,
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)0,max(
1=

Δ+←
m

k

k

ijijij τρττ , (4) 

where )1,0(∈ρ  is the persistence rate of previous pheromone trails, and k

ijτΔ  is the 

quantity of new trails left by the kth ant and it is computed by 

>

∈

≤

∈

−
=Δ

otherwise.

;),(and

if

;),(and

if

,0

,
),(

,
1

ε

ε

ετ k

kji

k

kji

k

k

k

ij tourSE

tourxx

tourSE

tourxx

N

tourSE

tour

 (5) 

Therefore, more quantities of pheromone trails will be laid at the edges along which most 
ants have constructed shorter feasible tours. On the other hand, in the worst case, the edges 
will receive no positive rewards because either no ants walked through them or most 
passing ants constructed infeasible tours. As such, the proposed rule can guide the ants to 
explore better tours corresponding to high quality solutions. 

3.2 PSO-based method 

Particle swarm optimization (PSO) is a new metaheuristic developed in 1995 (Kennedy & 
Eberhart, 1995). It has exhibited effectiveness and malleability in many applications, such as 
evolving weights and structure for artificial neural networks (Eberhart & Shi, 1998), 
manufacture end milling (Tandon, 2000), and reactive power and voltage control (Yoshida 
et al., 1999). The development of PSO is inspired by the observation on the behaviors of bird 
flocking. A large number of birds flock synchronously, change direction suddenly, and 
scatter and regroup together. Each individual, called a particle, benefits from the experience 
of its own and that of the other members of the swarm during the search for food. The PSO 
models the social dynamics of flocks of birds and serves as an optimizer for nonlinear 
continuous functions. In order to deal with combinatorial optimization, the discrete version 
of PSO has also been introduced (Kennedy & Eberhart, 1997). However, in our experiments 
this discrete version does not show effective result for polygonal approximation problem. 
We conjecture that the deterioration is due to the linear combination of reference solutions 
which is often adopted in solving continuous function optimization. Thus, we add genetic 
features to enhance the search ability in combinatorial optimisation using the discrete PSO 
(Yin, 2006). 
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3.2.1 Particle representation and fitness evaluation  

Since particles of the PSO correspond to candidate solutions of the underlying problem, we 
use the particle to represent the approximating polygon by a binary vector. For the ith
particle, the corresponding representation is 

( ))1(10 ,...,, −= Niiii pppP  subject to 3
1

0
≥

−

=

N

j ijp
 and pij ∈ {0, 1}, (6) 

where pij = 1 if xj is one of the vertices chosen to represent the polygon, and pij = 0 otherwise. 
Thus, the particle representation indicates which data points constitute the vertex set T of 

the polygon and Tp
N

j ij =
−

=

1

0
.

The fitness of the particle is evaluated in two ways. If the approximation error entailed by a 

candidate polygon exceeds the specified error tolerance, i.e., E > ε, the fitness of the 
corresponding particle will be assigned a negative value to express the infeasibility degree 
of this candidate solution, else the particle fitness is set to the inverse of the sum of particle 
bit values to assess the solution quality in terms of the number of vertices. More precisely, 
the fitness of particle Pi is determined by 

>

=
−

=

otherwise.1

,if-

)(
1

0j

N

ij

i

p

E
N

E

Pfitenss

εε (7)

Therefore, there are two optimization goals in our setting. The first one is to move the 
particle from infeasible solution space to feasible regions, and the second one is to fly the 
particle to a new position which may result in a polygon with fewer vertices, i.e., with better 
merit in problem objective. The two optimization goals are pursued simultaneously since 
the PSO evolves with a swarm of particles and each of which may invoke different fitness 
evaluation depending on the entailed approximation error. 

3.2.2 Genetic operations  

PSO is a population-based search paradigm using a swarm of particles, it is natural to 
compare PSO with GA which is another population-based search algorithm and is well-
known to the community. In PSO, each particle flies to a better position which is a 
randomized weighted sum of vectors based on its personal best (pbest) and the global best 
(gbest) positions, while in GA the quality of individual chromosome is improved by using 
two principal genetic operations: selection and reproduction. The selection operation picks the 
good individuals for survival to mimic the natural selection of the fittest and the 
reproduction operation provides a mechanism to exchange and recombine the information 
(building blocks) among good-quality individuals. The feature of genetic selection has been 
added to PSO for solving continuous function optimization problems (Angeline, 1998; 
Shigenori et al., 2003) and the experimental results demonstrated substantial improvement 
over the original version. In this chapter, we further devise the scheme for conducting the 
genetic reproduction with the discrete PSO. 
Since the particle vector adjustment formulae are in fact a linear combination of critical 
vectors with quasi-random coefficients, the newly explored parameter values are bounded 
between experienced vectors to some extent. This is perhaps a desired property for 
continuous function value optimization problems, however, it hinders the solution 
exploration for discrete combinatorial optimization. For the latter one, the building blocks of 
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good quality solutions are segments of specific ordering or partial selections of elements, 
and the optimal solution may be obtained through recombination of those segments instead 
of a weighted sum of those values. Hence, we propose a new particle adjustment rule with 
genetic recombination for the jth bit of particle i as follows. 

( ) ( ) ( ) ( ) ( ) ( )jijijij gbestrandwwpbestrandwwwprandwwp 1,,,0 2211 ++= , (8) 

where 10 21 <<< ww  and w (•) and rand(•) are the threshold function and the probabilistic 

bit flipping function, respectively, and they are defined as follows. 

( )
<≤

=
otherwise,0

,if1
,

1 bqa
baw  (9) 

where q1 ∈ U(0, 1) is a randomly drawn real number. Therefore, only one of the three terms 
on the right hand side of Eq. (8) will remain depending on the value of q1.

( )
≤+

=
otherwise.

,if2modulo)1( 2

y

tqy
yrand  (10) 

Thus, rand(y) mutates the binary bit y with a small probability t (q2 is another random 
number drawn from U(0, 1)). To relate the new particle adjustment rule to genetic 
reproduction, we analyze Eq. (8) in two aspects. First, the particle Pi derives its every single 
bit from either one of pij, pbestij, or gbestj, this operation corresponds to a 3-way uniform 
crossover among Pi, pbesti, and gbest, such that the particle can exchange building blocks 
(segments of ordering or partial selections of elements) with personal and global 
experiences. Second, each bit attained in this way will be flipped with a small probability, 
analogous to the binary mutation performed in genetic algorithms. As such, the genetic 
reproduction, in particular, the crossover and mutation, have been added to the discrete 
PSO, and this new version is very likely more suitable to solve combinatorial optimization 
problems than the original one. 

3.3 Hybrid strategy 

Metaheuristics combine two elements, exploration and exploitation, in a framework. The 
exploration strategy searches for new regions, and once it finds a good region the 
exploitation heuristic further intensifies the search for this area. However, since the two 
strategies are usually inter-wound in the algorithm, the search is conducted to other regions 
before it finds the local optima. Many researchers have suggested to employ a hybrid 
strategy which embeds a local optimizer such as hill-climbing in between the iterations of 
the metaheuristics to enhance the searching ability. In the light of this, we propose to embed 
a local heuristic into the ACO- and the PSO-based approaches. To save the computational 
efforts, the local heuristic is only applied to the best candidate solution observed so far at 
each iteration. 
The local heuristic, named the segment-adjusting-and-merging, takes into account the 
problem-specific knowledge that the approximation error may be further reduced if the 
positions of the vertices of the polygon are appropriately adjusted, and that the number of 
vertices is decreased if we merge two adjacent segments under the constraint that the 
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resulting new polygon still satisfies the error tolerance. The two solution-improving 
processes are performed repeatedly until the number of vertices cannot be further 
decreased. 

4. Experimental Results and Discussions 

In this section, we present the computational results and evaluate the performance of the 
algorithms. The platform of the experiments is a PC with a 1.8 GHz CPU and 192 MB RAM. 
The algorithms are coded in C++. A number of benchmark curves borrowed from relevant 
literature are used for testing.  

4.1 Benchmark curves 

Three synthesized benchmark curves (see Fig. 1) and two real image curves (see Figs. 2-3) 
which are broadly used in the literature to evaluate various algorithms for polygonal 
approximation are included in our experiments for testing. As such the readers can easily 
compare the proposed algorithms with existing works. Fig. 1(a) is a leaf curve with 120 
points, Fig. 1(f) is a chromosome curve with 60 points, Fig. 1(k) is a semi-circle curve with 
102 points, Fig. 2(a) is a plane contour image with 682 edge points, and Fig. 3(a) is a fish 
contour image with 700 edge points. 

4.2 Competing metaheuristics 

In addition to evaluating the ACO-based and the PSO-based algorithms presented in Section 
3, we compare the results with those obtained using two other major metaheuristics: GA 
(Yin, 1999) and TS (Yin, 2000). The GA-based approach used the same solution 
representation scheme as that of the PSO-based mthod (see Eq. (6)). It applied a fitness 

function as k - 
−

=

1

0

N

j ijp  - max(E-ε, 0) where k is a constant. Besides using the traditional 

genetic operators (selection, crossover, mutation), a learning strategy is employed to 
improve the best chromosome observed so far at each iteration. The TS-based approach also 
followed Eq. (6) to generate its solution configuration. Three kinds of moves are defined: 
vertex-addition, vertex-deletion, and vertex-adjustment. As such the bounded neighborhood 
space is well defined. The tabu moves are enforced in order to prevent the current solution 
configuration getting into a subregion already visited. However, appropriate aspiration 
criteria are applied to resume a tabu move when it results in a better solution status than the 
ones observed so far.  

4.3 Comparative performances 

All of these metaheuristics have been proved to significantly outperform traditional local 
heuristics in solving the polygonal approximation problem (Yin, 2003; Yin, 2006). We thus 
focus our comparison among these metaheuristics only. The experiments on the three 
synthesized curves using the competing metaheuristics are shown in Table 1. As these 
metaheuristics are stochastic and each separate run of the same program may yield a 
different result, we report the average number of vertices (M) on the finally obtained 
polygon and the average consumed times in seconds (t) over 10 independent runs. The 

standard deviation (
Mσ ) of M is calculated for measuring the stability of the metaheuristics. 

It is evident from Tables 1 that the ACO- and the PSO-based approaches have better 
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performance than those of the GA-based and the TS-based approaches in terms of 
minimizing the value of M. This is due to the fact that the ACO- and the PSO-based 
methods further intensify the search in the neighborhood of the best solution observed so 
far using the hybrid strategy. All of the four competing metaheuristics have small values of 

Mσ , this means that these methods are all malleable against various curves with different 

properties. As for the computational times, all of these methods can derive quality results 
very quickly because the number of data points on the curves is small. 
Fig. 1 shows the visualization of the finally obtained approximating polygons with their 
specified error tolerance (ε ) and the number of yielded vertices (M) using various 

metaheuristics. It is seen that GA and TS yield worse approximating polygons with 
redundant vertices while ACO and PSO produce the least number of vertices but still 
preserving the main corner information. 

  GA TS ACO PSO 

ε M (
Mσ ) t M (

Mσ ) t M (
Mσ ) t M (

Mσ ) t

 150 15.6 (0.6) 0.4 10.6 (0.5) 0.1 11.0 (0.0) 0.9 10.7 (0.5) 0.4 

 100 16.3 (0.5) 0.3 13.7 (0.6) 0.1 12.6 (0.2) 0.8 12.4 (0.5) 0.3 

Leaf 90 17.3 (0.5) 0.3 14.6 (0.5) 0.1 12.8 (0.3) 0.9 13.0 (0.0) 0.3 

(N=120) 30 20.5 (0.6) 0.3 20.1 (0.5) 0.1 16.6 (0.4) 0.9 16.6 (0.5) 0.3 

 15 23.8 (0.6) 0.3 23.1 (0.5) 0.1 19.7 (0.3) 0.9 20.0 (0.0) 0.2 

 30 7.3 (0.4) 0.2 6.7 (0.4) 0.1 6.0 (0.0) 0.4 6.0 (0.0) 0.2 

20 9.0 (0.6) 0.2 8.0 (0.3) 0.1 7.6 (0.3) 0.5 7.6 (0.7) 0.2 

 10 10.2 (0.4) 0.2 11.0 (0.4) 0.1 10.0 (0.3) 0.5 10.5 (0.5) 0.1 

(N=60) 8 12.2 (0.5) 0.2 12.2 (0.5) 0.1 11.0 (0.4) 0.5 11.0 (0.0) 0.1 

 6 15.2 (0.6) 0.2 14.4 (0.5) 0.1 12.2 (0.3) 0.5 12.4 (0.7) 0.1 

 60 13.2 (0.4) 0.3 11.0 (0.4) 0.1 10.0 (0.0) 0.8 10.0 (0.0) 0.3 

 30 13.9 (0.7) 0.3 13.6 (0.5) 0.1 12.0 (0.0) 0.8 12.1 (0.3) 0.3 

Semicircle 25 16.8 (0.7) 0.3 14.9 (0.6) 0.1 13.0 (0.0) 0.7 13.2 (0.4) 0.3 

(N=102) 20 19.2 (0.6) 0.3 16.2 (0.6) 0.1 15.8 (0.4) 0.7 14.6 (0.7) 0.2 

 15 23.0 (0.9) 0.3 18.3 (0.7) 0.1 16.8 (0.4) 0.7 15.8 (1.2) 0.2 

Table 1. The comparative results on synthesized curves using competing metaheuristics 

Chromosom
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 (ε =15, M =24)  (ε =15, M =23) (ε =15, M =20) (ε =15, M =20) 
(a) Leaf (b) GA (c) TS (d) ACO (e) PSO 

                                  
 (ε =6, M =15)  (ε =6,  M =14) (ε =6, M =12) (ε =6, M =12) 
(f) Chromosome (g) GA (h) TS (i) ACO (j) PSO 

 (ε =15, M =23)  (ε =15, M =19) (ε =15, M =16) (ε =15, M =16) 
(k) Semi-circle (l) GA (m) TS (n) ACO (o) PSO 

Fig. 1. Finally obtained approximating polygons on the synthesized curves with their 
specified error tolerance (ε ) and the number of yielded vertices (M) using various 

metaheuristics

To demonstrate the feasibility of the metaheuristics for real-world applications, two real 
images containing a symbol of a plane and a fish, respectively, are further experimented 
with. The two images are binarized and the contour edge points are extracted by detecting 
the black-white transitions (see Figs. 2(a) and 3(a)). By specifying various values of error 
tolerance, the comparative performances obtained using the competing metaheuristics are 
summarized in Table 2. It is observed that the performance of the GA- and the TS-based 
methods deteriorates in the two real applications as the error tolerance decreases where the 
numbers of polygon vertices are significantly greater than those obtained by the ACO- and 
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the PSO-based approaches. However, the TS-based approach is the fastest one because it 
only uses one seed solution to conduct the search path while the others are population-
based searching methods. 
Figs. 2-3 show the finally obtained approximating polygons with their specified error 
tolerance (ε ) and the number of yielded vertices (M) using various metaheuristics. Similary, 

the ACO- and the PSO-based methods econimcally preserve the main corner information on 
the curve while the GA- and the TS-based methods may use multiple vertices to 
approximate some corners in a small region. 
To justify the reason behind the performance difference observed, we disable the application 
of the hybrid strategy in the ACO- and the PSO-based approaches and reperform the 
experiments again. We found that the new results obtained by the ACO- and the PSO-based 
methods without hybrid strategy become comparable with that obtained by the GA- and the 
TS-based methods. Therefore, the problem-specific local heuristics such as the segment-
adjusting-and-merging are the key-reason that results in the performance differences among 
these metaheuristics. It is worth further studying other appropriate problem-specific local 
heuristics, e.g., the scan-along search, split-and-merge process, and dominant-point 
detection, to be hybridized with these metaheuristics. Note that the learning strategy 
employed by the GA-based approach is a general strategy that may be not as efficient as the 
problem-specific heuristics in some complex problems but it is useful when the probelm-
specific heuristics are not easy to design.  

  GA TS ACO PSO 

ε M (
Mσ ) t M (

Mσ ) t M (
Mσ ) t M (

Mσ ) t

 3000 14.2 (0.8) 2.5 13.0 (0.3) 0.4 12.1 (0.4) 5.0 12.3 (0.5) 6.4 

 2000 15.1 (0.9) 2.4 14.4 (0.6) 0.4 13.0 (0.2) 4.7 13.0 (0.0) 6.1 

Plane 1000 17.4 (0.6) 2.3 16.7 (0.5) 0.4 14.0 (0.6) 4.8 15.3 (0.8) 5.6 

(N=682) 500 21.3 (0.8) 2.2 19.6 (0.6) 0.4 17.8 (0.5) 4.5 17.4 (0.5) 5.3 

 100 33.8 (0.9) 2.4 31.3 (0.5) 0.4 28.1 (0.7) 4.6 24.0 (0.6) 4.5 

 4000 16.5 (0.5) 2.3 14.0 (0.3) 0.5 12.2 (0.4) 5.7 15.8 (0.4) 5.5 

 3000 17.4 (0.6) 2.2 16.0 (0.3) 0.5 14.6 (0.3) 5.9 16.9 (0.3) 5.1 

Fish 2000 22.1 (1.0) 2.2 21.2 (0.4) 0.4 17.1 (0.5) 5.5 18.6 (0.9) 4.9 

(N=700) 1000 32.4 (0.9) 2.3 29.1 (1.0) 0.5 26.8 (0.7) 5.6 25.3 (0.5) 4.0 

 500 37.0 (1.1) 2.4 35.9 (1.2) 0.4 34.8 (0.7) 5.6 32.8 (0.6) 3.4 

Table 2. The comparative results on real image curves using competing metaheuristics 
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  (ε =1000, M =17) (ε =1000, M =16) 
 (a) Plane contour image (b) GA (c) TS 

        
 (ε =1000, M =14) (ε =1000, M =15) 
 (d) ACO (e) PSO  

Fig. 2. Finally obtained approximating polygons one the plane image with their specified 
error tolerance (ε ) and the number of yielded vertices (M) using various metaheuristics 
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  (ε =2000, M =22) (ε =2000, M =21) 
 (a) Fish contour image (b) GA (c) TS 

    

 (ε =2000, M =17) (ε =2000, M =18) 
 (d) ACO (e) PSO 

Fig. 3. Finally obtained approximating polygons on the fish image with their specified error 

tolerance (ε ) and the number of yielded vertices (M) using various metaheuristics 

5. Conclusion 

In this chapter, we investigate the polygonal approximation problem which is fundamental 
to many image analysis tasks. Traditional problem-specific heuristics are not suitable to be 
applied alone because the quality of the obtained result depends on the initial setting of the 
algorithms and the properties of the curves. On the other hand, metaheuristic approaches 
can produce stable approximation quality for various kinds of curves. We have illustrated 
the implementations based on two newly developed metaheuristics, namely the ACO and 
the PSO. To circumvent the underlying problem, specific features have been introduced 
such as the ACO graph representation, PSO genetic operators, penalty functions, and the 
hybrid strategy. Experimental results on several benchmark curves have manifested that 
these new features can improve the performance of metaheuristics in solving the polygonal 
approximation problem.  
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