
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



0

Autonomous Terrain Classification
for Planetary Rover

Koki Fujita
Kyushu University

Japan

1. Introduction

In order to improve autonomous mobility of planetary rover, many works have recently
focused on non-geometric features of surrounding terrain such as color, texture, and
wheel-soil interaction mechanics (Dima et al., 2004; Halatci et al., 2007; Helmick et al., 2009;
Ishigami et al., 2007). To tackle with the issue, most of them propose to utilize on-board
sensors such as multi-spectral imagers, CCD cameras, laser range sensor, and accelerometer.

This study aims at classifying textures and physical properties of homogeneously-distributed
terrain which are originated from the sizes of soil particles as well as mechanical interaction
properties between rover body and soil.

As for the imaging sensors involved in the past works, while they discretly utilize image data,
this work proposes to utilize whole of the motion image sequence taking terrain surface from
rover on-board camera. Unlike the conventional techniques to classify terrain surfaces based
on single or stereo camera images, the proposed method improves discrimination ability for
visual salience and has possibility to remotely estimate properties of dynamic interaction
between rover body (wheels) and terrain surface, such as relative velocity, slippage, and
sinkage.

Given constant linear motion of camera, and homogeneous and isotropic properties of terrain
texture, motion image sequence can be reduced to a set of parameters of the Dynamic Texture
model (Saisan et al., 2001). The estimated parameters contain unique properties not only with
visual salience in terrain surface but also with dynamics in camera (or vehicle) motion and
terra-mechanics associated with surrounding terrain.

Aiming at validating the concept to classify terrain image sequences based on the Dynamic
Texture model, this work shows experimental results for different types of soils and
translational motions of camera by using a testbed. Results of a cross validation test and a
receiver operating characteristic (ROC) analysis shows feasibility of the proposed method,
and issues to be improved in future work.

2. Overview of the proposed method

In this work, a terrain classification method is proposed as an online estimation scheme
installed for planetary rover. The schematic view of the proposed method is shown in Fig. 1.
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Fig. 1. Overview of terrain classification scheme utilizing Dynamic Texture.

As shown in the figure, the shceme is divided into two phases called “Learning Phase” and
“Recognition Phase”. Each phase is briefly described as follows.

Learning Phase:

1. Acquire video sequences for various types of terrains (e.g. fine regolith, sand, gravel, etc.)
taken from view points in the vehicle’s steady-state motion.

2. Estimate the parameters of the Dynamic Texture model.

3. Construct a database of the estimated parameter sets for all the different types of terrain
sequences.

Recognition Phase:

1. Acquire a target image sequence.

2. Estimate the parameters of the Dynamic Texture model.

3. Compute the distances between the dynamical system model for the target sequence and
the ones registered in the database.

4. Classifying the target image sequence as the one closest to the terrain types in the database.

3. Dynamic texture model

Given constant linear motion of camera mounted on the vehicle and homogeneous and
isotropic properties of the terrain texture, the motion image sequence captured from the
camera can be reduced to a set of parameters in a linear dynamical system model as follows:

{

x(k + 1) = Ax(k) + v(k), v(k) ∼ N (0, Q); x(0) = x0,
y(k) = Cx(k) + w(k), w(k) ∼ N (0, R),

(1)
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where k = 0, 1, 2, · · · is the discrete time instant, y(k) ∈ R
m is a vector of measured pixel

brightness values in the k-th image frame, m equals the number of pixels in an image frame,
x(k) ∈ R

n is an n-dimensional state vector, and v(k) ∈ R
n and w(k) ∈ R

m are white Gaussian
random vectors. As seen in the equations, the above dynamical system is characterized by the
parameter matrices A ∈ R

n×n, C ∈ R
m×n, Q ∈ R

n×n, and R ∈ R
m×m.

Whereas these parameters can be estimated using a system identification theory such
as N4SID (Overschee & Moor, 1994), the computational load tends to be large for video
sequences which contain substantial data. Previous work on Dynamic Textures (Saisan et al.,
2001) proposed to apply a suboptimal estimation algorithm utilizing a principal component
analysis (PCA-ID) in order to decrease the dimensionality of the state-space model. However,
with this PCA-ID algorithm, not only the accuracy issue on the estimated dynamical system
model still remains, but also computational load could be serious for relatively large size of
the image frames due to the algorithm of PCA.

In this work, instead of the conventional PCA-ID algorithm, a new algorithm based on the
components of 2-dimensional discrete cosine transform (2D-DCT) and a system identification
algorithm, N4SID. The proposed method has an advantage in that optimal solution for the
dynamical model is obtained within less computational time.

The proposed method contains two steps as follows:

STEP1: Original M × N pixel data from the terrain image sequence, fi,j (i = 1, 2, · · · , M, j =
1, 2, · · · , N) are transformed into Fk,l (k = 1, 2, · · · , M, l = 1, 2, · · · , N) such that

Fk,l = CkCl

M

∑
i=1

N

∑
j=1

fi,j cos

(

(2i − 1)kπ

2M

)

cos

(

(2j − 1)lπ

2N

)

(2)

where Ck or l =

{

1/
√

2, if k or l = 1
1, else

Since Fk,l is obtained by a linear transformation from the original image data, their
principal properties should be preserved in the output components for the lower
dimensional spatial frequencies. Thus, among m (= M × N) components of 2D-DCT
output for the original image, only mc (= Mc × Nc, mc < m) ones are applied to the N4SID
algorithm. If yc(k) is defined as [F1,1(k), F1,2(k), · · · FMc,Nc

(k)]T ∈ R
mc , the dynamical

system model corresponding to Eq. (1) is described such that

{

xc(k + 1) = Acxc(k) + vc(k), vc(k) ∼ N (0, Qc); xc(0) = xc0,
yc(k) = Ccxc(k) + wc(k), wc(k) ∼ N (0, Rc),

(3)

where the subscript c denotes the vectors or the matrices for the low-dimensional 2-D DCT
components.

STEP2: N4SID algorithm (Overschee & Moor, 1994) is applied to yc(k) ( k = 1, 2, · · · , K) in
STEP1, and the linear dynamical system paraters such as Ac, Cc are computed for given
order of the system n.
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4. Recognition of dynamic texture model

Since the linear dynamical system models as shown in Eq. (1) are characterized by the
parameter matrices A and C, they can be identified with column space of the extended
observability matrix:

O∞(M) =
[

CT (CA)T (CA2)T · · ·
]T

. (4)

For a large enough number n, the above extended observability matrix is approximated by
the finite observability matrix:

On(M) =
[

CT (CA)T (CA2)T · · · (CAn−1)T
]T

. (5)

In order to recognize different Dynamic Texture models, the follwoing three typical metrics
can be introduced for measuring distances between the dynamical models in parameter space.

1. Euclidean distance: For the observability matrix of Eq. (5), a distance metric for models
M1 and M2 can be defined as a simple but appropriate one to represent a difference in
dynamical property as follows:

dE(M1, M2) =

√

n

∑
i=1

(σi(M1)− σi(M2))2, (6)

where σi(M1) and σi(M2) are the i-th order singular values of On(M1) and On(M2),
respectively.

2. Martin’s distance: Martin’s distance (Martin, 2000) is a distance metric derived for a
linear dynamical system model, ARMA model, which is equivalent to Eq. (1). It can
also be applied to distinguish different Dynamic Texture models. If p principal angles
θk ∈ [0, π/2] between the ranges of the matrices A and B are recursively defined for
k = 1, 2, · · · , n as

cos θ1 = max
x∈Rp, y∈Rq

|xT ATBy|
||Ax||2||By||2

=
|xT

1 ATBy1|
||Ax1||2||By1||2

,

cos θk = max
x∈Rp, y∈Rq

|xT ATBy|
||Ax||2||By||2

=
|xT

k ATByk|
||Axk||2||Byk||2

for k = 2, · · · , q, (7)

subject to xT
i AT Ax = 0 and yT

i BTBy = 0 for i = 1, 2, · · · , k − 1, the Martin’s distance is
derived as follows (De Cock & De Moor, 2000):

dM(M1, M2) =

√

ln
n

∏
i=1

1

cos2 θi
. (8)

3. Kernel density function (KDF) on Stiefel manifold: While the above two metrics are
derived to directly measure the distance between two subspaces spanned by the column
vectors of the observability matrices, distance metrics on special manifold such as Stiefel
and Grassmann manifolds, on which the parameters of the dynamical system model lie
have also been proposed (Turaga et al., 2008). In the previous work, a metric using a kernel
density function based on a Procrustes representation for the distance metric is introduced.
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The Stiefel manifold Vn,m is a space whose points are n-frames in R
m, and each point on

the manifold can be represented as m × n matrix X such that XTX = In, where In is n × n
identity matrix. By singular value decomposition of On(M) such that

On(M) = UΣV∗, (9)

the orthonormal matrix U ∈ R
m×n (UTU = In) is regarded as a point on the

Stiefel manifold retaining the column space property of the original observabiliry
matrix. Although the Stiefel manifold is endowed with a Riemannian structure and a
geodesic computation for distances between points on the manifold is possible, the other
distance metric called a “Procrutes distance” is introduced to estimate a class conditional
probability density in an ambient Euclidean space.

The Procrustes distance is defined for two matrices X1 and X2 on Vk,m as follows:

d2
V(X1, X2) = min

R>0
tr(X1 − X2R)T(X1 − X2R)

= min
R>0

tr(RTR − 2XT
1 X2R + Ik). (10)

If R varies over the space R
k×k, the Procrustes distance is minimized at R = XT

1 X2, so

that d2
V(X1, X2) is equal to tr(Ik − XT

2 X1XT
1 X2). Also, the class conditional density for

this Procrustes distance metric can be estimated by using the following function (Chikuse,
2003):

f̂ (X; Ps) =
1

n
C(Ps)

n

∑
i=1

K(P−1/2
s (In − XT

2,iX1XT
1 X2,i)P

−1/2
s ), (11)

where X2,i (i = 1, · · · , n) are the sample matrices on the Stiefel manifold from the same
class of the model. K(A) is the kernel function for a matrix A, Ps is n × n positive definite
matrix as a smoothing parameter, and C(Ps) is the normalizing factor selected so that the
estimated kernel density integrate to unity.

In this paper, X1 and X2,i are the matrices on the Stiefel manifold constructed by the
models M1 and M2, respectively, and these matrices correspond to U derived from the
singular value decomposition of the observability matrix On(M). As a kernel function to
compute f̂ (X; Ps), the exponential kernel K(A) = exp(−tr(A)) is treated. Since the output
of f̂ (X; Ps) ranges between 0 and 1 and increases inversely with the distance between two
models, the following function is defined as an actual distance metric:

dK(M1, M2) = 1.0 − f̂ (X; Ps) (12)

5. Recognition test for real image sequences

In order to validate the effectiveness of the proposed methods, an experiment was conducted
by using a testbed as shown in Fig. 2. Real image sequences for four types of the terrain
textures (magnesium lime, fine and coarse sand, and gravel) were obtained using a CCD
camera (SONY XCD-V60CR). On this testbed, translational motions are given to the camera
fixed on a wheeled structure. The wheel is driven by constant torque from a brushless DC
motor, which gives averagely constant velocity to the CCD camera on flat surface. The
experimental environment is shown in Table 1.

Real image sequences as shown in Fig. 3 were applied to the proposed methods. Each terrain
sequence depicts different soil particles identically-distributed in the image frames. In order to
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Fig. 2. Testbed for acquiring terrain image sequences.

Specification of CCD camera Focal length: 8 mm
Field of view: 34.0 × 25.6 deg
CCD image resolution (original): 640 × 480 pixels
Frame rate: 30 fps

Height of the camera 330 mm

Wheel diameter 181.7 mm
Velocity of the camera (mean value) V1: 17.4 mm/sec, V2: 35.0 mm/sec, V3: 53.5 mm/sec

Table 1. Experimental environment
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Fig. 3. Real image sequences applied to the proposed methods.
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Terrain type
lime (A) sand-1 (B) sand-2 (C) gravel (D)

Image v1 (a) Aa Ba Ca Da
velocity v2 (b) Ab Bb Cb Db

v3 (c) Ac Bc Cc Dc

Table 2. Table of combination
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Fig. 4. A receiver operating characteristic (ROC) analysis.

see discriminative ability not only for terrain textures but also for rover translational motion,
three constant torques were given to the DC motor for each type of terrain texture, which
generated different velocities, V1 to V3 (as shown in Table 1). These velocities of the camera
resulted in the different image velocity fields named as v1, v2, and v3. The combination for
all the experimental parameters with the terrain textures and the image velocities is shown
in Table 2. As shown in Fig. 3, 20 local block images of 8 × 8 (CASE 1), 16 × 16 (CASE 2),
and 32 × 32 (CASE 3) pixels were cropped from the original images, and the block image
sequences consisting of 300 frames (for about 10sec) were applied to the proposed scheme.

In this study, considering sufficient accuracy for estimating the Dynamic Texture model by
using N4SID or PCA-ID algorithm, the dimension of the finite observability matrix, n in Eq. (5)
was fixed at 10. Also, the number of the 2D-DCT components in Eq. (3) was fixed such that
Mc = Nc = 8 (i.e. mc = Mc × Nc = 64). As for the smoothing parameter in the KDF on the
Stiefel manifold defined as Eq. (11), it was set such that Ps = 100 after trying to apply several
values.

Recognition rate was evaluated through 2-fold cross validation test, that is, while half of the
block image sequences were applied for the Learning Phase, the rest of the target sequences
were for the Recognition Phase. The same process was repeated after exchanging the block
image sequences for each phase. Note here that the block image sequences for the both phases
were selected so that they never overlap with each other in the spatiotemporal domain as
shown in Fig. 3.

The terrain image sequences were recognized using threshold values of each distance metric,
which were coincident with the maximum distances among the same image sequences in the
Learning Phase. Aiming at seeing sensitivity to the threshold values, a receiver operating
characteristic (ROC) (Witten et al., 2011) analysis was conducted at the same time.
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If the relation between predicted result and actual result for a discrimination threshold is
shown as a cross tabulation in Fig.4, two types of the evaluation metrics, true positive rate
(TPR) and false positive rate (FPR) are derived as follows:

TPR = NTP/(NTP + NFN), FPR = NFP/(NFP + NTN), (13)

where NTP, NFN , NFP, and NTN mean the numbers of the true positive, the false negative,
the false positive, and the true negative, respectively. For these two operating characteristics
(TPR and FPR) computed from various threshold values, ROC curve is plotted as shown in
the right-hand side of Fig. 4.

For any classification problem, the false positive rate increases with the true positive
rate. Since optimal classifier should obtain enough high true positive rate relative to the
corresponding false positive rate, curve in ROC space is desirable to be skewed to upper left
corner as shown in Fig. 4.

Results of the cross validation test are shown in the following figures and tables. Figs. 5 to 10
show correlation maps in which each grayscale block image implies the correlation between
the learned sequences (aligned in columns) and the target sequences (aligned in rows) for the
twelve parameter combinations. The grayscale level is computed from the mean values of
the distances among twenty block image sequences, such that the darker image shows the
shorter distance. To increase visibility of the block images, the grayscale levels are normalized
for each map. The results of the PCA-ID algorithm are also shown to compare the proposed
2D-DCT+N4SID algorithm with the conventional one.

As shown in these figures, all the distance metrics show clear correlations for the same terrain
textures labeled as A, B, C, and D. They are appeared as the darker block images along the
diagonal line from the upper left corner to the lower right corner on each map. While in
most of the correlation maps, the differences between the correlation strengths for different
terrain textures are not necessarily clear except for the Euclidean distance computed from the
proposed 2D-DCT+N4SID algorithm, which only shows the gradual changes of the grayscale
levels for different terrain textures.

Tables 3 to 8 show results of the true positive rates defined in Eq. (13). In this study, two classes
of recognized features named “dynamic texture class” and “static texture class” are focused
on. While the static texture class is categorized only according to terrain types (i.e. A, B, C
and D in Table 2), the dynamic texture class is categorized according to image velocity as well
as to terrain type (i.e. Aa, Ab, · · · , Dc in Table 2). In the tables, the results obtained for these
two categories are shown. The results of the recognition rates for the conventional PCA-ID
algorithm are also shown for comparison.

As shown in the tables, for the Euclidiean and the Martin’s distances, the true positive rates
are relatively high over 86.5% for the 2D-DCT+N4SID algorithm or 89.9% for the PCA-ID
algorithm for the both feature classes. On the other hand, the KDF on the Stiefel manifold
shows lower rates especially for the dynamic texture class, which results in at most 23.3%
for the 2D-DCT+N4SID algorithm or 70.8% for the PCA-ID algorithm, and significantly
decreasing with the increasing block image sizes. As for the test results, the effect of the block
image size is only seen in those for the KDF on the Stiefel manifold. One of the issues of the
KDF on the Stiefel manifold is considered that this metric needs enough sample matrices on
the Stiefel manifold from the same image sequences to compute the kernel density function,
which may not be satisfied for relatively large size of the image sequences. Acoording
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Fig. 5. Correlation map for CASE 1 (The proposed 2D-DCT+N4SID algorithm, 8 × 8
pixel-block seqeunces, the 1st test).
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Fig. 6. Correlation map for CASE 2 (The proposed 2D-DCT+N4SID algorithm, 16 × 16
pixel-block seqeunces, the 1st test).
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(b) Martin’s distance(a) Euclidean distance (c) KDF on the Stiefel Manifold

Fig. 7. Correlation map for CASE 3 (The proposed 2D-DCT+N4SID algorithm, 32 × 32
pixel-block seqeunces, the 1st test).

to the results of the true positive rates, although it seems that the conventional PCA-ID
algorithm achieves better performance than the proposed algorithm does, a different view
can be obtained from the following results of the ROC analysis.
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(b) Martin’s distance(a) Euclidean distance (c) KDF on the Stiefel Manifold
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Fig. 8. Correlation map for CASE 1 (The conventional PCA-ID algorithm, 8 × 8 pixel-block
seqeunces, the 1st test).
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Fig. 9. Correlation map for CASE 2 (The conventional PCA-ID algorithm, 16 × 16 pixel-block
seqeunces, the 1st test).
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Fig. 10. Correlation map for CASE 3 (The conventional PCA-ID algorithm, 32 × 32
pixel-block seqeunces, the 1st test).

Some ROC curves for the same experimental results are shown in Figs. 11 to 16. They are
plotted for 30 threshold values equally sampled between the maximum and the minimum
values for the learned sequences. For all the results, while the plots close to the lower left
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Dynamic texture class Static texture class

1st 2nd mean 1st 2nd mean

Euclidean dist. 92.0% 83.5% 87.8% Euclidean dist. 94.5% 98.7% 96.6%

Martin’s dist. 94.3% 98.5% 96.4% Martin’s dist. 99.8% 99.6% 99.7%

KDF on the KDF on the

Stiefel manifold 19.2% 27.5% 23.3% Stiefel manifold 90.3% 93.3% 91.8%

Table 3. True positive rates for CASE 1 (The proposed 2D-DCT+N4SID algorithm, 8×8
pixel-block sequences).

Dynamic texture class Static texture class

1st 2nd mean 1st 2nd mean

Euclidean dist. 90.5% 82.4% 86.5% Euclidean dist. 98.9% 97.3% 98.1%

Martin’s dist. 96.4% 95.8% 96.1% Martin’s dist. 99.9% 99.7% 99.8%

KDF on the KDF on the

Stiefel manifold 5.0% 9.2% 7.1% Stiefel manifold 83.3% 87.5% 85.4%

Table 4. True positive rates for CASE 2 (The proposed 2D-DCT+N4SID algorithm, 16×16
pixel-block sequences).

Dynamic texture class Static texture class

1st 2nd mean 1st 2nd mean

Euclidean dist. 85.8% 88.8% 87.3% Euclidean dist. 97.8% 100.0% 98.9%

Martin’s dist. 96.9% 98.8% 97.8% Martin’s dist. 99.6% 99.9% 99.7%

KDF on the KDF on the

Stiefel manifold 5.8% 10.0% 7.9% Stiefel manifold 85.8% 84.7% 85.3%

Table 5. True positive rates for CASE 3 (The proposed 2D-DCT+N4SID algorithm, 32×32
pixel-block sequences).

corner, (FPR, TPR) = (0, 0) show the ones for the minimum threshold values, the plots on
upper right portions show the ones for the maximum threshold values.

Although all the ROC plots start from the lower left corners, they don’t necessarily reach to
the upper right corners. Most of the plots for the KDF on the Stiefel manifold end in the
middle of the ROC spaces, and especially for the dynamic texture class, they end up very low
recognition rates, which is similarly seen in the previous tables of the true positive rate. On
the other hand, the proposed 2D-DCT+N4SID algorithm depicts more desirable curves for
the Euclidean distance, while the highest positive rates don’t necessarily exceed those for the
conventional PCA-ID algorithm.

Comparing between the two feature classes, the dynamic texture class and the static texture
class, the recognition rates for the latter class show higher rates for a certain threshold values
of each distance metric as shown in Tables 3 to 8. However, their recognition performances
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Dynamic texture class Static texture class

1st 2nd mean 1st 2nd mean

Euclidean dist. 88.3% 91.5% 89.9% Euclidean dist. 95.9% 99.7% 97.8%

Martin’s dist. 95.9% 96.8% 96.3% Martin’s dist. 99.7% 99.8% 99.8%

KDF on the KDF on the

Stiefel manifold 60.8% 80.8% 70.8% Stiefel manifold 100.0% 95.3% 97.6%

Table 6. True positive rates for CASE 1 (The conventional PCA-ID algorithm, 8×8 pixel-block
sequences).

Dynamic texture class Static texture class

1st 2nd mean 1st 2nd mean

Euclidean dist. 93.0% 96.1% 94.5% Euclidean dist. 99.3% 99.7% 99.5%

Martin’s dist. 94.0% 93.1% 93.5% Martin’s dist. 99.9% 99.8% 99.9%

KDF on the KDF on the

Stiefel manifold 8.3% 4.2% 6.3% Stiefel manifold 93.6% 91.1% 92.4%

Table 7. True positive rates for CASE 2 (The conventional PCA-ID algorithm, 16×16
pixel-block sequences).

Dynamic texture class Static texture class

1st 2nd mean 1st 2nd mean

Euclidean dist. 91.1% 89.8% 90.4% Euclidean dist. 99.5% 99.6% 99.5%

Martin’s dist. 87.3% 94.9% 91.1% Martin’s dist. 99.1% 99.4% 99.3%

KDF on the KDF on the

Stiefel manifold 0.0% 0.8% 0.4% Stiefel manifold 80.0% 83.6% 81.8%

Table 8. True positive rates for CASE 3 (The conventional PCA-ID algorithm, 32×32
pixel-block sequences).

in the ROC space are not necessarily better than for the dynamic texture class as depicted
in Figs. 11 to 16. From these results, the three distance metrics introduced in this study are
perceived as the ones intimately involved with the dynamical properties not only with the
static visual salience.

The merit of the proposed algorithm is also seen in the computational time for the Dynamic
Texture model learning. Table 9 shows the computational time for each process in the
recognition test using a PC (CPU: Intel Core i7-640LM, RAM: 8MB). This result clearly shows
that the conventional PCA-based algorithm becomes ineffective with the increasing size of the
block image, and the computational time for the proposed algorithm does not depend on the
size of the block images so much as the conventional algorithm does.
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ROC plots (CASE 1)

(a) Euclidean distance (b) Martin s distance (c) KDF on the Stiefel manifold
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Fig. 11. ROC plots for CASE 1 (The proposed 2D-DCT+N4SID algorithm, 8×8 pixel-block
sequences, the 1st test).
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Fig. 12. ROC plots for CASE 2 (The proposed 2D-DCT+N4SID algorithm, 16×16 pixel-block
sequences, the 1st test).
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Fig. 13. ROC plots for CASE 3 (The proposed 2D-DCT+N4SID algorithm, 32×32 pixel-block
sequences, the 1st test).
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ROC plots (CASE 1)
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Fig. 14. ROC plots for CASE 1 (The conventional PCA-ID algorithm, 8×8 pixel-block
sequences, the 1st test).
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Fig. 15. ROC plots for CASE 2 (The conventional PCA-ID algorithm, 16×16 pixel-block
sequences, the 1st test).
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Fig. 16. ROC plots for CASE 3 (The conventional PCA-ID algorithm, 32×32 pixel-block
sequences, the 1st test).
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Computational time (2D-DCT+N4SID) Computational time (PCA-ID)

CASE 1 (8 × 8 pixels): 35.2 sec CASE 1 (8 × 8 pixels): 30.0 sec

CASE 2 (16 × 16 pixels): 36.2 sec CASE 2 (16 × 16 pixels): 131.8 sec

CASE 3 (32 × 32 pixels): 38.1 sec CASE 3 (32 × 32 pixels): 1184.2 sec

Table 9. The computational times for the recognition test.

It should be discussed in future work which metric is more appropriate to discriminate
more various types of the terrain texures and dynamical properties caused by rover motion,
considering the validity of the model estimation algorithms.

6. Conclusion

This paper proposes a novel terrain classification method for planetary rover utilizing
Dynamic Texture. The recognition rates computed from several distance measures for the
estimated Dynamic Texture models were evaluated through the experiments using a testbed.
According to the experimental results, some distance metrics show relatively high true
positive rates to discriminate not only terrain textures but also rover translational motion.
Also, one of the metrics computed from the proposed model estimation algorithm shows more
desirable characteristic in the ROC space.

7. Future work

In future works, ditance metric suitable to distinguish various types of terrain textures as well
as dynamical properties of rover such as translational velocity, slippage, and sinkage is going
to be discussed in detail. At the same time, the validity of the model estimation algorithms
based on a linear dynamical system model is further evaluated.
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