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1. Introduction 

Space exploration has often been used as a proxy competition for geopolitical rivalries. The 
early era of space exploration was driven by a "space race" among might countries. Nowadays, 
many advanced nations have entered the space arena and competed with one another for the 
space technology development as they recognize the importance of space technologies for 
national strength. In general, physical exploration of space is conducted both by human 
spaceflights and by robotic spacecrafts. To promote the scientific standard of space vehicle 
performance, stability, and control, it requires analysis of the six degrees of freedom of the 
vehicle's flight. One is the translational motion in three dimensional axes; the other is the 
orientation about the vehicle's center of mass in these axes, known as pitch, roll and yaw. In 
this paper, the main goal is to propose an adaptive fuzzy sliding-mode controller for 
spacecrafts with thrusters to follow the predetermined trajectory in outer space by use of 
employing the spacecraft attitude control. By using fuzzy inference mechanism, the upper 
bounds of the lumped uncertainty can be estimated, and the adaptive theory with center 
adaption of membership functions is designed to estimate optimal upper bounds of the 
lumped uncertainty, respectively. For the above reasons, we know that the attitude control of 
spacecrafts for the space exploration is essential to successfully develop the space activities [1]. 

In order to deal with the nonlinear spacecraft attitude dynamics, we employ the quaternion 
representation [2-4] to model the equation of rotational motion and the time derivative of 
quaternion, so that the nonlinear attitude control is applicable. Using the quaternion 
representation, the global control effect can be fulfilled and the singularity problem, which 
will be faced with the discontinuity by the three- dimensional Euler’s representation [5], can 
be avoided. 

To cope with non-ideal factors surrounding the spacecraft under attitude control and to 
enhance the robustness property of the attitude tracking system, the sliding mode control 
has been employed by Hu et al. [6], which integrate both the command input shaping and 
sliding mode output feedback control techniques to investigate the vibration problem for a 
flexible spacecraft during attitude maneuvering, and by Yeh [7], which proposes two 
nonlinear attitude controllers for spacecrafts with thrusters to follow the predetermined 
trajectory to estimate parameters and eliminate disturbances. Servidia and Pena [8] present 
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the attitude stabilization of a spacecraft using thrusters, considering from a practical point of 
view. Hu [9] proposes a dual-stage control system design scheme for rotational maneuvers 
and vibration stabilization of a flexible spacecraft in the presence of the parameter 
uncertainty and external disturbances as well as the control input saturation to actively 
suppress certain flexible modes. Xia et al. [10] present the adaptive law and the extended 
state observer for a spacecraft model that is nonlinear in dynamics with the inertia 
uncertainty and external disturbances to converge to the reference attitude states. Despite 
the popularity of such control technique, it is however well known that the chattering 
problem is worthy of more attention for the sake of practical deployment. Taking into 
consideration of the aforementioned reason, a guide to sliding mode control for practical 
implementation has been proposed by Young et al. [11]. Eker [12] proposes a second-order 
sliding mode control for uncertain plants using the equivalent control approach to improve 
the performance of control systems, in which second-order plant parameters are 
experimentally determined using input-output measured data. 

A spacecraft equipped with thrusters can effectively control its acceleration direction [8, 13], 
which in turn implies that the maneuverability/controllability of the spacecraft can be 
greatly enhanced during the stage when the spacecraft is flying in the outer space; whereas 
Janhunen et al. [14] propose a space propulsion concept of electric solar wind sail using the 
natural solar wind dynamic pressure for producing spacecraft thrust. 

Estimation theory is used to deal with estimating values of parameters based on 
measured/empirical data that have a disturbance component. A parameter estimation 
approach called adaptive control has been developed by Slotine [15, 16] to achieve accurate 
attitude tracking of a rigid spacecraft with large loads of unknown mass. Zou et al. [17] 
investigate the robust adaptive output feedback controller based on Chebyshev neural 
networks (CNN) for an uncertain spacecraft to counteract CNN approximation errors and 
external disturbances. Huang et al. [18] propose a robust adaptive PID-type controller 
incorporating a fuzzy logic system and a sliding-mode control action for compensating 
parameter uncertainties and the robust tracking performance. An adaptive fuzzy theory is 
generally employed to approximate unstructured uncertainties and dynamic disturbances, 
such as Tong et al. [19] discuss an adaptive fuzzy output feedback control approach for 
nonlinear systems to estimate unmeasured states; Islam and Liu [20] propose a robust 
adaptive fuzzy control system for the trajectory tracking control problem of robotic systems 
to approximate the certainty equivalent-based optimal controller and to cope with 
uncertainties. 

In this paper, we investigate the adaptive fuzzy sliding-mode control for spacecrafts with 
thrusters, employing the fuzzy sliding-mode controller to estimate upper bounds of the 
lumped uncertainty, and the adaptive fuzzy sliding-mode controller with center adaption of 
membership functions to estimate optimal bounds of the lumped uncertainty, respectively. 
This paper is organized as follows. In Section 2, preliminaries for deriving three-degree-of-
freedom attitude models of a spacecraft equipped with thrusters. In Section 3, we 
respectively propose the sliding-mode, the fuzzy sliding-mode and the adaptive fuzzy 
sliding-mode attitude controllers aiming for tracking the predetermined trajectory in outer 
space. For tracking realization, three simulation results incorporating the so-called 
quaternion-based attitude control are developed in Section 4. To demonstrate the superior 
property of the proposed attitude controllers, three numerical simulations are provided in 
that Section. Finally, conclusions are drawn in Section 5. 
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2. Equations of rotational motion for spacecrafts 

Assume the spacecraft is a rigid body; therefore, the Euler’s equation of rotational motion is 
adopted with the following general form as 

 ( ) bJ J J T D        ,     (1) 

where all the variables are defined in and please referring to the Nomenclature. 

Assume that the movable nozzle is located at the center of the spacecraft tail, and the 

distance between the movable nozzle center and the spacecraft’s center of gravity is  . 

Furthermore, we also assume that the spacecraft is equipped with a number of thrusters on 

the surface near the center of gravity that will produce a pure rolling moment whose 

direction is aligned with the vehicle axis, bX , referring to Fig. 1. Thus, the vector bL , defined 

as the relative displacement from the spacecraft’s center of gravity to the center of the 

movable nozzle, satisfies bL   . Note that J  is the moment of inertia matrix for a 

spacecraft with respect to the body coordinate frame, and hence is a 3 3  symmetric matrix. 

After referring to Fig. 1 and Fig. 2, the torque exerted on the spacecraft can be expressed in 

the body coordinate frame as 

 b b Tb bT L F M  
/

sin

cos sin

bx

p

p y

m n

n d

d d

 
 

  
 
  


 ,     (2) 

where n  is the magnitude of the movable nozzle thrust, pd  and yd  are the pitch angle and 

yaw angle, respectively, of the movable nozzle,  0 0
T

b bxM m  is the aforementioned 

variable moment in the axial direction of the spacecraft, and TbF  is the force produced by 

the movable nozzle in the body coordinate frame. 

 

Fig. 1. Scheme of a spacecraft with the movable nozzle and fixed thrusters. 
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Let the rotation matrix bB  denote the transformation from the body coordinate frame to the 

inertial coordinate frame. Thus, the force exerted on the spacecraft observed in the inertial 

coordinate system is as follows: 

yd

pd

bY

bX

bZ

T bF

 

Fig. 2. Two angles of the movable nozzle in the body coordinate frame. 

 M b MbF B F  . (3) 

From Eqs. (1) and (2), the rotational motion model of a spacecraft can then be derived as 

 

/

( ) sin

cos sin

bx

p

p y

m n

J J J n d D

d d

 
 

        
 
  


  , (4) 

where  1 2 3
T

D d d d  is a disturbance vector in the body coordinate frame. 

Generally speaking, the attitude of a rigid body may be described in various ways, and 
“quaternion” is one of the means. According to Euler’s rotation theory [21], there exist a unit 

vector U  and an angle   such that U  is perpendicular to the rotation plane with respect to 

a rotation angle  . Thus, for any quaternion, it can be defined as four parameters 

 1 2 3 4
T

Q q q q q   4

TTQ q 
  involving U  and  , i.e., 

 

1

2

3

4

sin( 2),

cos( 2).

q

Q q U

q

q





 
   
  



  (5) 

In theory, it can be verified that the time derivative of a quaternion is a function of the 
corresponding angular velocity and the quaternion itself [2-4], i.e., 

 
4

4

1 1
,

2 2
1

2
T

Q Q q

q Q

    

  




   (6) 
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From Eqs.(1) and (6), the dynamic model of a spacecraft, treated as a rigid body, can be 

derived by differentiation of the angular velocity and the associated error quaternion as a 

function of the corresponding angular velocity and its error as well as the error quaternion 

itself, i.e.,  

 

4

4

1 1

2 2
1

2

( )

e e e e e

T
e e e

b

Q Q q

q Q

J J J T D

    

  

       







 (7) 

where e d     is the error between the angular velocity at the present attitude and the 

desired attitude, and bT  is the torque exerted on the spacecraft due to the movable nozzle and 

the rolling moment. Whereas the error quaternion  1 2 3 4 4

TT T
e e e e e e eQ q q q q Q q     , 

 1 2 3
T
e e e eQ q q q , is defined as the required rotation from the initial quaternion 

 1 2 3 4
T

Q q q q q  to the desired quaternion  1 2 3 4
T

d d d d dQ q q q q , and can be 

derived in matrix form [2-4] as 

 

1 4 3 2 1 1

2 3 4 1 2 2

3 2 1 4 3 3

4 1 2 3 4 4

e d d d d

e d d d d
e

e d d d d

e d d d d

q q q q q q

q q q q q q
Q

q q q q q q

q q q q q q

      
            
      
     
     

,    (8) 

and 
3 2

3 1

2 1

0

0

0

e e

e e e

e e

q q

Q q q

q q

 
    
  

 is a skew-symmetric matrix. 

3. Nonlinear attitude controller design 

3.1 Sliding-mode attitude controller design 

Considering the presence of model uncertainties, parameter variations, and disturbances, 

we recognized that the sliding mode control is an effectively robust controller for various 

applications; in this paper, we consider a sliding-mode control to eliminate all variation 

influences of a spacecraft during the whole flying course for the practical controller design. 

We first design a sliding-mode attitude controller, which can compensate for the adverse 

effect owing to spacecraft variations. 

The principal procedure to verify the stability and robustness of the sliding-mode attitude 

tracking problem consists of the sliding and reaching conditions, and that will be given in 

detail as follows. 

Step 1: Choose the sliding surface such that the sliding condition will be satisfied and hence 

the origin of the error dynamic is exponentially stable. 
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From the sliding mode theory, once the reaching condition is satisfied, the system is 
eventually forced to stay on the sliding surface, i.e.,  

 0e eS PQ    ,     (9) 

where P  is a positive definite diagonal matrix. The system dynamics are then constrained 
by the following differential equations, referring to Eq. (7), as 

 
4

4

1 1
,

2 2
1

.
2

e e e e e

T
e e e

Q Q PQ q PQ

q Q PQ

   






     (10) 

Define another Lyapunov function 
1

( )
2

T
e e e eV Q Q Q , then 

 
4

4

( )

1
( )

2
1

2

T
e e e e

T
e e e e e

T
e e e

V Q Q Q

Q Q PQ q PQ

q Q PQ



   

 



,     (11) 

where 0T
e eQ Q   . 

Recalling that the quaternion definition 4eq  in general has two possible values different 

only in sign and the sign can be arbitrarily chosen to meet the design convenience. For the 

sake of design and analysis, 4eq  is selected as 4 0
0e t

q c


  , and because 4

1
0

2
T

e e eq Q PQ  , 

hence we can conclude that 4eq  is a positive and growing variable, i.e., 4( )eq t c . By 

quaternion definition, a quaternion always satisfies the so-called unit-norm property. That 

is, 2 2 2 2
1 2 3 4 1q q q q    , which implies that 41 eq , and hence 4( ) 1ec q t  , 0t  , so that 

the following relation will hold as 

 
1

( )
2 2

T T
e e e e e e

c
Q PQ V Q Q PQ    .     (12) 

By Lyapunov stability theory, it can be proved that eQ  will be driven to zero when the 

system is constrained on the sliding mode dynamics and so will the error angular velocity 

e . For the above reason, the system origin    3 1 3 1, 0 ,0e eQ     of the ideal system can be 

verified to be exponentially stable. 

Step 2: Design the controller such that the reaching condition is satisfied. 

Let us define the sliding surface as above equation (9) shown as e eS PQ   , where 

1 2 3[ ]P diag p p p  is a 3 3  positive definite diagonal matrix. Here, we make an 

assumption that J  is a symmetric and positive definite matrix, and let the Lyapunov 

function candidate be set as 
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1

2
T

sV S JS ,      (13) 

where 0sV  only when 0S  . Then, the time derivative of sV  can be derived as 

 
1

2
T T

sV S JS S JS   .    (14) 

Substituting Eq. (7) and the time derivative of Eq. (9) into the above equation (14), we have 

 

  4

1

2

1

2

1 1 1

2 2 2

T T
s

T
d e

T
b d e e e e

V S JS S JS

S J J JPQ JS

S J J T D J JP Q q JS

 

       
                   

 

  

 

    =   

 =

 (15) 

Let the control torque input bT  be proposed as 

  0 0 0 4 0 0

1 1 1

2 2 2
b s e e e e d sT K S J J S J P Q q J J

                 
 

   , (16) 

where  1 2 3s s s sK diag k k k  is a positive definite diagonal matrix, and s   

 1 2 3
T

s s s   , ( , , , , ) sgn( )si si d d d ic Q Q Q Q s      , with 

1 0

sgn( ) 0 0

1 0

i

i i

i

s

s s

s


 
 

, 1,2,3i  , 

and  1 2 3
T

S s s s  is a sliding surface. Let the external disturbance D  and the induced 2-

norm of J  and J  are all bounded, where 0J J J   , 0J J J     . If the inequality 

condition shown below can be guaranteed 

  max( , , , , ) , , , ,si d d d i d d d ic Q Q Q Q Q Q Q Q        , 1,2,3i  ,   (17) 

where 

 

 

 

1 2 3

4

1 1 1

2 2 2

T

d e e e eJ J D J JP Q q JS

   

                   
 

  ,   (18) 

where bounding functions i , 1,2,3i   are obviously functions of Q ,  , dQ , dQ  and dQ , 

then the exponential stability and robustness of the proposed controller for attitude tracking 

can be achieved. 

It is evident that Eq. (15) becomes 
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 
3

1

3
max

1

2
min

sgn( )

( ) 0

T
s s i si i i

i

T
s i si i

i

s

V S K S s c s

S K S s c

K S











   

     

  





 

,    (19) 

for 0S  , where min( )sK  is the minimum eigenvalue of sK , where sK  is a positive 

definite diagonal matrix as above mentioned. Therefore, the reaching and sliding conditions 

of the sliding mode 0S   are guaranteed. As a result, the exponential stability and 

robustness of the sliding mode attitude controller can be achieved. 

Remark 1: However, due to the existence of non-ideality in the practical implementation of 

the sign function sgn( )is , the control law bT  in (16) always suffers from the chattering 

problem. To alleviate such undesirable phenomenon, the sign function can be simply 

replaced by the saturation function. The system is now no longer forced to stay on the 

sliding surface but is constrained within the boundary layer is  , where   is a small 

positive value. The cost of such substitution is a reduction in the accuracy of the desired 

performance. 

To alleviate the chattering phenomenon, the saturation function may be employed to the 
control input of the sliding mode attitude control system. Consequently, the term 

 1 2 3
T

s s s s    in Eq. (16) can be replaced by 

 ( , , , , ) ( , )si si d d d ic Q Q Q Q Sat s      ,    (20) 

where 

1

( , )

1

i

i
i i

i

s

s
Sat s s

s



 





 

  

, 1,2,3i  . 

3.2 Fuzzy sliding-mode attitude controller design 

Upper bounds of the lumped uncertainty, which includes the external disturbances and 
internal perturbations, for the sliding-mode control need to be decided before the controller 
is using. In general, upper bounds of the lumped uncertainty are difficult to be obtained in 
advanced by computing, but always by the method of try and error. In this section, a fuzzy 
sliding-mode controller is proposed, in which a fuzzy inference mechanism is used to 
estimate upper bounds of the lumped uncertainty. We recognized that the prior expert 
knowledge of the fuzzy inference mechanism, which can be used to estimate upper bounds 
of the lumped uncertainty, is available effectively.  

Values of 1sc , 2sc , and 3sc  in Eq. (17) can be estimated by the fuzzy inference mechanism. 

The control block diagram of the fuzzy sliding-mode controller is depicted as in Fig. 3. 

Based on fuzzy set theory, associated fuzzy sets involved in fuzzy control rules are defined 

and listed as follows: 
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PB: positive big; PM: positive medium; PS: positive small; ZE: zero; 
NS: negative small; NM: negative medium; NB: negative big. 

Here universes of discourse for inputs is , is , 1,2,3i   and outputs ˆ
sic , 1,2,3i   are assigned 

to be  50, 50 ,  6000, 6000 , and  50, 50 , respectively. Membership functions for the 

fuzzy sets corresponding to switching surfaces is , 1,2,3i  , its derivative is , 1,2,3i   and 

upper bounds of the lumped uncertainty ˆ
sic , 1,2,3i  , are defined in Fig. 4. 

Because the seven fuzzy subsets NB, NM, NS, ZE, PS, PM, and PB are used to divide every 

element of sliding surfaces is , 1,2,3i   and its derivative is , 1,2,3i  , respectively, the 

fuzzy inference mechanism contains 49 rules. The resulting fuzzy inference rules are given 

as the following Table 1. 

 
 

 
 

Fig. 3. Control block diagram of the fuzzy sliding-mode controller. 

 

is
NB NM NS ZE PS PM PB 

PB ZE PS PS PM PM PB PB 

PM NS ZE PS PS PM PM PB 

PS NS NS ZE PS PS PM PM 

ZE NM NS NS ZE PS PS PM 

NS NM NM NS NS ZE PS PS 

NM NB NM NM NS NS ZE PS 

NB NB NB NM NM NS NS ZE 

Table 1. Rule base with 49 rules. 

   is
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Fig. 4. Membership functions of fuzzy sets. 
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The fuzzy outputs ˆ
sic , 1,2,3i  , can be calculated by the centre of area defuzzification as 

 

 
1

1 49
49

1 49

49 49

1 1

ˆ

i

i i

ij ijj i T
si i i

ij ijj j

c c
c

c C W



 

 


 

 
 
 
    


 

 

, 1,2,3i  ,    (21) 

where  1 49
T
i i iC c c   is an adjustable parameter vector, 1ic  through 49ic  are the centre 

of the membership functions of ˆ
sic , 

 1 49

49

1

i iT
i

ijj

W
 








 is a firing strength vector. Here, 

the absolute value of T
i iC W  in Eq. (21) is used to satisfy the requirement of estimating upper 

bounds, so that upper bounds of the lumped uncertainty are greater than or equal to zero, 

that is, ˆ 0sic  , 1,2,3i  . 

The following Lemma is introduced to enable the fuzzy sliding-mode controller such that 

the reaching condition of the switching surface is satisfied. By Lyapunov stability theory, the 

fuzzy sliding-mode attitude controller of the spacecraft can be proved as an exponentially 

stable system. The sufficient conditions for successful stability effect are stated in the 

following lemma. 

Lemma 1 Fuzzy sliding-mode attitude controller: Let the dynamic model of a spacecraft 
corresponding the angular velocity and the quaternion be given by Eqs. (1) and (6), and if 

the control torque input bT  is proposed as  

  0 0 0 4 0 0

1 1 1 ˆ
2 2 2

b s e e e e d sT K S J J S J P Q q J J
                 
 

   , (22) 

where  1 2 3s s s sK diag k k k  is a positive definite diagonal matrix, and ˆ
s   

1 2 3
ˆ ˆ ˆ T

s s s     , ˆ ˆ ( , ) sgn( )si si i i ic C W s    , with 

1 0

sgn( ) 0 0

1 0

i

i i

i

s

s s

s


 
 

, 1,2,3i  , and 

 1 2 3
T

S s s s  is a sliding surface that are defined as Eq. (9). Let the external disturbance 

D  and the induced 2-norm of J  and J  are all bounded, where 0J J J   , 0J J J     . 

And values of 1
ˆ
sc , 2

ˆ
sc , and 3

ˆ
sc  are chosen to be positive big enough and are computed by 

Eq. (21). Then the exponential stability and robustness of the fuzzy sliding-mode attitude 
control system can be achieved. 

Proof: See the Appendix 1. From the proof in the Appendix 1, the exponential stability and 

robustness of the fuzzy sliding-mode attitude controller can be guaranteed, so that the 

spacecraft attitude tracking system can be achieved completely. 
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3.3 Adaptive fuzzy sliding-mode attitude controller design 

Since the sliding-mode attitude controller for a spacecraft requires estimating upper bounds 

(constant values) of the lumped uncertainty, so that the lumped uncertainty during the 

entire flying course can be always eliminated. If upper bounds are not chosen appropriately, 

the high-gain problem will be suffered. That is, the control input torque is over-large 

definitely and the implementation cost is increased as well. Optimal upper bounds sic , 

1,2,3i  , cannot be obtained exactly by pure sliding mode control owing to the unknown of 

uncertainties. Therefore, the adaptive fuzzy control algorithm based on the principle of 

sliding mode control is developed to estimate optimal upper bounds of the lumped 

uncertainty and to achieve the minimum control torque. 

Assume there exists estimated upper bounds ˆ
sic , 1,2,3i   which can achieve minimum 

control torque and satisfy the sliding-mode condition of the switching surface, errors 

between estimated and optimal upper bounds are shown as 

 ˆ
si si sic c c   , 1,2,3i  ,    (23) 

where error upper bounds sic , 1,2,3i   are small values. Here, estimated upper bounds 

can be computed as Eq. (21). 

Assume there exists estimated upper-bound vector  1 2 3
ˆ ˆ ˆ ˆ

T
s s s sC c c c , which can achieve 

minimum control torque and satisfy the sliding-mode condition of the switching surface, the 

error vector between the estimated and optimal upper-bound vectors are shown as 

 ˆ
s s sC C C   ,    (24) 

The following theorem is introduced to enable the adaptive fuzzy sliding-mode controller 

such that optimal upper bounds can be obtained. By Lyapunov stability theory, the adaptive 

fuzzy sliding-mode attitude controller of a spacecraft can be proved as an exponentially 

stable system. The sufficient conditions for the successful stability effect are stated in the 

following theorem. 

Theorem 1 Adaptive fuzzy sliding-mode attitude controller: Let the dynamic model of a 

spacecraft corresponding the angular velocity and the quaternion be given by Eqs. (1) and 

(6), and if the control torque input bT  is proposed as  

  0 0 0 4 0 0

1 1 1

2 2 2
b s e e e e d sT K S J J S J P Q q J J

                 
 

   , (25) 

where  1 2 3s s s sK diag k k k  is a positive definite diagonal matrix, s   1 2 3

T

s s s     , 

( ) sgn( )si si i ic s dt s    , and  1 2 3
T

S s s s  is a sliding surface. Let the external 

disturbance D  and the induced 2-norm of J  and J  are all bounded, where 0J J J   , 

0J J J     , whereas ˆ
sic , 1,2,3i   is estimated upper bounds that are assumed to be 

optimal, and the bounding function is shown as Eq. (18). 
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For adapting upper bounds of the lumped uncertainty, the adaptation laws can be let as 

 si i ic s  , 1,2,3i  ,     (26) 

where the optimal upper-bound vector is defined as  1 2 3
T

s s s sC c c c  and 

1 2 3( , , )diag      is a positive definite diagonal matrix. Then the exponential stability and 

robustness of the adaptively fuzzy sliding-mode attitude control system can be achieved. 

Proof: To achieve the exponential stability and convergence of the spacecraft attitude 
tracking system, let us define the sliding surface as above equation (9) shown as 

e eS PQ  , where 1 2 3[ ]P diag p p p  is a 3 3  positive definite diagonal matrix. Here, 

we also make an assumption that J  is a symmetric and positive definite matrix, now we 

choose the Lyapunov-like function as 

 11 1

2 2
T T

s sV S JS C C    .     (27) 

where  1 2 3
T

S s s s is the sliding surface,  1 2 3
T

s s s sC c c c    is the error upper-bound 

vector between the optimal upper-bound vector sC  and the estimated upper-bound vector 

ˆ
sC , which elements are computed by Eq. (21), and 1 1 1 1

1 2 3( , , )diag        is a positive 

definite diagonal matrix. Then, the time derivative of V  can be derived as 

 11

2
T T T

s sV S JS S JS C C        .   (28) 

Substituting Eqs. (1) and (6) and the time derivative of Eq. (9) into the above equation (28), 
we have 

 

 

1

1
4

1

2

1 1 1

2 2 2

T T
d e s s

T T
b d e e e e s s

V S J J JPQ JS C C

S J J T D J JP Q q JS C C





          
                     

    

  

  

 =  

 (29) 

where s sC C  , ˆ
s s sC C C  , here assume ˆ

sC  is a slow-varying vector in which those 

elements are computed by Eq. (21), so that the first-time derivative of ˆ
sC  can be neglected. 

Let the control torque input bT  be proposed as Eq. (25), in which s   1 2 3

T

s s s     , 

( ) sgn( )si si i ic s dt s    , with 

1 0

sgn( ) 0 0

1 0

i

i i

i

s

s s

s


 
 

, 1,2,3i  , where the values of 1sc , 2sc , 

and 3sc  are optimal upper bounds. For adapting upper bounds of the lumped uncertainty, 

adaptation laws can be given as Eq. (26), and by the verification of fuzzy sliding-mode control 

in the Lemma 1, the inequality condition as Eq. (A.2) can be obtained. Bounding functions i , 
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1,2,3i   can also be defined as Eq. (18) and estimated upper bounds ˆ
sic , 1,2,3i   can be 

computed by Eq. (21). 

It is evident that Eq. (29) becomes 

 

   
3 3

1 1

3
max

1

2
min

ˆsgn( )

ˆ

( ) 0

T
s i si i i i si si

i i

T
s i si i

i

s

V S K S s c s s c c

S K S s c

K S







 



     

     

  

 





     (30) 

for 0S  , where min( )sK  is the minimum eigenvalue of sK , where sK  is a positive 

definite diagonal matrix as above mentioned. Therefore, the reaching and sliding conditions 

of the sliding mode 0S   are guaranteed. As a result, the exponential stability and 

robustness of the adaptive fuzzy sliding mode attitude controller can be achieved. 

Therefore, the global stability of the attitude tracking system is guaranteed by the proposed 

adaptive fuzzy sliding-mode controller. In the following, let us in detail verify the 

convergence of the states eQ  and e  and of the parameters sC . 

First, the function V  in Eq. (27) is a Lyapunov-like function, in our case simply a positive 

continuous function of time. Expression (30) shows that output errors converge to the 

sliding surface [16], so that 3 10S  . And because that a quaternion always satisfies the so-

called unit-norm property, we have eQ , e  are bounded. Let us now detail the proof itself. 

Since V  is negative or zero and V  is lower bounded, and because S , eQ , e  are bounded. 

So, in turn, from Eq. (30), we have  
3

1

ˆ2 sgn( ) sgn( )T
s si i i i i

i

V S K S c s s s


      exists and is 

bounded as a result that S  is bounded, and referring to Eq. (5), we have that eQ , eQ


, and 

eQ


 are all bounded, referring to reference [22], we have that e  is a function of eQ


, such 

that e  is bounded. Therefore we can concluded that V  is uniformly continuous on 

[0, )t  . Consequently by Barbalat’s lemma, V  tends to zero as t  . This implies from 

Eq. (30) that 0S   as t  .  

Now, given that S  converges to zero only exponentially, the actual differential equation 

that governs eQ  by some exponentially decaying term can be given as 

 ( )e eS PQ t    ,     (31) 

where 0( ) ak tt e S   is an exponentially decaying function of time t , whereas 

0 0e e t
S PQ


  . 

From Eqs. (7) and (31), the dynamics of eQ  are 
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   

   

4

4

4 4 3 3

1 2

1 1

2 2
1

2
1 1

2 2

( ) ( )

e e e e e

e e e e

e e e e e e

e e

Q Q q

Q PQ q PQ

Q PQ q PQ Q q I

f Q f Q

 



   

       

      

 



,   (32) 

where  1 4

1
( )

2
e e e e ef Q Q PQ q PQ     and  2 4 3 3

1
( )

2
e e ef Q Q q I    . As indicated by 

Eq. (7), 1( )e eQ f Q
 is an exponentially stable system, implying that the stability and 

convergence of Eq. (32) are governed by 2( )ef Q . If 2( ) 0ef Q   exponentially as 0t  , then 

the system is reduced to system Eq. (7), which is an exponentially stable system. From Eq. 

(31),   is an exponentially decaying function, and because  4 3 3

1

2
e eQ q I    is bounded, 

 4 3 3

1

2
e eQ q I     for some constant 0  , 2( )ef Q   also becomes an 

exponentially decaying function, which now truly ensures the stability and convergence of 

Eq. (32). 

To verify the convergence of the error parameter vector sC , by definition in Lemma 1, due 

to estimated values ˆ T
si i ic C W , 1,2,3i   being positive values, the estimated parameter 

vector ˆ
sC  is a slow-varying vector, referring to Fig. 4. From Eq. (30), S  is an exponentially 

decaying function vector of time t , we can obtain that the optimal vector sC  is a bounded 

vector by integrating Eq. (26). Finally, the bounded convergence of the error parameter 

vector ˆ
s s sC C C   in Eq. (24) can be confirmed. 

Remark 2: Similar to alleviate the chattering phenomenon, the saturation function may also 
be employed to the control input of the adaptive fuzzy sliding-mode control system. 

Consequently, the control torque bT  in Eq. (25) can be re-expressed as 

 

 

0 0 0 4

0 0

1 1 1

2 2 2

( , )

b s e e e e

d s

T K S J J S J P Q q

J J C Sat S 

           
 

    

 


,    (33) 

where  1 1 2 2 3 3( , ) ( , ) ( , ) ( , )
T

s s s sC Sat S c Sat s c Sat s c Sat s    , whereas 

1

( , )

1

i

i
i i

i

s

s
Sat s s

s



 





 

  

, 1,2,3i  . 

Now the system will not be forced to strictly stay on the sliding surface but constrained 

within the boundary layer is  . 
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4. Simulations 

To validate the proposed attitude tracking problem, we present three nonlinear 

controllers respectively consisting of the sliding-mode attitude controller design in 

Section 3.1, the fuzzy sliding-mode attitude controller design in Section 3.2 and the 

adaptive fuzzy sliding-mode attitude controller design in Section 3.3 for a rigid spacecraft, 

so as to demonstrate the performance and effectiveness of the respective controller 

designs. 

For simulation the initial conditions of quaternion and angular velocity are set as 

 (0) 0.866 0.212 0.283 0.354
T

Q    and (0) [0 0   0]T , respectively. Furthermore, the 

desired values of the quaternion ( ) 0.985 0.174cos(0.2 )dQ t t  0.174sin(0.2 ) 0]Tt  with 

period 10  seconds, the angular velocity 3 1( ) 0d t   , and its time derivative 3 1( ) 0d t    

are also be given. Of course, the setting elements of the desired quaternion must satisfy the 

unit-norm property of quaternion, i.e., 1T
d dQ Q  . 

The above initial conditions of 3 1(0) 0d    and 3 1(0) 0d    will have two principle 

advantages. One is to simplify the simulation procedure but not to lose the practical 

implementation; the other is to smoothly stabilize the spacecraft’s flying in the outer space. 

On the other hand, the nominal part and the uncertain part of inertia matrix of a spacecraft 

is set as 

1 4 5

0 4 2 6

5 6 3

950 10 5

10 600 30

5 30 360

a a a

J a a a

a a a

   
       
      

, 

95 1 0.5

1 60 3

0.5 3 36

J

 
    
  

. 

And the variation and the variation uncertain part of the inertial matrix are set as 

0

0.95 0.01 0.005

0.01 0.6 0.03

0.005 0.03 0.36

J

   
     
    

 , 

0.095 0.001 0.0005

0.001 0.06 0.003

0.0005 0.003 0.036

J

   
      
    

 . 

Further, we also consider the disturbance vector  1 2 3
T

D d d d , where the disturbances 

1d , 2d , and 3d , which are containing real white Gaussian noises of power 1 dBW, given in 

Eq. (1), are shown in Fig. 3(e). In our simulation, some positive definite diagonal matrices of 

P  (see Eq. (9)) for the sliding surface and sK  (see Eq. (16)) for the control torque input will 

also be shown as follows. 

120 0 0

0 120 0

0 0 120

P

 
   
  

, 

1400 0 0

0 1400 0

0 0 1400
sK

 
   
  

, 

where parameters 1sc , 2sc , 3sc  of the sliding-mode controller are appropriately set as 

1 2 3 10s s sc c c    (see Eq. (17)) to satisfy the better stability requirements of the overall 

system, such that external disturbances can be eliminated completely. 
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4.1 Simulation results of the sliding-mode attitude controller 

The appealing effect of the sliding-mode attitude control presented in quaternion form is 

given in Fig. 5(a), which shows the present attitude and the desired one simultaneously. The 

solid line in each sub-figure denotes the current quaternion of the spacecraft, where the 

dashed line denotes the desired attitude in Fig. 5(a), we can see that the current and desired 

attitudes are coincident with each other, that is, the attitude tracking effect is fulfilled after 

about 3 seconds. This is to show feasible of the conclusion from Eq. (19) and to show well 

results of attitude tracking of the spacecraft. Here, the robustness and effectiveness can 

simultaneously be demonstrated by results shown in Fig. 3 for the attitude control system. 

The sliding surface and the torque input of the sliding-mode controller with varied desired 

attitude are shown in Figs. 5(b) and 5(c), respectively to demonstrate the practical effect. 

Variations of the moment of inertia matrix J  and disturbances D , which are used in the 

proposed three nonlinear controllers, are shown in Figs. 3(d) and 3(e), respectively. 

4.2 Simulation results of the fuzzy sliding-mode attitude controller 

In this section, the revealing response of the fuzzy sliding-mode attitude control is given in 

Fig. 6(a), which also shows the present attitude and the desired one simultaneously. The 

solid line in each sub-figure denotes the current quaternion of the spacecraft, where the 

dashed line denotes the desired attitude in Fig. 6(a), we can see that the current and desired 

attitudes are coincident with each other. From Fig. 6(a), the attitude tracking effect is 

fulfilled almost totally after 3 seconds. This is to show feasible of the conclusion from Eq. 

(A.1) and to show well the results of attitude tracking of the spacecraft. The sliding surface 

and the torque input of the fuzzy sliding-mode controller with varied desired attitude are  
 

 
           (a) 
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             (b) 

 

 
              (c) 
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            (d) 

 
             (e) 

Fig. 5. Simulation results of (a) quaternion attitude tracking effects, (b) the convergence of 

sliding surface, (c) control torque inputs; (d) variations of J , and (e) real white Gaussian 

noises of power 1 dBW of the sliding-mode controller for spacecrafts. 
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           (a) 

 
 

 
          (b) 
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            (c) 

 
            (d) 

Fig. 6. Simulation results of (a) quaternion attitude tracking effects, (b) the convergence of 
sliding surface, (c) control torque inputs, and (d) estimated upper bounds of the lumped 
uncertainty of the fuzzy sliding-mode controller for spacecrafts. 
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shown in Figs. 6(b) and 6(c), respectively to demonstrate the tracking effect. Slow-varying 

upper bounds of the lumped uncertainty and disturbances D  are shown in Figs. 6(d) and 

5(e), respectively. 

4.3 Simulation results of adaptive fuzzy sliding-mode attitude controller 

The revealing response of the adaptive fuzzy sliding-mode attitude control also presented in 

quaternion form is given in Fig. 7(a), which also shows the present attitude and the desired 

one simultaneously. The solid line in each sub-figure denotes the current quaternion of the 

spacecraft, where the dashed line denotes the desired attitude in Fig. 7(a), we can see the 

current and desired attitudes are coincident with each other. From Fig. 7(a), the attitude 

tracking effect can be seen to be fulfilled after about 3 seconds. This is to show feasible of the 

conclusion from Eq. (30) and to show well results of spacecraft attitude tracking. Here, the 

robustness and effectiveness can simultaneously be demonstrated by the results shown in 

Fig. 7 for the attitude control system. The sliding surface and the torque input of the 

adaptive fuzzy sliding-mode controller with varied desired attitude are shown in Figs. 7(b) 

and 7(c), respectively to demonstrate the exponential stability and convergence effect. The 

optimal and estimated upper bounds of the lumped uncertainty and disturbances D  are 

shown in Figs. 7(d) and 5(e), respectively. Here the dashed line in each sub-figure denotes 

estimated upper bounds of the lumped uncertainty, where the solid line denotes optimal 

upper bounds of the lumped uncertainty in Fig. 7(d), we can see that optimal and estimated 

upper bounds are aligned with each other, that is, the tracking effect of the upper-bound  
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           (b) 

 

 
               (c) 
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            (d) 

 

Fig. 7. Simulation results of (a) quaternion attitude tracking effects, (b) the convergence of 

sliding surface, (c) control torque inputs, and (d) optimal and estimated upper bounds of the 

lumped uncertainty of the adaptive sliding-mode controller for spacecrafts. 

estimation can be fulfilled finally. Therefore, for upper-bound estimation the persistent 

exciting of a spacecraft is rich enough for the proposed controller. 

5. Conclusions 

Since the attitude control and system stability are the key for space technology, we address 

the nonlinear attitude controller designs of a spacecraft, respectively consisting of the 

sliding-mode, the fuzzy sliding-mode and the adaptive fuzzy sliding-mode attitude 

controllers. The fuzzy sliding-mode controller is designed to estimate upper bounds of the 

lumped uncertainty, and the adaptive fuzzy sliding-mode controller with center adaption of 

membership functions is designed to estimate optimal upper bounds of the lumped 

uncertainty, respectively. We prove the exponential stability for the proposed attitude 

controllers for external disturbances and inertia uncertainties through the aids of the 

Lyapunov stability analysis and the Barbalat’s lemma. 

Extensive simulations have been adopted to verify the feasibility for three attitude tracking 

controllers corresponding to the lumped uncertainty. The system performance and its 

stability can also be demonstrated by use of the aforementioned theoretical derivations and 

the realistic simulations. 

sic , 1,2,3i  : 

Optimal upper bounds 

ˆ
sic , 1,2,3i  : 

Estimated upper bounds 
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6. Nomenclature 

D  Disturbance vector 

pd  Pitch angle of propellant 

yd  Yaw angle of propellant 

F  Thrust vector 

J  Moment of inertia matrix 

0J  Nominal part of J  

J  Variation of J  

  Distance between nozzle and center of gravity 

 0 0
T

bL    Displacement vector 

M  Moment vector 

n  Magnitude of movable nozzle thrust 

Q  Quaternion 

S  Sliding surface 

T  Torque 

  Angular velocity vector 

7. Subscripts 

b  The body coordinate frame 

d  Desired 

e  Error 

f  Fuzzy sliding-mode controller 

M  Spacecraft 

s  Sliding-mode controller 

T  Thrust 

8. Appendix 1 

8.1 Proof of Lemma 1: Fuzzy sliding-mode attitude controller design  

Proof: To achieve the exponential stability and convergence of the spacecraft attitude 

tracking system designed the fuzzy sliding-mode controller, the dynamic model of a 

spacecraft, the control torque input, and upper bounds of the lumped uncertainty are 

respectively defined as Eqs. (1), (6), (22), and (21). And if the Lyapunov function is defined 

as 
1

2
T

fV S JS , then the time derivative of the Lyapunov function can be obtained as  

1

2
T T

fV S JS S JS      

  4

1 1 1

2 2 2
T

b d e e e eS J J T D J JP Q q JS
                   

  =  
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 
3

1

ˆ sgn( )T
s i si i i

i

S K S s c s


     

3
max

1

ˆT
s i si i

i

S K S s c 


       

 
2

min( ) 0sK S   ,        (A.1) 

where the values of 1
ˆ
sc , 2

ˆ
sc , and 3

ˆ
sc  are chosen to be positive big enough and are 

computed by Eq. (21) to guarantee that the inequality condition shown below can be 
satisfied 

  maxˆ ( , ) , , , ,si i i i d d d ic C W Q Q Q Q     ,     (A.2) 

where bounding functions i , 1,2,3i   are shown as Eq. (18). 

Here we assume that the external disturbance D  and the induced 2-norm of J  and J  are 

all bounded, Therefore, the main goal of achieving exponential stability and robustness of 

the fuzzy sliding-mode attitude controller for the spacecraft attitude tracking system can be 

satisfied completely. 
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