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1. Introduction

The relative orbital motion problem may now be considered classic, because of so many
scientific papers written on this subject in the last few decades. This problem is also
quite important, due to its numerous applications: spacecraft formation flying, rendezvous
operations, distributed spacecraft missions.

The model of the relative motion consists in two spacecraft flying in Keplerian orbits due
to the influence of the same gravitational attraction center (see Fig. 1). The main problem
is to determine the position and velocity vectors of the Deputy satellite with respect to a
reference frame originated in the Leader satellite center of mass. This non-inertial reference
frame, traditionally named LVLH (Local-Vertical-Local-Horizontal) is chosen as follows: the
Cx axis has the same orientation as the position vector of the Leader with respect to an inertial
reference frame originated in the attraction center; the Cz axis has the same orientation as the
Leader orbit angular momentum; the Cy axis completes a right-handed frame.

Fig. 1. The model of the relative orbital motion.
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Consider ω = ω(t) the angular velocity of the LVLH reference frame with respect to an
inertial frame originated in the attraction center. By denoting rc the Leader position vector
with respect to an inertial frame originated in O (the attraction center), fc = fc(t) the true
anomaly, ec the eccentricity and pc the semilatus rectum of the Leader orbit, it follows that
vector ω has the expression:

ω = ḟc
hc

hc
=

1

r2
c

hc =

[
1 + ec cos fc(t)

pc

]2

hc, (1)

where vector rc is expressed with respect to the LVLH frame and has the form

rc =
pc

1 + ec cos fc(t)

r0
c

r0
c

, (2)

and hc is the angular momentum of the leader which will be named in the following satellite
chief (or chief).

Vector r0
c points to the initial position of the Leader spacecraft with respect to the inertial

reference frame originated in the attraction center O. The initial value problem that models
the motion of the Deputy satellite with respect to the LVLH reference frame is

{
r̈ + 2ω × ṙ +ω × (ω × r) + ω̇ × r +

µ
|rc+r|3 (rc + r)− µ

r3
c
rc = 0

r(t0) = ∆r, ṙ(t0) = ∆v
(3)

where µ > 0 is the gravitational parameter of the attraction center and ∆r; ∆v represent the
relative position and relative velocity vectors of the Deputy spacecraft with respect to LVLH
at the initial moment of time t0 ≥ 0.

The analysis of relative motion began in the early 1960s with the paper of Clohessy and
Wiltshire (Clohessy & Wiltshire (1960)), who obtained the equations that model the relative
motion in the situation in which the chief spacecraft has a circular orbit and the attraction force
is not affected by the Earth oblateness. They linearized the nonlinear initial value problem
that models the relative motion by assuming that the relative distance between the two
spacecraft remains small during the mission. The Clohessy - Wiltshire equations are still used
today in rendezvous maneuvers, but they cannot offer a long-term accuracy because of the
secular terms present in the expression of the relative position vector. Independently, Lawden
(Lawden (1963)), Tschauner and Hempel (Tschauner & Hempel (1964)), and Tschauner
(Tschauner (1966)) obtained the solution to the linearized equations of motion in the situation
in which the chief orbit is elliptic, but their solutions still involved secular terms and also had
singularities. The singularities in the Tschauner - Hempel equations were removed firstly by
Carter (Carter (1990)) and also by Yamanaka and Andersen (Yamanaka & Andersen (2002)).
Later on, the formation flying concept began to be considered, and the problem of deriving
equations for the relative motion with a long-term accuracy degree raised, together with the
need to obtain a more accurate solution to the relative orbital motion problem (Alfriend et al.
(2009)). Gim and Alfriend (Gim & Alfriend (2003)) used the state transition matrix in the study
of the relative motion.

The main goal was to express the linearized equations of motion with respect to the initial
conditions, with applications in formation initialization and reconfiguration. Attempts to
offer more accurate equations of motion starting from the nonlinear initial value problem
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Spacecraft Relative Orbital Motion 3

that models the motion were made. Gurfil and Kasdin (Gurfil & N.J.Kasdin (2004)) derived
closed-form expression of the relative position vector, but only when the reference trajectory
is circular. Similar expressions for the law of relative motion starting from the nonlinear
model are presented in (Alfriend et al. (2009); Balaji & Tatnall (2003); Ketema (2006); Lee
et al. (2007)). The relative orbital motion problem was also studied from the point of view
of the associated differential manifold. Gurfil and Kholshevnikov (Gurfil & Kholshevnikov
(2006)) introduced a metric which helps to study the relative distance between Keplerian
orbits. Gronchi (Gronchi (2006),Gronchi (2005)) also introduced a metric between two confocal
Keplerian orbits and used this instrument in problems of asteroid and comet collisions.

In 2007, Condurache and Martinusi (Condurache & Martinusi (2007b;c)) offered the
closed-form solution to the nonlinear unperturbed model of the relative orbital motion. The
method led to closed-form vectorial coordinate-free expressions for the relative law of motion
and relative velocity and it was based on an approach first introduced in 1995 (Condurache
(1995)). It involves the Lie group of proper orthogonal tensor functions and its associated
Lie algebra of skew-symmetric tensor functions. Then, the solution was generalized to the
problem of the relative motion in a central force field (Condurache & Martinusi (2007e;
2008a;b)). An inedite solution to the Kepler problem by using the algebra of hypercomplex
numbers was offered in (Condurache & Martinusi (2007d)). Based on this solution and by
using the hypercomplex eccentric anomaly, a unified closed-form solution to the relative
orbital motion was determined (Condurache & Martinusi (2010a)).

The present approach offers a tensor procedure to obtain exact expressions for the relative
law of motion and the relative velocity between two Keplerian confocal orbits. The solution
is obtained by pure analytical methods and it holds for any chief and deputy trajectories,
without involving any secular terms or singularities. The relative orbital motion is reduced,
by an adequate change of variables, into the classic Kepler problem. It is proved that the
relative orbital motion problem is superintegrable. The tensor play only a catalyst role, the
final solution being expressed in a vectorial form.

To obtain this solution, one has to know only the inertial motion of the chief
spacecraft and the initial conditions (position and velocity) of the deputy satellite in the
local-vertical-local-horizontal (LVLH) frame. Both the relative law of motion and the relative
velocity of the deputy are obtained, by using the tensor instrument that is developed in the
first part of the paper. Another contribution is the expression of the solution to the relative
orbital motion by using universal functions, in a compact and unified form. Once the closed
form solution is given a comprehensive analysis of the relative orbital motion of satellites is
presented. Next the periodicity conditions in the relative orbital motion are revealed and in
the end a tensor invariant in the relative motion is highlighted. The tensor invariant is a very
useful propagator for the state of the deputy spacecraft in the LVLH frame.

2. Mathematical preliminaries

The key notions that are studied in this Section are proper orthogonal tensorial maps and a
Sundman-like vectorial regularization, the latter introduced via a vectorial change of variable.
The proper orthogonal tensorial maps are related with the skew-symmetric tensorial maps
via the Darboux equation. The results presented in this section appeared for the first time
in (Condurache (1995)). The section related to orthogonal tensorial maps after a powerful
instrument in the study of the motion with respect to a non-inertial reference frames.

57Spacecraft Relative Orbital Motion
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2.1 Proper orthogonal tensorial maps

We denote SOR
3 the set of maps defined on the set of real numbers R with values in the set of

proper orthogonal tensors SO3:

SO
R
3 =

{
R : R → SO3|RRT = I3, det R = 1

}
(4)

We denote soR
3 the set of maps defined on the set of real numbers R with values in the set of

skew-symmetric tensors soR
3 :

soR
3 =

{
ω̃ : R → so3|ω̃T = −ω̃

}
(5)

We denote VR
3 to be the set of applications that can be on R with values in the free vectors set

with dimension 3 ( V3).

Theorem 1. The initial value problem:

Q̇ + ω̃Q = 02, Q(t0) = I3 (6)

has a unique solution Q ∈ SOR
3 for any continuous map ω̃ ∈ soR

3 .

Proof. Denote QT the transpose of tensor Q. Computing:

d

dt
(QQT) = Q̇QT + QQ̇T = Qω̃QT − Qω̃QT = 03 (7)

it follows that
QQT = QQT(t0) = I3 (8)

Since Q = Q(t) is a continuous map, t ≥ t0, it follows that det(Q) is a continuous map too.
From Eq. (8) it results det(Q) ∈ [−1, 1]. Since det(Q(t0)) = det I3 = 1, it follows that:

{
QQT = I3

det(Q) = 1
(9)

therefore Q ∈ SOR
3 is a proper orthogonal tensor map.

Equation (6) represents the tensor form of the Darboux equation (Condurache & Martinusi
(2010b); Darboux (1887)). Its solution will be denoted R−ω . It models the rotation with
instantaneous angular velocity −ω (ω is the vectorial map associated to the skew-symmetric
tensor ω̃). The link between them is given by: ω̃x = ω × x, ∀x ∈ VR

3 ; where V3 is the
three-dimensional linear space of free vectors and ” × ” denotes the cross product.

The inverse (in this case the transpose) of tensor R−ω is denoted:

RT
−ω

= Fω (10)
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Theorem 2. The tensor map Fω satisfies:

1. Fω is invertible and F−1
ω

= FT
ω

2. Fωu · Fωu = u · v, ∀u, v ∈ VR
3

3. |Fωu| = |u|, ∀u ∈ VR
3

4. Fω(u × u) = Fωu × Fωv, ∀u, v ∈ VR
3

5. d
dt Fωu = Fω(u̇ +ω × u), ∀u ∈ VR

3 , differentiable

6. d2

dt2 Fωu = Fω(ü + 2ω × u̇ +ω × (ω × u) + ω̇ × u), ∀u ∈ VR
3 .

If vector ω has fixed direction, given by the unit vector u;ω = ω(t)u with ω a continuous real
valued map, the Darboux equation (6) has the explicit solution:

R−ω = I3 − (sin ϕ)ũ + (1 − cos ϕ)ũ2 (11)

where ϕ(t) =
∫ t

t0

ω(s)ds

Following from Eq (11), if vector ω is constant and nonzero, the solution to the Darboux
equation (6) is written as:

R−ω = I3 − [sin ω(t − t0)]
ω̃

ω
+ [1 − cos ω(t − t0)]

ω̃
2

ω
. (12)

3. Closed-form solution to the relative orbital motion problem

3.1 Vectorial solutions

In this section we present the closed-form exact solution to Eq. (3). In the initial value problem
(3), we make the change of variable:

r∗ = Fω(r + rc) (13)

where rc is the solution of the problem:

{
r̈c + 2ω × ṙc +ω × (ω × rc) + ω̇ × rc − µ

r3
c
rc = 0

rc(t0) = r0
c , ṙc(t0) = ṙ0

c

(14)

After some algebra, it follows that

r̈∗ = Fω {(r̈ + r̈c) + 2ω × (ṙ + ṙc) +ω × (ω × (r + rc)) + ω̇ × (r + rc)} (15)

and furthermore

r̈∗ = Fω {r̈ + 2ω × ṙ +ω × (ω × r) + ω̇ × r}+ Fω {r̈c + 2ω × ṙc +ω × (ω × rc) + ω̇ × rc}
(16)

Using Eqs. (3) and (14) we obtain:

r̈∗ = Fω

[
µ

r3
c

rc −
µ

|r + rc|3
(r + rc)−

µ

r3
c

rc

]
= − µ

|r + rc|3
Fω(r + rc) (17)

59Spacecraft Relative Orbital Motion
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which leads to:
r̈∗ +

µ

r3∗
r∗ = 0 (18)

The initial conditions for equation (18) are deduced by taking into account that Fω(t0) = I3

and Eq. (13):

r∗(t0) = r0
c + ∆r (19)

ṙ∗(t0) = v0
c + ∆v +ω(t0)× ∆r (20)

where r0
c = rc(t0), v0

c = ṙc(t0) +ω(t0)× r0
c .

From (10) and (13) we deduce:
r = R−ωr∗ − rc (21)

The above considerations lead to the main result of this paper. This is stated thus: the solution
to the relative orbital motion problem, described by the initial value problem (3) is:

r = R−ωr∗ −
pc

1 + ec cos fc(t)

r0
c

r0
c

(22)

where R−ω is the solution of Eq. (6) and r∗ is the solution to the initial value problem:

r̈∗ +
µ

r3∗
r∗ = 0; r∗(t0) = r0

c + ∆r; ṙ∗(t0) = v0
c + ∆v +ω(t0)× ∆r (23)

and the relative velocity may be computed as:

v = R−ω ṙ∗ − ω̃R−ωr∗ −
ec|hc| sin fc(t)

pc

r0
c

r0
c

(24)

This result shows a very interesting property of the relative orbital motion problem (3). We
have proven that this problem is super-integrable, by reducing it to the classic Kepler problem
(23). The solution of the relative orbital motion problem is expressed thus:

r = r(t, t0, ∆r, ∆v); v = v(t, t0, ∆r, ∆v) (25)

The Kepler problem (23) satisfies the prime integral of energy:

ṙ2
∗
2
− µ

r∗
= ζ. (26)

Taking into account (22) , (24) and (26) results that the problem which models the motion of
the Deputy satellite with respect to the LVLH frame Eq. (3) has the following prime integral

v2

2
− V(r, ṙ, t) = ζ (27)

where V = V(r, ṙ, t) is the generalized potential defined by:

V(r, ṙ, t) = (ω, r, ṙ) +
1

2
(ω × r)2 +

µ

|r + rc|
− µ

r3
c

r · rc (28)

and ζ

ζ =
1

2
|v0

c + ∆v +ω(t0)× ∆r|2 − µ

|r0
c + ∆r| . (29)

The prime integral (27) generates in the phase space a differential manifold associated to the
relative orbital motion. The solutions (22) and (24) are a parametrization of this manifold.
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3.2 An unified solution for relative orbital motion

Here, we present another formulation of the solution to the relative orbital motion. Let Uk, k =
{0, 1, 2, 3} , Uk = Uk(χ, α) be the universal functions defined in (Battin (1999)), pp. 175-179,
with

α =
2

|r0
c + ∆r| −

|v0
c + ∆v +ω(t0)× ∆r|2

µ
= −µζ (30)

and χ a Sudman-like independent universal variable that satisfies

dt

dχ
=

1√
µ

r∗ (31)

Then, the solution to the initial value problem (23) may be expressed as Eq. (25):

r∗ =

{
U0 +

[
1

|r0
c + ∆r| −

|v0
c + ∆v +ω(t0)× ∆r|2

µ

]
U2

}
(r0

c + ∆r)+

+

[
U1

|r0
c + ∆r|√

µ
+ U2

(r0
c + ∆r) · (v0

c + ∆v +ω(t0)× ∆r)

µ

]
× (v0

c + ∆v +ω(t0)× ∆r)

(32)

and the magnitude of the solution is:

r∗ = |r0
c + ∆r|U0 +

(r0
c + ∆r) · (v0

c + ∆v +ω(t0)× ∆r)

µ
U1 + U2 (33)

The velocity of the motion governed by Eq.(23) is

ṙ∗ = −
√

µ

r∗
U1

r0
c + ∆r

|r0
c + ∆r| +

√
µ

r∗

[
U0

|r0
c + ∆r|√

µ

+U1
(r0

c + ∆r) · (v0
c + ∆v +ω(t0)× ∆r)

µ

]
× (v0

c + ∆v +ω(t0)× ∆r)

(34)

Then, using (22) and (24) together with (32) and (34), the solution to the initial value problem
(3) may be written as:

r = R−ω

{{
U0 +

[
1

|r0
c + ∆r| −

|v0
c + ∆v +ω(t0)× ∆r|2

µ

]
U2

}
(r0

c + ∆r)+

+

[
U1

|r0
c + ∆r|√

µ
+ U2

(r0
c + ∆r) · (v0

c + ∆v +ω(t0)× ∆r)

µ

]

×(v0
c + ∆v +ω(t0)× ∆r)

}
− pc

1 + ec cos fc(t)

r0

r0
.

(35)

v = R−ω

{√
µ

r∗
U1

r0
c + ∆r

|r0
c + ∆r| +

√
µ

r∗

[
U0

|r0
c + ∆r|√

µ

+U1
(r0

c + ∆r) · (v0
c + ∆v +ω(t0)× ∆r)

µ

]
× (v0

c + ∆v +ω(t0)× ∆r)

}

−ω̃R−ω

{{
U0 +

[
1

|r0
c + ∆r| −

|v0
c + ∆v +ω(t0)× ∆r|2

µ

]
U2

}
(r0

c + ∆r)+

+

[
U1

|r0
c + ∆r|√

µ
+ U2

(r0
c + ∆r) · (v0

c + ∆v +ω(t0)× ∆r)

µ

]

×(v0
c + ∆v +ω(t0)× ∆r)

}
− ec|hc| sin fc(t)

pc

r0
c

r0
c

.

(36)
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where R−ω = I3 − sin f 0
c

h̃c

hc
+ (1 − cos f 0

c )
h̃2

c

h2
c

and f 0
c = fc(t)− fc(t0).

The universal functions Uk are linked by a Kepler-like equation (Battin (1999)):

√
µ(t − t0) = U1(χ; α)|r0

c + ∆r|+ U2(χ; α)
(r0

c + ∆r) · (v0
c + ∆v +ω(t0)× ∆r)√

µ
+ U3(χ; α)

(37)

Equations (35) and (36) offer the closed-form compact solution to the relative orbital motion
problem. They hold for all types of reference trajectories of the chief and deputy (elliptic,
parabolic, hyperbolic).

4. Comprehensive analysis of the relative orbital motion of satellites

By using the results presented in the previous sections, we are about to offer the closed-form
solution to the relative orbital motion in all possible particular cases. In this approach, the
chief inertial trajectory is less important than the deputy inertial trajectory, and the study will
focus on the nature of the latter. We must make here the remark that in fact the initial value
problem (23) models the motion of the deputy spacecraft in the inertial frame. This equation
is deduced by knowing only the chief motion and the initial conditions of the deputy in the
LVLH frame. From this point, when referring to the deputy inertial motion, we refer in fact to
the motion governed by the initial value problem (23).

It is possible to obtain a closed-form solution to the nonlinear model of the relative orbital
motion (3) in the situation where the inertial deputy trajectory is an ellipse, a parabola, or a
hyperbola. These situations are delimited by the sign of the generalized specific energy of the
deputy spacecraft (Battin (1999); Condurache & Martinusi (2007a)). It was proven that in the
conditions that are given above, the sign of the quantity

ζ =
1

2
|v0

c + ∆v +ω(t0)× ∆r|2 − µ

|r0
c + ∆r| (38)

gives the type of the Keplerian inertial trajectory of the deputy spacecraft, i.e., if ζ < 0 the
inertial trajectory of the deputy is an ellipse, if ζ = 0 it is a parabola, and if ζ > 0 it is a
hyperbola. An accurate observer would remark that the previous phrase is mathematically
correct only if the angular momentum h of the deputy inertial orbit is nonzero, h �= 0,

h = (r0
c + ∆r)× (v0

c + ∆v +ω(t0)× ∆r). (39)

Only this situation will be taken into consideration in this approach.

In the following the elliptic inertial deputy trajectory (ζ < 0, h �= 0) will be analyzed. The
inertial trajectory of the deputy spacecraft is an ellipse (or a circle). The motion on this orbit is
modeled by the position vector r∗, which is the solution to the initial value problem (23). The
expressions for the vectors r∗ and ṙ∗ are:

r∗ = a[cos E(t)− e] + b sin E(t) (40)

ṙ∗ =
n

1 − e cos E(t)
[−a sin E(t) + b cos E(t)] (41)
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where e represents the vector corresponding to the vectorial eccentricity of the Keplerian
motion described by Eq. (23); its expression is

e =
1

µ
(v0

c + ∆v +ω(t0)× ∆r)× h − r0
c + ∆r

|r0
c + ∆r| . (42)

If e = 0, the inertial trajectory of the deputy spacecraft is circular; h is defined in Eq. (31);
n is the mean motion of the motion described by Eq. (23); a and b represent the vectors that
model the semimajor and semiminor axis of the deputy inertial trajectory respectively; their
expressions are (Condurache & Martinusi (2007a)):

n =
(2|ζ|) 3

2

µ
; a =

{
µ

2e|ζ| e, e �= 0

r0
c + ∆r, e = 0

; b =

{
1

e
√

2|ζ|
(h × e), e �= 0

1
n (v

0
c + ∆v +ω(t0)× ∆r), e = 0

; (43)

E(t) represents the deputy spacecraft eccentric anomaly; it is the solution to the Kepler
equation:

E(t)− e sin E(t) = n(t − tp), t ∈ [t0,+∞] (44)

where tP denotes the time of periapsis passage of the deputy spacecraft and it is computed
from (Condurache & Martinusi (2007a))

tp = t0 −
1

n
[E(t0)− e sin E(t0)] (45)

while

cos E(t0) =
1

e

(
1 − n

|r0
c + ∆r|√

2|ζ|

)
(46)

sin E(t0) = n
∆v · (r0

c + ∆r)

2e|ζ|

[
1 − ω(t0) · h

µ
|r0

c + ∆r|
]

. (47)

From (22) and (24) combined with (40) and (41) the relative law of motion and the relative
velocity are modeled by:

r = [cos E(t)− e]

{
hc · a

|hc|2
hc − sin f 0

c
h̃c · a

|hc|
− cos f 0

c
h̃2

c · a

|hc|2

}

+ sin E(t)

{
hc · b

|hc|2
hc − sin f 0

c
h̃c · b

|hc|
− cos f 0

c
h̃2

c · b

|hc|2

}
− pc

1 + ec cos fc(t)

r0

r0

(48)

v =
−n sin E(t)

1 − e cos E(t)

{
hc · a

|hc|2
hc − sin f 0

c
h̃c · a

|hc|
− cos f 0

c
h̃2

c · a

|hc|2

}

+
n cos E(t)

1 − e cos E(t)

{
hc · b

|hc|2
hc − sin f 0

c
h̃c · b

|hc|
− cos f 0

c
h̃2

c · b

|hc|2

}

+
[1 + ec cos fc(t)]2[cos E(t)− e]

p2
c

×
{

sin f 0
c (t)

|hc|
h̃2

c a − cos f 0
c (t)h̃ca

}

+
[1 + ec cos fc(t)]2[sin E(t)]

p2
c

×
{

sin f 0
c (t)

|hc|
h̃2

c b − cos f 0
c (t)h̃cb

}

− ec|hc| sin fc(t)

pc

r0
c

|r0
c |

(49)
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If the deputy trajectory is circular (e = 0), Eqs. (43) are taken into account, together with:

p = |r0
c + ∆r|; E(t) =

|h|
|r0

c + ∆r|2 (t − t0) (50)

If the reference trajectory is circular, the closed-form Eqs. (48) and (49) change according to
the following expressions:

ec = 0; f 0
c (t) = nc(t − t0) (51)

It follows that in the situation when the chief spacecraft has an inertial circular trajectory, Eqs.
(48) and (49) transform into

r = [cos E(t)− e]

{
hc · a

|hc|2
hc − sin(nc(t − t0))

h̃c · a

|hc|
− cos(nc(t − t0))

h̃2
c · a

|hc|2

}

+ sin E(t)

{
hc · b

|hc|2
hc − sin(nc(t − t0))

h̃c · b

|hc|
− cos(nc(t − t0))

h̃2
c · b

|hc|2

}
− r0

c

(52)

v =
−n sin E(t)

1 − e cos E(t)

{
hc · a

|hc|2
hc − sin(nc(t − t0))

h̃c · a

|hc|
− cos(nc(t − t0))

h̃2
c · a

|hc|2

}

+
n cos E(t)

1 − e cos E(t)

{
hc · b

|hc|2
hc − sin(nc(t − t0))

h̃c · b

|hc|
− cos(nc(t − t0))

h̃2
c · b

|hc|2

}

+
cos E(t)− e

|r0
c |2

{
1

|hc|
sin[nc(t − t0)]h̃

2
c a − cos[nc(t − t0)]h̃ca

}

+
sin E(t)

|r0
c |2

{
1

|hc|
sin[nc(t − t0)]h̃

2
c b − cos[nc(t − t0)]h̃cb

}

(53)

We make here the following remark: the equations (48) and (49) represent the generalization
to the Tschauner-Hempel (TH) and Lawden solution. While TH and Lawden equations are
the solution to the linearized model for the relative motion, the equations deduced here
represent the solution to the nonlinear original model of the relative motion. They stand
true for any elliptic targeted and reference trajectory. The Eqs. (52) and (53) generalize the
Clohessy-Wiltshire model.

In the end of this subsection, we will present the closed-form exact expressions for the relative
law of motion and velocity with respect to the eccentric anomalies in the situation when both
chief and deputy are satellites (the ellipse-ellipse situation). From the Kepler equations written
for both chief and deputy inertial motions

Ec − ec sin Ec = nc(t − tc
p) (54)

E − e sin E = n(t − tp) (55)

one may derive the implicit equation that links these anomalies by eliminating the time t from
Eqs. (54) and (55):

Ec − ec sin Ec

nc
+ tc

p =
E − e sin E

n
+ tp (56)
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As the motion of the chief satellite is known, so is function Ec. The eccentric anomaly of the
Deputy satellite is then obtained by solving the implicit functional equation:

E − e sin E =
n

nc
(Ec − ec sin Ec) + n(tc

p − tp) (57)

By taking into account the relations between the true anomaly and the eccentric anomaly of a
Keplerian elliptic orbit ⎧

⎪⎨
⎪⎩

cos f =
cos E − e

1 − e cos E

sin f =

√
1 − e2 sin E

1 − e cos E

, (58)

equations (49) and (50) are transformed into:

r = [cos E − e]

{
hc · a

|hc|2
hc −

√
1 − e2

c
sin(E0

c + Ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃ca

|hc|

− (cos Ec − ec)(cos E0
c − ec)− (1 − e2

c ) sin Ec sin E0
c

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃2
c a

|hc|2

}

+ sin E

{
hc · b

|hc|2
hc −

√
1 − e2

c
sin(E0

c + Ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃cb

|hc|

− (cos Ec − ec)(cos E0
c − ec)− (1 − e2

c ) sin Ec sin E0
c

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃2
c b

|hc|2

}

− pc(1 − ec cos Ec)

1 − e2
c

r0
c

|r0
c |

(59)

v =
−n sin E

1 − e cos E

{
hc · a

|hc|2
hc −

√
1 − e2

c
sin(E0

c + Ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃ca

|hc|

− (cos Ec − ec)(cos E0
c − ec)− (1 − e2

c ) sin Ec sin E0
c

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃2
c a

|hc|2

}

+
n cos E

1 − e cos E

{
hc · b

|hc|2
hc −

√
1 − e2

c
sin(E0

c + Ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃cb

|hc|

− (cos Ec − ec)(cos E0
c − ec)− (1 − e2

c ) sin Ec sin E0
c

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃2
c b

|hc|2

}

+
(1 − e2

c )(cos E − e)

(1 − ec cos Ec)p2
c

×
{
−
√

1 − e2
c

sin(E0
c + Ec)− ec(sin Ec + sin E0

c )

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃ca

|hc|

− (cos Ec − ec)(cos E0
c − ec)− (1 − e2

c ) sin Ec sin E0
c

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃ca

}

+
(1 − e2

c )(sin E)

(1 − ec cos Ec)p2
c
×

{
−
√

1 − e2
c

sin(E0
c + Ec)− ec(sin Ec + sin E0

c )

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃cb

|hc|

− (cos Ec − ec)(cos E0
c − ec)− (1 − e2

c ) sin Ec sin E0
c

(1 − ec cos Ec)(1 − ec cos E0
c )

h̃cb

}

− ec|hc|(1 − e2
c )sinEc

(1 − ec cos Ec)pc

r0
c

|r0
c |

(60)

where E0
c = Ec(t0).
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4.1 Parametric Cartesian solution of relative orbital motion

In the following we present the scalar Cartesian expressions for the relative position and
relative velocity as they are deduced from the expressions presented in this section. By
denoting r = [x y z]T the relative position vector, below we present the closed form
expressions for x, y, z, ẋ, ẏ, ż. We denote ux, uy, uz the unit vectors that define the axes of the
LVLH frame; their expressions are

ux =
r0

c

|r0
c |

; uy =
h̃cr0

c

|hc||r0
c |

; uz =
h0

c

|h0
c |

(61)

If ζ < 0, h �= 0 then using (52) and (53) results:

x(t) = [cos E(t)− e]
{
(ux · a) cos f 0

c (t) + (uy · a) sin f 0
c (t)

}

+ sin E(t)
{
(ux · b) cos f 0

c (t) + (uy · b) sin f 0
c (t)

}

− pc

1 + ec cos fc(t)

(62)

y(t) = [cos E(t)− e]
{
(−ux · a) sin f 0

c (t) + (uy · a) cos f 0
c (t)

}

+ sin E(t)
{
(−ux · b) sin f 0

c (t) + (uy · b) cos f 0
c (t)

} (63)

z(t) = [cos E(t)− e](uz · a) + sin E(t)(uz · b) (64)

ẋ(t) =
n sin E(t)

1 − e cos E(t)

{
(ux · a) cos f 0

c (t) + (uy · a) sin f 0
c (t)

}

+
n cos E(t)

1 − e cos E(t)

{
(ux · b) cos f 0

c (t) + (uy · b) sin f 0
c (t)

}

−µ[1 + ec cos fc(t)]2[cos E(t)− e]

|h|c
{
(−ux · a) sin f 0

c (t) + (uy · a) cos f 0
c (t)

}

−µ[1 + ec cos fc(t)]2 sin E(t)

|h|c
{
(−ux · a) sin f 0

c (t) + (uy · a) cos f 0
c (t)

}

− ec|hc| sin fc(t)

pc

(65)

ẏ(t) =
n sin E(t)

1 − e cos E(t)

{
(ux · a) sin f 0

c (t)− (uy · a) cos f 0
c (t)

}

− n cos E(t)

1 − e cos E(t)

{
−(ux · b) sin f 0

c (t) + (uy · b) cos f 0
c (t)

}

−|h|c[1 + ec cos fc(t)]2[cos E(t)− e]

pc

{
(uy · a) sin f 0

c (t) + (ux · a) cos f 0
c (t)

}

−|hc|[1 + ec cos fc(t)]2 sin E(t)

pc

{
(uy · b) sin f 0

c (t) + (ux · b) cos f 0
c (t)

}

(66)

ż(t) =
n

[1 − e cos E(t)]
[− sin E(t)(uz · a) + cos E(t)(uz · b)] (67)
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When the deputy trajectory is also an ellipse and one expresses the equations of the relative
motion with respect to both eccentric anomalies, Eqs. (59-60) are transformed into:

x(t) = [cos E(t)− e]

{
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · a)

−
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · a)

}

+ sin E(t)

{
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · a)

−
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · b)

}
− pc(1 − ec cos Ec)

1 − e2
c

(68)

y(t) = −[cos E(t)− e]
{
(ux · a) sin f 0

c (t)

+
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · a)

}

− sin E(t)

{
−
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · b)

+
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · b)

}

(69)

z(t) = [cos E(t)− e](uz · a) + sin E(t)(uz · b) (70)

ẋ(t) =
n sin E(t)

1 − e cos E(t)

{
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · a)

+
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · a)

}

+
n cos E(t)

1 − e cos E(t)

{
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · b)

+
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · b)

}

−µ[1 + ec cos fc(t)]2[cos E(t)− e]

|h|c

{
−
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · a)

+
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · a)

}

−µ[1 + ec cos fc(t)]2 sin E(t)

|h|c

{
−
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · b)

+
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · b)

}
− ec|hc| sin fc(t)

pc

(71)
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ẏ(t) = − n sin E(t)

1 − e cos E(t)

{
− (cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · a)

−
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · a)

}

+
n cos E(t)

1 − e cos E(t)

{
− (cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · b)

+
√

1 − e2
c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · b)

}

−|hc|[1 + ec cos fc(t)]2[cos E(t)− e]

|h|c

{√
1 − e2

c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · a)

+
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · a)

}

−|hc|[1 + ec cos fc(t)]2 sin E(t)

|h|c

{√
1 − e2

c
(sin E0

c − ec)− ec(sin Ec + sin E0
c )

(1 − ec cos Ec)(1 − ec cos E0
c )

(uy · b)

+
(cos Ec − ec)(cos E0

c − ec)− (1 − e2
c ) sin Ec sin E0

c

(1 − ec cos Ec)(1 − ec cos E0
c )

(ux · b)

}
− ec|hc| sin fc(t)

pc

(72)

ż(t) =
n

[1 − e cos E(t)]
[− sin E(t)(uz · a) + cos E(t)(uz · b)] (73)

An interesting remark is that the motion along the Oz axis of LVLH (the out-of-plane motion)
is completely decoupled from the in-plane motion.

5. Periodicity conditions in relative orbital motion

An interesting geometric visualization of the relative motion is illustrated in Fig. 2.

It may be seen as the composition among:

• a classic Keplerian motion in a variable plane Π(t), t ≥ t0; plane Π(t) is formed at moment
t = t0 if the inertial motion of the Deputy satellite is not rectilinear; this plane is determined
by the initial position and initial velocity vectors of the Deputy;

• a precession of plane Π(t) with angular velocity −ω around the attraction center;

• a rectilinear translation of plane Π(t) described by vector −rc.

This geometric interpretation shows that the relative orbital motion is in fact a Foucault
pendulum like motion (Condurache & Martinusi (2008a)). Excluding the situation h = 0,
the case ζ ≤ 0 is equivalent with the Deputy elliptic inertial motion. If the Leader satellite also
has an elliptic motion, then the motion of the Deputy with respect to the LVLH frame might
be periodic. In fact, recall that:

r = R−ωri − rc (74)

is the maps R−ω and rc have the same main period Tc, which is that of the Leader, and ri has
the main period of the Deputy inertial motion, denoted as Td. The motion in LVLH is then
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Fig. 2. Geometric interpretation of the relative orbital motion.

periodic if:
Tc/Td is rational number (75)

This leads to a formula that involves the specific energies of the two satellites: the motion is
periodic if

⎛
⎜⎜⎝

1
2 (v

0
c + ∆v +ω0 × ∆r)2 − µ

|r0
c + ∆r|

1
2 v0

c
2 − µ

r0
c

⎞
⎟⎟⎠

3
2

=
m

n
(76)

where m and n are relatively prime natural numbers. In spacecraft formations, it can be easily
proven that a necessary condition for two or more satellites to remain at a reasonably small
distance from one another is that their periods are equal, leading their specific energies to be
equal:

1

2
(v0

c + ∆v +ω0 × ∆r)2 − µ

|r0
c + ∆r| =

1

2
v0

c
2 − µ

r0
(77)

Written with respect to the initial conditions Eq. (72) becomes:

1

2
∆v2 + v0

c · ∆v +
(v0

c + ∆v, hc, ∆r)

r0
c

2
+

1

2

(hc × ∆r)2

r0
c

4
− µ√

r0
c

2
+ ∆r2 + 2r0

c · ∆r

+
µ

r0
c
= 0 (78)

If the conditions from Eq. (78) are fulfilled the relative orbital motion trajectory is a closed
curve.

6. A tensor invariant in the relative motion

In this Section, we will refrain to apply the state flow operator approach to the entire problem
which models the relative motion in a gravitational field, but rather to apply it to a part of its
solution. We will reveal a very interesting invariance relation, which relates the motion of the
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deputy and the motion of the attraction center, both referred to LVLH, as well as a very useful
propagator for the state of the deputy spacecraft in the same frame.

Consider the relative motion in a gravitational field, where the relative state of the deputy
spacecraft in the LVLH frame associated to the chief is expressed like:

{
r(t) = R−ωr∗(t)− rc(t)

ṙ(t) = R−ω [ṙ∗(t)− ω̃r∗(t)]− ṙc(t)
(79)

where r∗ = r∗(t) is the solution to the initial value problem and it models a Keplerian motion.
Equation (79) can be written as:

[
r∗
ṙ∗

]
=

[
Φ I3

I3 Φ

] [
rc(t0) + ∆r

ṙc(t0) + ∆v +ω(t0)× (∆r + rc(t0))

]
(80)

where Φ is the unique tensor established by the conditions:

⎧
⎨
⎩

Φ[r∗(t0)] = r∗(t)
Φ[ṙ∗(t0)] = ṙ∗(t)
Φ[h(t0)] = h(t)

(81)

If the Deputy trajectory is elliptic (ζ ≤ 0 and h �= 0), Φ can be computed as (Condurache &
Martinusi (2011); Martinusi (2010)) :

Φ(E) =

[
cos E0(cos E − e)

1 − e cos E0
+

sin E0 sin E

1 − e cos E

]
â ⊗ â

+

[
sin E0(cos E − e)

1 − e cos E0
− (cos E0 − e) sin E

1 − e cos E

]
â ⊗ b̂

+

[
cos E0 sin E

1 − e cos E0
+

sin E0 cos E

1 − e cos E

]
b̂ ⊗ â

+
n3a3

h2

[
sin E0 sin E

1 − e cos E0
− (cos E0 − e) cos E

1 − e cos E

]
b̂ ⊗ b̂ + ĥ ⊗ ĥ

(82)

where E0 = E(t0) and v̂ is the unity vector attached to v .

If we denote by X(t) the state vector attached to the Deputy

X(t) =

[
r(t)
ṙ(t)

]
, (83)

equation (79) may be rewritten like:

X(t) = Ψ(t)Y0 + Xc(t) (84)

where:

Ψ(t) =

[
R−ωΦ 03

−ω̃R−ωΦ R−ωΦ

]

Y0 =

[
rc(t0) + ∆r

ṙc(t0) + ∆v +ω(t0)× ∆(r + rc(t0))

]
(85)

Xc(t) =

[
−rc(t)
−ṙc(t)

]
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Notice that Xc(t) models the state of the attraction center with respect to the LVLH frame
associated to the chief spacecraft. After some manipulations, it follows that the constant vector
Y0 may be rewritten like:

Y0 =

[
I3 03

ω̃ I3

] {[
∆r

∆v

]
+

[
rc(t0)
ṙc(t0)

]}
(86)

Denote:

Γ0 =

[
I3 03

ω̃ I3

]
; X0 = X(t0); X0

c = Xc(t0); Λ(t) = Ψ(t)Γ0 (87)

From the above considerations, it follows that:

X(t)− Λ(t)X0 = Xc(t)− Λ(t)X0
c (88)

where the closed form expression of Λ(t) is determined by taking into account Equations (85)
and (87):

Λ(t) =

[
R−ωΦ 03

R−ω [Φ, ω̃] R−ωΦ

]
=

[
R−ω 03

03 R−ω

] [
Φ 03

[Φ, ω̃] Φ

]
(89)

where [ , ] denotes the comutator brackets:

[A, B] = AB − BA. (90)

Note that Eq. (88) is very similar to the velocity invariant expression in rigid body kinematics
(Condurache & Matcovschi (2001)). The relative state of the deputy spacecraft in LVLH is
propagated by:

X(t) = Xc(t) + Λ(t)(X0 − X0
c ) (91)

The above formula is the complete exact solution of relative orbital motion nonlinear problem
(3).

7. Conclusions

The tensor approach used in this paper allows us to obtain closed-form exact expressions
for the relative law of motion and the relative velocity. This instrument is only a catalyst,
and it helps introduce a change of variable which transforms the relative orbital motion
problem into the classic Kepler problem. Thus, the problem of the relative orbital motion is
super-integrable. The shape of the chief inertial trajectory does not impose special problems,
as it does in the linearized approaches. The deputy trajectory does not impose problems either,
allowing us to derive exact equations of relative motion in any situation and for any initial
conditions. The equations that describe the state of the deputy spacecraft in LVLH depend
only on time and the initial conditions. Also all the computational stages needed by this
solution are conducted on board in the LVLH frame. The long-term accuracy offered by this
solution allows the study of the relative motion for indefinite time intervals, and with no
restrictions on the magnitude of the relative distance. The solution may be used in the study
of satellite constellations from the point of view of the relative motion. The solution offered
in this paper gives a parameterization of the manifold associated to the relative motion.
Perturbation techniques may be now used in order to derive more accurate equations of
motion when assuming small perturbations on the relative trajectory, due to Earth oblateness,
solar wind, moon attraction, and atmospheric drag. Based on this solution, a study of the
full-body relative motion might be a subject for future work.
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8. Nomenclature

AT = transpose of tensor (matrix) A

r = position vector

r1 · r2 = dot product of vector r1 and r2

r1 × r2 = cross product of vector r1 and r2

r̂ = the unity vector attached to r

a = semimajor axis

a=vectorial semimajor axis

b = semimajor axis

b=vectorial semimajor axis

e = eccentricity

e = vectorial eccentricity

h=specific angular momentum

n=mean motion

p=semilatus rectum (conic parameter)

Rω=rotation tensor with angular velocity ω

t= time

u = magnitude of vector u

v = velocity vector

µ = gravitational parameter

ξ = specific energy

ω = angular velocity of the rotating reference frame

ω̃ = skew-symmetric tensor associated with vector ω
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