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1. Introduction 

Statistical design of experiments (DOE) is commonly seen as an essential part of 
chemometrics. However, it is often overlooked in chemometric practice. The general 
objective of DOE is to guarantee that the dependencies between experimental conditions 
and the outcome of the experiments (the responses) can be estimated reliably at minimal 
cost, i.e. with the minimal number of experiments. DOE can be divided into several 
subtopics, such as finding the most important variables from a large set of variables 
(screening designs), finding the effect of a mixture composition on the response variables 
(mixture designs), finding sources of error (variance component analysis) in a 
measurements system, finding optimal conditions in continuous processes (evolutionary 
operation, EVOP) or batch processes (response surface methodology, RSM), or designing 
experiments for optimal parameter estimation in mathematical models (optimal design).   

Several good textbooks exist. Of the general DOE textbooks, i.e. the ones that are focused on 
any special field, perhaps (Box et. al., 2005), (Box & Draper, 2007) and (Montgomery, 1991) 
are the most widely used ones. Some of the DOE textbooks, e.g. (Bayne & Rubin, 1986), 
(Carlson & Carlson, 2005) and (Bruns et. al., 2006) focus on chemometric problems. Good 
textbooks covering other fields of applications include e.g. (Himmelblau, 1970) for chemical 
engineering, (Berthouex & Brown, 2002) and (Hanrahan, 2009) for environmental 
engineering, or (Haaland, 1989) for biotechnology. Many textbooks about linear models or 
quality technology also have good treatments of DOE, e.g. (Neter et. al., 1996), (Vardeman, 
1994) and (Kolarik, 1995). 

More extensive lists of DOE literature are given in many textbooks, see e.g. (Box & Draper, 
2007) , or in the documentation of commercial DOE software packages, see e.g. (JMP, release 
6) 

This chapter focuses on common strategies of empirical optimization, i.e. optimization 
based on designed experiments and their results. The reader should be familiar with basic 
statistical concepts. However, for the reader’s convenience, the key concepts needed in DOE 
will be reviewed. Mathematical prerequisites include basic knowledge of linear algebra, 
functions of several variables and elementary calculus. However, neither theory, nor the 
methodology is presented in a rigorous mathematical style; rather the style is relying on 
examples, common sense, and on pinpointing the key ideas. 
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The aim of this chapter is that the material could be used to guide chemists, chemical 
engineers and chemometricians in real applications requiring experimentation. Naturally, 
the examples presented have chemical/chemometric origin, but as with most statistical 
techniques, the field of possible applications is truly vast. The focus is on problems with 
quantitative variables and, correspondingly, on regression techniques. Qualitative 
(categorical) variables and analysis of variance (ANOVA) are merely mentioned. 

Typical chemometric applications of RSM are such as optimization of chemical syntheses, 
optimization of chemical reactors or other unit operations of chemical processes, or 
optimization of chromatographic columns.  

2. Optimization strategies 

This section introduces the two most common empirical optimization strategies, the simplex 
method and the Box-Wilson strategy. The emphasis is on the latter, as it has a wider scope of 
applications. This section presents the basic idea; the techniques needed at different steps in 
following the given strategy are given in the subsequent sections. 

2.1 The Nelder-Mead simplex strategy 

The Nelder-Mead simplex algorithm was published already on 1965, and it has become a 
‘classic’ (Nelder & Mead, 1965). Several variants and applications of it have been published 
since then. It is often also called the flexible polyhedron method. It should be noted that it 
has nothing to do with the so-called Dantzig’s simplex method used in linear programming. 
It can be used both in mathematical and empirical optimization. 

The algorithm is based on so-called simplices N-polytopes with N+1 vertices, where N is the 
number of (design) variables. For example, a simplex in two dimensions is a triangle, and a 
simplex in three dimensions is a tetrahedron. The idea behind the method is simple: a 
simplex provided with the corresponding response values (or function values in 
mathematical optimization) gives a minimal set of points to fit perfectly an N-dimensional 
hyperplane in a (N+1)-dimensional space. For example for two variables and the responses, 
the space is a plane in 3-dimensional space. Such a hyperplane is the simplest linear 
approximation of the underlying nonlinear function, often called a response surface, or 
rather a response hypersurface. The idea is to reflect the vertex corresponding to the worst 
response value along the hyperplane with respect to the opposing edge. The algorithm has 
special rules for cases in which the response at a reflected point doesn’t give improvement, 
or if an additional expanded reflection gives improvement. These special rules make the 
simplex sometimes shrink, and sometimes expand. Therefore, it is also called the flexible 
simplex algorithm.  

The idea is easiest understood graphically in a case with 2 variables: Fig. 1 depicts an ideal 
response surface the yield of a batch reactor with respect to the batch length in minutes and 
the reactor temperature in ˚C. The model is ideal in the sense that the response values are 
free from experimental error. We can see that first the simplex expands because the surface 
around the starting simplex is quite planar. Once the chain of simplexes attains the ridge 
going approximately from right, some of the simplexes are contracted, i.e. they shrink 
considerably. You can easily see, how a reflection would worsen the response (this is 
depicted as an arrow in the upper left panel). Once the chain finds the direction of the ridge, 
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the simplexes expand again and approach the optimum effectively. The Nelder-Mead 
simplex algorithm is not very effective in final positioning of the optimal point, because that 
would require many contractions. 

 

Fig. 1. Sequences of Nelder-Mead simplex experiments with respect to time and temperature 
based on an errorless reactor model. In all panels, the x-axis corresponds to reaction time in 
minutes and y-axis corresponds to reactor temperature in ˚C. Two edges of the last simplex 
are in red in all panels. Upper left panel: the first 4 simplexes and the reflection of the last 
simplex. Upper right panel: the first 4 simplexes and the first contraction of the last simplex. 
Lower right panel: the first 7 simplexes and the second contraction of the last simplex. 
Lower right panel: the first 12 simplexes and the expanded reflection of the last simplex. 

The Nelder-Mead algorithm has been used successfully e.g. in optimizing chromatographic 
columns. However, its applicability is restricted by the fact that it doesn’t work well if the 
results contain substantial experimental error. Therefore, in most cases another type of a 
strategy is a better choice, presented in the next section. 

2.2 The Box-Wilson strategy (the gradient method) 

In this section we try to give an overall picture of the Box-Wilson strategy, and the different 
types of designs used within the strategy will be explained in subsequent sections; the focus 
is on the strategy itself.  
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The basic idea behind the Box-Wilson strategy is to follow the path of the steepest ascent 

towards the optimal point. In determining the direction of the steepest ascent, 

mathematically speaking, the gradient vector, the method uses local polynomial modelling. 

It is a sequential method, where the sequence of main steps is: 1) make a design around the 

current best point, 2) make a polynomial model, 3) determine the gradient path, and 4) carry 

out experiments along the path as long as the results will improve. After step 4, return to 

step 1, and repeat the sequence of steps. Typically the steps 1-4 have to be repeated 2 to 3 

times. 

Normally the first design is a 2N  factorial design (see section 3.1) with an additional centre 

point, possibly replicated one or more times. The idea is that, at the beginning of the 

optimization, the surface within the design area is approximately linear, i.e. a hyperplane. A 

2
N  factorial design allows also modelling of interaction effects. Interactions are common in 

problems of chemical or biological origin. The additional centre point can be used to check 

for curvature. If the curvature is found to be statistically significant, the design should be 

upgraded into a second order design (see section 5), allowing building of a quadratic model. 

The replicate experiments are used to estimate the mean experimental error, and for testing 

model adequacy, i.e. the lack-of-fit in the model.  

After the first round of steps 1-4 (see also Fig. 4), it is clear that a linear or linear plus 

interactions model cannot fit the results anymore, as the results first get better and then 

worse. Therefore, at this point, an appropriate design is a second order design, typically a 

central composite or a Box-Behnken design (explained in section 5), both allowing building 

of a quadratic polynomial model. The analysis of the quadratic model lets us estimate 

whether the optimum is located near the design area or further away. In the latter case, new 

experiments are again conducted along the gradient path, but in the first case, the new 

experiments will be located around the optimum predicted by the model.  

The idea is best grasped by a graphical illustration given in Figs. 2 and 3 using the same 
reactor model as in section 2.1. Fig. 2 shows the theoretical errorless response surface, the 
region of the initial design (the black rectangle), and the theoretical gradient path. The 
contours inside the rectangle show that the response behaves approximately linearly inside 
the region of the first design (the contours are approximately parallel straight lines). 

It is important to understand that the gradient path must be calculated using small enough 

steps. This is best seen graphically: Fig. 3 shows what happens using too large a step size: 

too large a step size creates the typical zigzag pattern. Obviously, this is inefficient, and such 

a path also misses the optimum.  

Next we shall try to illustrate how the gradient method works in practice. In order to make 

the situation more realistic, we have added Gaussian noise 2( 0, 1)   to the yield, given 

by the simulation model of the reactor, i.e. instead of carrying out real experiments, the 

results are obtained from the model. In addition, random experimental error is added to the 

modelled responses. The sequence of designs following the box-Wilson strategy and the 

corresponding gradient path experiments are depicted in Fig. 4. Notice that the gradient 

path based on the model of the first design is slightly curved due to the interaction between 

time and temperature. 
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Fig. 2. The gradient path (black solid line with dots at points of calculation) of a reactor 
model yield surface. The solid line cannot be distinguished due to the small step size 
between the points of calculation. 

 

Fig. 3. The gradient path (black solid line with dots at the points of calculation) of a reactor 
model yield surface. The path is calculated using too large a step size causing the zigzag 
pattern. 

www.intechopen.com



 
Chemometrics in Practical Applications 

 

96

 

Fig. 4. The first design (blue asterisks) and the gradient path (magenta solid line) based on 
an empirical model estimated from the results of the experiments. Four points from the 
gradient path are chosen for the experiments (green circles). A second order design (red x’s) 
and the gradient path based on its modelled results (turquoise solid line with x’s at the 
experimental points). The best results of the four sets of experiments, showing excellent 
improvement, are 61.3, 76.3, 82.7 and 93.9. 

Typically, the next step would be making of a new second order design around the best 
point. However, one should keep in mind that the sensitivity to changes in the design 
variables decreases. As a consequence, any systematic changes may be hidden under 
experimental errors. Therefore, the accurate location of the optimum is difficult to find, 
perhaps requiring repetitions of the whole design. 

Simulation models like the one used in this example are very useful in practising Box-
Wilson strategy. It can be obtained upon request from the author in the form of a Matlab, R 
or Excel VBA. For maximal learning, the user is advised to start the procedure at different 
locations. 

3. Factorial designs 

Factorial designs make the basis of all most common designs. The idea of factorial designs is 

simple: a factorial design is made up of all possible combinations of all chosen values, often 

called levels, of all design variables. Factorial designs can be used both for qualitative and 
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quantitative variables. If variables 1 2, ,  ,  Nx x x  have 1 2, , ,  Nm m m  different levels, the 

number of experiments is 1 2  Nm m m . As a simple example, let us consider a case where 

the variables and their levels are: 1x  the type of a catalyst (A, B and C), 2x  the catalyst 

concentration (1 ppm and 2 ppm), and  3x  the reaction temperature (60 ˚C, 70 ˚C and 80 ˚C). 

The corresponding factorial design is given in Table 1. 
 

x1 x2 x3 

A 1 60 

B 1 60 

C 1 60 

A 2 60 

B 2 60 

C 2 60 

A 1 70 

B 1 70 

C 1 70 

A 2 70 

B 2 70 

C 2 70 

A 1 80 

B 1 80 

C 1 80 

A 2 80 

B 2 80 

C 2 80 

Table 1. A simple factorial design of three variables. 

It is good to understand why factorial designs are good designs. The main reasons are that 

they are orthogonal and balanced. Orthogonality means that the factor (variable) effects can be 

estimated independently. For example, in the previous example the effect of the catalyst can 

be estimated independently of the catalyst concentration effect. In a balanced design, each 

variable combination appears equally many times. In order to understand why 

orthogonality is important, let us study an example of a design that is not orthogonal. This 

design, given in Table 2 below, has two design variables, 1x  and 2x , and one response 

variable, y. 
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x1 x2 y 

1.18 0.96 0.91 

1.90 2.12 1.98 

3.27 2.98 2.99 

4.04 3.88 3.97 

4.84 5.10 5.03 

5.88 6.01 5.96 

7.14 7.14 7.07 

8.05 8.08 7.92 

9.04 8.96 9.09 

9.98 10.19 10.02 

2.30 2.96 3.76 

2.94 4.10 4.85 

4.29 5.01 5.95 

5.18 5.80 6.88 

5.84 7.14 7.98 

6.85 7.90 9.16 

8.33 8.98 10.26 

8.96 10.05 10.98 

10.00 11.09 12.21 

10.82 12.08 12.94 

10.13 8.88 8.20 

10.91 9.94 9.15 

12.10 10.83 10.30 

12.57 11.56 11.16 

13.53 13.04 12.13 

14.85 14.00 12.72 

16.19 15.16 13.99 

17.01 16.22 14.72 

18.31 16.86 16.28 

19.21 18.47 17.35 

Table 2. A non-orthogonal design. 
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Now, if we plot the response against the design variables we get the following plot: 

 

Fig. 5. Response (y) against the design variables ( 1x and 2x ) in a non-orthogonal design; 

upper panel: y against, lower panel: y against. 

Now, Fig. 5 clearly gives the illusion that the response depends approximately linearly both 

on 1x and 2x  with positive slopes. However, the true slope between y and 1x  is negative. 

To see this, let us plot the design variable against each other and show the response values 

as text, as shown in Fig. 6. 

Now, careful inspection of Fig. 6 reveals that actually yield decreases when increases. The 

reason for the wrong illusion that Fig. 5 gives is that 
1
x  and 2x  are strongly correlated with 

each other, i.e. the design variables are collinear. Although fitting a linear regression model 

using both design variables would give correct signs for the regression coefficients, 

collinearity will increase the confidence intervals of the regression coefficients. Problems of 

this kind can be avoided by using factorial designs. 

After this example, it is obvious that orthogonality, or near orthogonality, is a desired 
property of a good experimental design. Other desired properties are 

 The design contains as few experiments as possible for reliable results. 
 The design gives reliable estimates for the empirical model fitted to the data. 
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Fig. 6. Response (y) against the design variables ( 1x  and 2x ) in a non-orthogonal design; the 

response values (y values) are shown on upper right position with respect to each point. 

 The design allows checking the reliability of the model fitted to the data, typically by 
statistical tests about the model parameters and the model adequacy (lack-of-fit), and 
by cross validation. 

In general, factorial designs have these properties, except for the minimal number of the 
experiments. This topic will be treated in the subsequent sections. 

3.1 Two level factorial designs 

Factorial designs with only two values (levels) for all design variables are the most 
frequently used designs. This is mainly due to the following facts: 1) the number of 
experiments is less than with more levels, and 2) the results can be analysed using 
regression analysis for both qualitative and quantitative variables. The natural limitation is 
that only linear (main) effects and interactions effects can be detected. A drawback of full 
two-level factorial designs with a high number of variables is that the number of 
experiments is also high. Fortunately, this problem can be solved by using so-called 
fractional factorial designs, explained in section 3.3. 
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Two-level factorial designs, usually called 2N  designs, are typically tabulated using 
dimensionless coded variables having only values -1 or +1. For example, for a variable that 
represents a catalyst type, type A might correspond to -1 and type B might correspond to +1, 
or coarse raw material might be -1 and fine raw material might be +1. For quantitative 
variables, coding can be performed by the formula  

 
1
2





i i

i
i

x x
X

x
 (1) 

where iX  stands for the coded value of the i’th variable, 1x  stands for the original value of 

the i’th variable, ix  stands for the centre point value of the original i’th variable, and  ix  

stands for the difference of the original two values of the i’th variable. The half value of the 

difference is called the step size. All statistical analyses of the results are usually carried out 

using the coded variables. Quite often, we need to convert also coded dimensionless values 

into the original physical values. For quantitative variables, we can simply use the inverse of 

Eq. 1, i.e.  

 1
2

   i i i ix x x X  (2) 

Tables of two-level factorial designs can be found in most textbooks of DOE. A good source 
is also NIST SEMATECH e-Handbook of Statistical Methods (NIST SEMATCH). Another 
way to create such tables is to use DOE-software e.g. (JMP, MODDE, MiniTab,…). It is also 
very easy to create tables of two-level factorial designs in any spreadsheet program. For 
example in Excel, you can simply enter the somewhat hideous formula  

=2*MOD(FLOOR((ROW($B3)-ROW($B$3))/2^(COLUMN(C$2)-COLUMN($C$2));1);2)-1  

into the cell C3, and then first copy the formula to the right as many time as there are 

variables in the design (N) and finally copy the whole first row down 2N  times. Of course, 
you can enter the formula anywhere in the spreadsheet, e.g. if you enter it into the cell D7 
the references in the ROW functions must be changed into $C7 and $C$7, and the references 
in the column function must be changed into D$6 and $D$6, respectively. 

If all variables are quantitative it is advisable to add a centre point into the design, i.e. an 
experiment where all variables are set to their mean values. Consequently, in coded units, 
all variables have value 0. The centre point experiment can be used to detect nonlinearities 
within the design area. If the mean experimental error is not known, usually the most 

effective way to find it out is to repeat the centre point experiment. All experiments, 
including the possible centre point replicates, should be carried out in random order. The 
importance of randomization is well explained in e.g. (Box, Hunter & Hunter). 

3.1.1 Empirical models related to two-level factorial designs 

2N designs can be used only for linear models with optional interaction terms up order N. 

By experience, it is known that interaction of order higher than two are seldom significant. 

Therefore, it is common to consider those terms as random noise, giving extra degrees of 

freedom for error estimation. However, one should be careful about such interpretations, 
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and models should always be carefully validated. It should also be noted that the residual 

errors always contain both experimental error and modelling error. For this reason, 

independent replicate experiments are of utmost importance, and only having a reliable 

estimate of the experimental error gives a possibility to check for lack-of-fit, i.e. the model 

adequacy. 

The general form of a model for a response variable y with linear terms and interaction 
terms up to order N is 

 
1   

      
N N N

i i ij i j ijk i j k
i i j i j k

y b X b X X b X X X  (3) 

The number of terms in the second sum is  
2

 
 
 

N
, and in the third sum it is

3

 
 
 

N
, and so on. 

The most common model types used are models with linear terms only, or models with 
linear terms and pairwise interaction terms.  

If all terms of model (3) are used, and there are no replicate experiments in the 

corresponding 2N  design, there are as many unknown parameters in the model as there are 

experiments in the design, leaving no degrees of freedom for the residual error, i.e. all 

residuals are zero. In such cases, the design is called saturated with respect to the model, or 

just saturated, if it is obvious what the model is.  In these cases traditional statistical tests 

cannot be employed. Instead, the significant terms can often be detected by inspecting the 

estimated model parameter values using normal probability plots. 

Later we need to differentiate between the terms “design matrix” and “model matrix”. A 

design matrix is a expN N  matrix whose columns are the values of design variables where 

expN  is the number of experiments. A model matrix is a expN p  matrix that is the design 

matrix appended with columns corresponding to the model terms. For example, a model 

matrix for a linear plus interaction model for two variables has a column of ones 

(corresponding to the intercept), columns for values of 1X  and 2X  and a column for values 

of the product 1 2X X . 

It is good to understand the nature of the pairwise interaction terms. Let us consider a 

model for two variables, i.e. 0 1 1 2 2 12 1 2   y b b X b X b X X , and let us rearrange the terms as 

 0 1 1 2 12 1 2   y b b X b b X X . This form reveals that the interaction actually means that the 

slope of 2X  depends linearly on 1X . Taking 1X  as the common factor instead of 2X  shows 

that the slope of 1X  depends linearly on 2X . In other words, a pairwise interaction between 

two variables means that the other variable affects the effect of the other one. If two 

variables don’t interact, their effects are said to be additive. Fig. 7 depicts additive and 

interacting variables. 

In problems of chemical or biological nature, it is more a rule than an exception that 

interactions between variables exist. Therefore, main effect models serve only as rough 

approximations, and are used typically in cases with a very high number of variables. It is 

also quite often useful to try to model some transformation of the response variable,  
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Fig. 7. Linear dependency of y on 1x and on 2x . Left panel: an additive case without 

interaction, right panel: a non-additive case. Blue line: 2x has a constant value, green line: 

2x has another constant value. 

typically a logarithm, or a Box-Cox transformation. Usually the aim is to find a 
transformation that makes the residuals as normal as possible. 

3.1.2 Analysing the results of two level factorial designs 

Two level factorial designs can be analysed either by analysis of variance (ANOVA) or by 

regression analysis. Using regression analysis is more straightforward, and we shall 

concentrate on it in the sequel. However, one should bear in mind that the interpretation of the 

estimated model parameter is different between quantitative and qualitative variables. 

Actually, due to the orthogonality of 2N  designs, regression analysis could be carried out 

quite easily even by hand using the well-known Yates algorithm, see e.g. (Box & Draper, 2007).  

Ordinary least squares regression (OLS) is the most common way to analyse results of 
orthogonal designs, but sometimes more robust techniques, e.g. minimizing the median of 
absolute values of the residuals, can be employed. Using latent variable techniques, e.g. PLS, 
doesn’t give any extra benefit with orthogonal designs. However, in some other kind of 
designs, typically optimal designs or mixture designs, latent variable techniques can be 
useful.  
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The mathematics and statistical theory behind regression analysis can be found in any basic 
textbook about regression analysis or statistical linear models see e.g. (Weisberg, 1985) or 
(Neter et. al., 1996). In this chapter we shall concentrate on applying and interpreting the 
results of OLS in DOE problems. However, it is always good to bear in mind the statistical 
assumptions behind the classical regression tests, i.e. approximately normally distributed 
and independent errors. The latter is more important, and dependencies between random 
errors can make the results of the tests completely useless. This fact is well illustrated in 
(Box et. al., 2005). Even moderate deviations from normality are usually not too harmful, 
unless they are caused by gross errors, i.e. by outliers. For this reason, normal probability 
plots, or other tools for detecting outliers, should always be included in validating the 
model. 

Since OLS is such a standard technique, a plethora of software alternatives exists for 
carrying out the regression analyses of the results of a given design. One can use general 
mathematics software like Matlab, Octave, Mathematica, Maple etc., or general purpose 
statistical software like S-plus, R, Statistica, MiniTab, SPSS, etc, or even spreadsheet 
programs like Excel or Open Office Calc. However, it is advisable to use software that 
contains those model validation tools that are commonly used with designed experiments. 
Practically all general mathematical or statistical software packages contain such tools. 

Quite often there are more than one response variables. In such cases, it is typical to estimate 
models for each response separately. If a multivariate response is a ‘curve’, e.g. a spectrum 
or a distribution, it may be simpler to use latent variable methods, typically PLS or PCR. 

This example is taken from Box & Draper (Box & Draper, 2007). 

3.2 Model validation 

Model validation is an essential part of analysing the results of a design. It should be noted 
that most of the techniques presented in this section can be used with all kinds of designs, 

not only with 2N  designs.   

In the worst case, the validation yields the conclusion that the design variables have no 
effect on the response(s), significantly different from random variation. In such a case, one 
has to consider the following alternatives: 1) to increase the step sizes in the design 
variables, 2) to replicate the experiments one or more times, or 3) to make a new design with 
new design variables. In the opposite case, i.e. the model and at least some of the design 
variables are found to be statistically significant, the continuation depends on the scope of 
the design, and on the results of the (regression) analysis. The techniques used for 
optimization tasks are presented in subsequent sections. 

3.2.1 Classical statistical tests 

Classical statistical tests can be applied mainly to validate regression models that are linear 
with respect to the model parameters. The most common empirical models used in DOE are 
linear models (main effect models), linear plus interactions models, and quadratic models. 
They all are linear with respect to the parameters. The most useful of these (in DOE context) 
are 1) t-tests for testing the significance of the individual terms of the model, 2) the lack-of-fit 
test for testing the model adequacy, and 3) outlier tests based on so-called externally 
studentized residuals, see e.g. (Neter et. al., 1996).  
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The t-test for testing the significance of the individual terms of the model is based on the test 

statistic that is calculated by dividing a regression coefficient by its standard deviation. This 

statistic can be shown to follow the t-distribution with 1 n p  degrees of freedom where n 

is the number experiments, and p is the number of model parameters. If the model doesn’t 

contain an intercept, the number of degrees of freedom is n p .  Typically, a term in the 

model is considered significant if the p-value of the test statistic is below 0.05. 

The standard errors of the coefficients are usually based on the residual error. If the design 

contains a reasonable number of replicates this estimate can also be based on the standard 

error of the replicates. The residual based standard error of the i’th regression coefficient 
ibs  

can be easily transformed into replicate error based ones by the formula /
iE R bMS MS s . In 

this case the degrees of freedom are 1rn   (the symbols are explained in the next 

paragraph). 

The lack-of fit test can be applied only if the design contains replicate experiments which 

permit estimation of the so-called pure error, i.e. an error term that is free from modelling 

errors. Assuming that the replicate experiments are included in regression, the calculations 

are carried out according to the following equations. First calculate the pure error sum of 

squares ESS  

  2

1

,


 
rn

E i
i

SS y y  (4) 

where rn  is the number of replicates, iy ’s are outcomes of the replicate experiments, and y  

is the mean value of the replicate experiments. The number of degrees of freedom of ESS is 

1rn . Then calculate the residual sum of squares RSS : 

  2
1

ˆ ,


 
n

R i
i

SS y y  (5) 

where n is the number of experiments and ŷ ’s are the fitted values, i.e. the values 

calculated using the estimated model. The number of degrees of freedom of RSS is 

1 n p , or n p  if the model doesn’t contain an intercept. Then calculate the lack-of-fit 

sum of squares LOFSS : 

  LOF R ESS SS SS  (6) 

The number of degrees of freedom of LOFSS  is 1  rn n p , or  rn n p  if the model 

doesn’t contain an intercept. Then, calculate the lack-of-fit mean squares LOFMS  and the 

pure error mean squares EMS  by dividing the corresponding sums of squares by their 

degrees of freedom. Finally, calculate the lack-of-fit test statistic /LOF LOF EF MS MS . It can 

be shown that LOFF  follows an F-distribution with 1  rn n p  (or  rn n p ) and 1rn  

degrees of freedom. If LOFF  is significantly greater than 1, it is said that the model suffers 

from lack-of-fit, and if it is significantly less than 1, it is said that the model suffers from 

over-fit. 
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An externally studentized residual is a deleted residual, i.e. residual calculated using leave-

one-out cross-validation, divided the standard error of deleted residuals. It can be shown 

that the externally studentized residuals follow a t-distribution with 2 n p  degrees of 

freedom, or 1 n p  degrees of freedom if the model doesn’t contain an intercept. If the p-

value of an externally studentized residual is small enough, the result of the corresponding 

experiment is called an outlier. Typically, outliers should be removed, or the corresponding 

experiments should be repeated. If the result of a repeated experiment still gives an outlying 

value, it is likely that model suffers from lack-of-fit. Otherwise, the conclusion is that 

something went wrong in the original experiment. 

3.2.2 Cross-validation 

Cross-validation is familiar to all chemometricians. However, in using cross-validation 

for validating results of designed experiments some important issues should be 

considered. First, cross-validation requires extra degrees of freedom, and consequently 

all candidate models cannot be cross-validated. For example, in a 22  design, a model 

containing linear terms and the pairwise interaction cannot be cross-validated. 

Secondly, often the designs become severely unbalanced, when observations are left 

out. For example, in a 22  design with a centre point, the model containing linear terms 

and the pairwise interaction can be cross-validated, but when the corner point (+1, +1) 

is left out, the design is very weak for estimating the interaction term; in such cases the 

results of cross-validation can be too pessimistic. On the other hand, replicated 

experiments may give too optimistic results in cross-validation, as the design variable 

combinations corresponding to replicate experiments are never left out. This problem 

can be easily avoided by using the response averages instead of individual responses of 

the replicated experiments. 

Usually only statistically significant terms are kept in the final model. However, it is also 

common to include mildly non-significant terms in the model, if keeping such terms 

improves cross-validated results. 

3.2.3 Normal probability plots 

Normal probability plots, also called normal qq-plots, can be used to study either the 

regression coefficients or the residuals (or deleted residuals). The former is typically used in 

saturated models where ordinary t-tests cannot be applied. Normal probability plots are 

constructed by first sorting the values from the smallest to largest. Then the proportions 

 0.5 / ip i n  are calculated, where n is the number of the values, and i is the ordinal 

number of a sorted value, i.e. 1 for the smallest value and n for the largest value (subtracting 

0.5 is called the continuity correction). Then the normal score, i.e. inverse of ip  using the 

standard normal distribution, is calculated. Finally, the values are plotted against the 

normal scores. If the distribution of the values is normal, the points lie approximately on a 

straight line. The interpretation in the former case is that the leftmost or the rightmost values 

that do not follow a linear pattern represent significant terms. In the latter case, the same 

kind of values represent outlying residuals. 
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3.2.4 Variable selection 

If the design is orthogonal, or nearly orthogonal, removing or adding terms into the model 
doesn’t affect the significance of the other terms. This is also the case if the estimates of the 
standard error of the coefficients are based on the standard error of the estimates (cf. 3.2.1). 

Therefore, variable selection based on significance is very simple; just take the variables 
significant enough, without worrying about e.g. the order of taking terms into a model. 
Because models based on designed experiments are often used for extrapolatory prediction, 
one should, whenever possible, test the models using cross-validation. However, one should 
bear in mind the limitations of cross-validation when it is applied to designed experiments 

(cf. 3.2.2). In addition, it is wise also to test models with almost significant variables using 
cross-validation, since sometimes such models have better predictive power. 

If the design is not orthogonal, traditional variable (feature) selection techniques can be 
used, e.g. forward, backward, stepwise, or all checking possible models (total search). 
Naturally, the selection can be based on different criteria, e.g. Mallows pC , PRESS, 2R , 2Q , 
Akaike’s information etc., see e.g. (Weisberg, 1985). If models are used for extrapolatory 
prediction, a good choice for a criterion is to minimize PRESS or maximize 2Q . In many 
cases of DOE modelling, the number of possible model terms, typically linear, pair-wise 
interaction, and quadratic terms, is moderate. For example, a full quadratic model for 4 
variables has 14 terms, plus the intercept. Thus the number of all possible sub-models is 214 
which is 16384. In such cases, with the speed of modern computers, it is easy to test all sub-
models with respect to the chosen criterion. However, if the number of variables is greater, 
going through all possible regression models becomes impossible in practice. In such cases, 
one can use genetic algorithms, see e.g. (Koljonen & al., 2008).  

Another approach is to use latent variable techniques, e.g. PLS or PCR, in which the 
selection of the dimension replaces the selection of variables. Although variable selection 
seems more natural, and is more commonly used in typical applications of DOE than latent 
variable methods, neither of the approaches have been proved generally better. Therefore, it 
is good to try out different approaches, combined with proper model validation techniques. 

A third alternative is to use shrinkage methods, i.e. different forms of ridge regression. 
Recently, new algorithms based on L1 norm have been developed, including such as LASSO 
(Tibshirani, 1996), LARS (Efron & al., 2004), or elastic nets (Zou & al., 2005). Elastic nets use 
combinations of L1 and L2 norm penalties. Penalizing the least squares solution by the L1 
norm of the regression coefficient tends to make the non-significant terms zero which 
effectively means selecting variables. 

In a typical application of DOE, the responses are multivariate in a way that they represent 
individual features which, in turn, typically depend on different variable combinations of 
the design variables. In such cases, it is better to build separate models for each response, i.e. 
the significant variables have to be selected separately for each response. However, if the 
response is a spectrum, or an object of similar nature, variable selection should usually be 
carried out for all responses simultaneously, using e.g. PLS regression or some other 
multivariate regression technique. In such cases, there’s an extra problem of combining the 
individual criteria of the goodness of fit into a single criterion. In many cases, a weighted 
average of e.g. the RMSEP values, i.e. the standard residual errors in cross-validation, of the 
individual responses is a good choice, e.g. using signal to noise ratios as weights. 
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3.2.5 An example of a 2
N
 design 

As a simple example of a 2N  design we take a 22  design published in the Brazilian Journal of 
Chemical Engineering (Silva et. al., 2011).  In this study the ethanol production by Pichia 
stipitis was evaluated in a stirred tank bioreactor using semi defined medium containing 
xylose (90.0 g/l) as the main carbon source. Experimental assays were performed according to 
a 22  full factorial design to evaluate the influence of aeration (0.25 to 0.75 vvm) and agitation 
(150 to 250 rpm) conditions on ethanol production. The design contains also a centre point 
(0.50 vvm and 200 rpm), and in a replication of the (+1, +1) experiment. It should be noted that 
this design is not fully orthogonal due the exceptional selection of the replication experiment 
(the design would have been orthogonal, if the centre point had been replicated).   

The results of the design are given in Table 3 below (X1 and X2 refer to aeration and 
agitation in coded levels, respectively). 
 

Assay Aeration Agitation X1 X2 Production (g/l) 

1 0.25 150 -1 -1 23.0 

2 0.75 150 1 -1 17.7 

3 0.25 250 -1 1 26.7 

4 0.75 250 1 1 16.2 

5 0.75 250 1 1 16.1 

6 0.50 200 0 0 19.4 

Table 3. A 22  design. 

Fig. 8 shows the effect of aeration at the two levels of agitation. From the figure, it is clear 
that aeration has much greater influence on productivity (Production) than agitation. It also 
shows an interaction between the variables. Considering the very small difference in the 
response between the two replicate experiments, it is plausible to consider both aeration and 
the interaction between aeration and agitation significant effects. 

 

Fig. 8. Production vs. aeration. Blue solid line: Agitation = 150; red dashed line: Agitation = 250. 
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If we carry out classical statistical tests used in regression analysis, it should be remembered 
that the design has only one replicated experiment, and consequently very few degrees of 
freedom for the residual error. Testing lack-of-fit, or nonlinearity, is also unreliable because 
we can estimate the (pure) experimental error with only one degree of freedom. However, it 
is always possible to use common sense and investigations about the effects on relative 
basis. For example, the difference between the centre point result and the mean value of the 
other (corner point) results is only 0.45 which is relatively small compared to differences 
between the corner points. Therefore, it is highly unlikely that the behaviour would be 
nonlinear within the experimental region. Consequently, it is likely that the model doesn’t 
suffer from lack-of-fit, and a linear plus interaction model should suffice.  

Now, let us look at the results of the regression analyses of a linear plus interaction model 
(model 1), the same model without the agitation main effect (model 2), and the model with 
aeration only (model 3). The regression analyses are carried out using basic R and some 
additional DOE functions written by the author (these DOE functions, including the R-
scripts of all examples of this chapter, are available from the author upon request).  

The R listing of the summary of the regression models 1, 2 and 3 are given in Tables 4-6 
below. Note that values of the regression coefficients of the same effects vary a little between 
the models. This is due to the fact that design is not fully orthogonal. In an orthogonal 
design, the estimates of the same regression coefficients will not change when terms are 
dropped out. 

 
 

 Estimate Std. Error t value p value 

(Intercept) 20.6205 0.4042 51.015 0.000384 
X1 -3.9244 0.4454 -8.811 0.012638 

X2 0.5756 0.4454 1.292 0.325404 

I(X1 * X2) -1.2744 0.4454 -2.861 0.325404 

Residual standard error: 0.9541 on 2 degrees of freedom 
Multiple R-squared: 0.9796,     Adjusted R-squared: 0.9489 
F-statistic: 31.95 on 3 and 2 DF,  p-value: 0.03051 

 

Table 4. Regression summary of model 1 (I(X1 * X2) denotes interaction between X1 and X2). 

 
 

 Estimate Std. Error t value p value 

(Intercept) 20.6882 0.4433 46.668 2.17e-05 
X1 -3.8397 0.4873 -7.879 0.00426 

I(X1 * X2) -1.1897 0.4873 -2.441 0.09238 

Residual standard error: 1.055 on 3 degrees of freedom 
Multiple R-squared: 0.9625,     Adjusted R-squared: 0.9375 
F-statistic: 38.48 on 2 and 3 DF,  p-value: 0.007266 

 

Table 5. Regression summary of model 2 (I(X1 * X2) denotes interaction between X1 and X2). 
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 Estimate Std. Error t value p value 

(Intercept) 20.5241 0.6558 31.3 6.21e-06 
X1 -4.0448 0.7184 -5.63 0.0049 

Residual standard error: 1.579 on 4 degrees of freedom 
Multiple R-squared: 0.8879,     Adjusted R-squared: 0.8599 
F-statistic: 38.48 on 1 and 4 DF,  p-value: 0.004896 

Table 6. Regression summary of model 3. 

The residual standard error is approximately 1 g/l in models 1 and 2. This seems quite high 
compared to the variation in replicate experiments (16.2 and 16.1 g/l) corresponding to the 
pure experimental pure error standard deviation of ca. 0.071 g/l. The calculations of a lack-
of-fit test for model 2 are the following: The residual sum of squares (SSRES) is 3·1.0552 = 
3.339. The pure error sum of squares (SSE) is 1·0.0712 = 0.005. The lack-of-fit sum of squares 
(SSLOF) is 3.339-0.005 = 3.334. The corresponding mean squares are SSLOF/( dfRES- dfE) = 
SSLOF/(3-1) = 3.334/2 = 1.667 and the lack-of-fit F-statistic is MSLOF/MSE = 1.667/0.005 = 
333.4 having 2 and 1 degrees of freedom. The corresponding p-value is 0.039 which is 
significant at the 0.05 level of significance. Thus, a formal lack-of-fit test exhibits significant 
lack-of-fit, but one must keep in mind that estimating standard deviation from only two 
observations is very unreliable. The lack-of-fit p-values for models 1 and 3 are 0.033 and 
0.028, respectively, i.e. the lack-of-fit is least significant in model 2. 

The effect of aeration (X1) is significant in all models, and according to model 1 it is obvious 
that agitation doesn’t have a significant effect on productivity. The interaction term is not 
significant in any of the models; however, it is not uncommon to include terms whose p-
values are between 0.05 and 0.10 in models used for designing new experiments. The results 
of the new experiments would then either support or contradict the existence of an 
interaction. 

Carrying out the leave-one-out (loo) cross-validation, gives the following Q2 values  
(Table 7). 
 

Model R2 Q2 

1 98.0 -22.0 

2 96.2 84.5 

3 88.8 68.1 

Table 7. Comparison of R2 and Q2 values between model 1-3. 

Fig. 9 shows the fitted and CV-predicted production values and the corresponding residual 
normal probability plots of models 1-3. By cross-validation, the model 2, i.e. 

0 1 1 12 1 2  y b b X b X X , is the best one. Finally, Fig. 10 shows the contour plot of the best 

model, model 2. 
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Fig. 9. Cross-validation of models 1-3. Left panel: Production vs. the number of experiment; 
black circles: data; blue triangles: fitted values; red pluses: cross-validated leave-one-out 
prediction. Right panel: Normal probability plots of the cross-validated leave-one-out 
residuals. 
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Fig. 10. Production vs. Aeration and Agitation. 

3.3 Fractional 2
N
 designs (2

N-p
 designs) 

The number of experiments in 2N designs grows rapidly with the number of variables N. 
This problem can be avoided by choosing only part of the experiments of the full design. 
Naturally, using only a fraction of the full design, information is lost. The idea behind 
fractional 2N designs is to select the experiments in a way that the information lost is related 
only to higher order interactions which seldom represent significant effects.  

3.3.1 Generating 2
N-p

 designs 

The selection of experiments in 2N-p designs can be accomplished by using so-called 
generators (see e.g. Box & al., 2005). A generator is an equation between algebraic elements 
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that represent variable effects, typically denoted by bold face numbers or upper case letters. 
For example 1 denotes the effect of variable 1. If there are more than 9 variables in the 
design, brackets are used to avoid confusion, i.e. we would use (12) instead of 12 to 
represent the effect of the variable 12. The bold face letter I represents the average response, 
i.e. the intercept of the model when coded variables are used. The generator elements 
(effects) follow the following algebraic rules of ‘products’ between the effects. 

The effects are commutative, e.g. 12 = 21 
The effects are associative, e.g. (12)3 = 1(23) 
I is a neutral element, e.g. I2 = 2 
Even powers produce the neutral element, e.g. 22 = I or 2222 = I (naturally, for example  
222 = 2) 

Now, a generator of a design is an equation between a product of effects and I, for example 

123 = I. The interpretation of a product, also called a word, is that of a corresponding 

interaction between the effects. Thus, for example, 123 = I means that the third order 

interaction between variables 1-3 is confounded with the mean response in a design 

generated using this generator. Confounding (sometimes called aliasing) means that the 

confounding effects cannot be estimated unequivocally using this design. For example, in a 

design generated by 123 = I the model cannot contain both an intercept and a third order 

interaction. If the model is deliberately chosen to have both an intercept and the third order 

interaction term, there is no way to tell whether the estimate of the intercept really 

represents the intercept or the third order interaction.  

Furthermore, any equation derived from the original generator, using the given algebraic 

rules, gives a confounding pattern. For example multiplying both sides of 123 = I by 1 gives 

1123 = 1I. Using the given rules this simplifies into I23 = 1I and then into 23 = 1. Thus, in a 

design with this generator the pairwise interaction between variable 2 and 3 is confounded 

with variable 1. Multiplying the original generator by 2 and 3 it is easy to see that all 

pairwise interactions are confounded with main effects (2 with 13 and 3 with 12) in this 

design. Consequently, the only reasonable model whose parameters can be estimated 

unequivocally, is the main effect model 0 1 1 2 2 3 3   y b b X b X b X . Technically possible 

alternative models, but hardly useful in practice, would be e.g. 

0 1 1 2 2 12 1 2   y b b X b X b X X  or 123 1 2 3 1 1 2 2 3 3   y b X X X b X b X b X .  

A design can be generated using more than one generator. Each generator halves the 

number of experiments. For example, a design with two generators has only ¼ of the 

original number of experiments in the corresponding full 2N design. If p is the number of 

generators, the corresponding fractional 2N design is denoted by 2N-p.  

In practice, 2N-p designs are constructed by first making a full 2N design table and then 

adding columns that contain the interaction terms corresponding to the generator words. 

Then only those experiments (rows) are selected where all interaction terms are +1. 

Alternatively one can choose the experiments where all interaction terms are -1. As an 

example, let us construct a 23-1 design with the generator 123 = I. The full design table 

with an additional column containing the three-way interaction term is given in  

Table 8. 
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1x  2x  3x  1 2 3x x x  

-1 -1 -1 -1 

-1 -1 +1 +1 

-1 +1 -1 +1 
-1 +1 +1 -1 

+1 -1 -1 +1 

+1 -1 +1 -1 

+1 +1 -1 -1 
+1 +1 +1 +1 

Table 8. A table for constructing a 23-1 design. 

Now, the desired design table is obtained by deleting the rows 1, 4, 6 and 7. An alternative 
design is obtained by deleting the rows 2, 3, 5 and 8. 

3.3.2 Confounding (aliasing) and resolution 

An important concept related to 2N-p designs is the resolution of a design, denoted by roman 

numerals. Technically, resolution is the minimum word length of all possible generators 

derived from the original set of generators. For design with a single generator, finding out 

the resolution is easy. For example, the resolution of the 23-1 design with the generator 123 = 

I is III because the length of the word 123 is 3 (note that e.g. (12) would be counted as a 

single letter in a generator word). If there are more generators than one, the situation is 

more complicated. For example, if the generators in a 25-2 design were 1234 = I and 1235 = I, 

then the equation 1234 = 1235 would be true which after multiplying both sides 1235 gives 

45 = I. Thus the resolution of this design would be II. Naturally, this would be a really bad 

design with confounding main effects.  

The interpretation of the resolution of a design is (designs of resolution below III are 

normally not used) 

 If the resolution is III, only a main effect model can be used 
 If the resolution is IV, a main effect model with half of all the pairwise interaction 

effects can be used 
 If the resolution is V or higher, a main effect model with all pairwise interaction effects 

can be used 

If the resolution is higher than V also at least some of the higher order interaction can be 
estimated. There are many sources of tables listing 2N-p designs and their confounding 
patterns, e.g. Table 3.17 in (NIST SEMATCH). Usually these tables give so-called minimum 
aberration designs, i.e. designs that minimize the number of short words in all possible 
generators of a design with given N and p. 

3.3.3 Example 

This example is taken from (Box & Draper, 2007) (Example 5.2 p. 189), but the analysis is not 
completely identical to the one given in the book. 
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The task was to improve the yield (y) (in percentage) of a laboratory scale drug synthesis. 
The five design variables were the reaction time (t), the reactor temperature (T), the 
amount of reagent B (B), the amount of reagent C (C), and the amount of reagent D (D). 
The chosen design levels in a two level fractional factorial design are given in Table 9 
below. 
 

Coded Original Lower (-1) Upper (+1) Formula 

X1 t 6 h 10 h 1

8

2




t
X  

X2 T 85⁰C 90⁰C 2

87.5

2.5




T
X  

X3 B 30 ml 60 ml 3

45

15




B
X  

X4 C 90 ml 115 ml 4

102.5

12.5




C
X  

X5 D 40 g 50 g 5

45

5




D
X  

Table 9. The variable levels of example 3.3.3. 

The design was chosen to be a fractional resolution V design (25-1) with the generator I = 
12345. The design table in coded units, including the yields and the run order of the 
experiments is given in Table 10 ( y stands for the yield). 
 

order X1 X2 X3 X4 X5 y 

16 -1 -1 -1 -1 1 51.8 

2 1 -1 -1 -1 -1 56.3 

10 -1 1 -1 -1 -1 56.8 

1 1 1 -1 -1 1 48.3 

14 -1 -1 1 -1 -1 62.3 

8 1 -1 1 -1 1 49.8 

9 -1 1 1 -1 1 49.0 

7 1 1 1 -1 -1 46.0 

4 -1 -1 -1 1 -1 72.6 

15 1 -1 -1 1 1 49.5 

13 -1 1 -1 1 1 56.8 

3 1 1 -1 1 -1 63.1 

12 -1 -1 1 1 1 64.6 

6 1 -1 1 1 -1 67.8 

5 -1 1 1 1 -1 70.3 

11 1 1 1 1 1 49.8 

Table 10. The design of example 3.3.3 in coded units. 

Since the resolution of this design is V, we can estimate a model containing linear and pair-

wise interaction effects. However the design is saturated with respect to this model, and 

www.intechopen.com



 
Chemometrics in Practical Applications 

 

116 

thus the model cannot be validated by statistical tests, or by cross-validation. The regression 

summary is given Table 11. 

 

 Estimate Std. Error t value p value 
(Intercept) 57.1750 NA NA NA 

t -3.3500 NA NA NA 

T -2.1625 NA NA NA 

B 0.2750 NA NA NA 
C 4.6375 NA NA NA 

D -4.7250 NA NA NA 

I(t * T) 0.1375 NA NA NA 
I(t * B) -0.7500 NA NA NA 

I(T * B) -1.5125 NA NA NA 

I(t * C) -0.9125 NA NA NA 

I(T * C) 0.3500 NA NA NA 
I(B * C) 1.0375 NA NA NA 

I(t * D) 0.2500 NA NA NA 

I(T * D) 0.6875 NA NA NA 

I(B * D) 0.5750 NA NA NA 
I(C * D) -1.9125 NA NA NA 

Residual standard error: NaN on 0 degrees of freedom 
Multiple R-squared:     1,      Adjusted R-squared:   NaN 
F-statistic:   NaN on 15 and 0 DF,  p-value: NA 

Table 11. Regression summary of the linear plus pairwise interactions model. NA stands for 
“not available”. 

Because the design is saturated with respect to the linear plus pairwise interactions model 
there are no degrees of freedom for any regression statistics. Therefore, for selecting the 
significant terms we have to use either a normal probability plot of the estimated values of 
the regression coefficient or variable selection techniques. We chose to use forward selection 
based on the Q2 value. This technique gave the maximum Q2 value in a model with 4 linear 
terms and 7 pairwise interaction terms. However, after 6 terms the increase in the Q2 value 
is minimal, and in order to avoid over-fitting we chose to use the model with 6 terms. The 
chosen terms were the main effects of t, T, C and D, and the interaction effects between C 
and D and between T and B. This model has a Q2 value  83.8 % and the regression summary 
for this model is given in Table 12. 

All terms in the model are now statistically significant at 5 % significance level, and the 
predictive power of the model is fairly good according the Q2 value . Section 4.3 shows how 
this model has been used in search for improvement. 

3.4 Plackett-Burman (screening) designs 

If the number of variables is high, and the aim is to select the most important variables for 
further experimentation, usually only the main effects are of interest. In such cases the most 
cost effective choice is to use designs that have as many experiments as there are parameters in  
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 Estimate Std. Error t value p value 

(Intercept) 57.1750 0.6284 90.980 1.19e-14 
t -3.3500 0.6284 -5.331 0.000474 

T -2.1625 0.6284 -3.441 0.007378 

C 4.6375 0.6284 7.379 4.19e-05 

D -4.7250 0.6284 -7.519 3.62e-05 
I(T * B) -1.5125 0.6284 -2.407 0.039457 

I(C * D) 1.9125 0.6284 -3.043 0.013944 

Residual standard error: NaN on 0 degrees of freedom 
Multiple R-squared:     1,      Adjusted R-squared:   NaN 

F-statistic:   NaN on 15 and 0 DF,  p-value: NA 

Table 12. Regression summary of the 6 terms model. 

the corresponding main effect model, i.e. N+1 experiments. It can be proved that such 
designs that are also orthogonal exist in multiples of 4, i.e. for 3, 7, 11, … variables having 4, 
8, 12, … experiments respectively. The ones in which the number of experiments is a power 
of 2 are actually 2N-p designs. Thus for example a Plackett-Burman design for 3 variables that 
has 8 = 23 experiments is a 23-1 design. General construction of Plackett-Burman designs is 
beyond the scope of this chapter. The interested reader can refer to e.g. section 5.3.3.5 in 
(NIST SEMATECH). Plackett-Burman designs are also called 2-level Taguchi designs or 
Hadamard matrices. 

3.5 Blocking 

Sometimes uncontrolled factors, such as work shifts, raw material batches, differences in 
pieces of equipment, etc., may affect the results. In such cases the effects of such variables 
should be taken into account in the design. If the design variables are qualitative, such 
classical designs as randomized blocks design, Latin square design, or Graeco-Latin square 
design can be used, see e.g. (Montgomery, 1991). If the design variables are quantitative, a 
common technique is to have extra columns (variables) for the uncontrolled variables. For 
2N and CC-designs, tables of different blocking schemes exist, see e.g. section 5.3.3.3.3. in 
(NIST SEMATECH). 

3.6 Sizing designs 

An important issue in DOE is the total number of experiments, i.e. the size of a design. 

Sizing can be based on predictive power, or on the power of detecting differences of 

predefined size Δ. The latter is more commonly used, and many commercial DOE software 

packages have tools for determining the required number of estimates in such a way that 

the statistical power, i.e. 1   (   is the probability of type II error), has a desired value at a 

given level of significance  . For pairwise comparisons, exact methods based on the non-

central t-distribution exist. For example, in R the function called power.t.test can be used to 

find the number of experiments needed in pairwise comparisons. For multiple comparisons, 

one can use the so-called Wheeler’s formula (Wheeler, 1974) for an estimate of the required 

number of experiments n:  2
4 / n r  where r is the number of levels of a factor,   is the 

experimental standard deviation, and   is size of the difference. The formula assumes that 
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the level of significance   is 0.05, and the power 1    is 0.90.  Wheeler gives also formulas 

for several other common design/model combinations (Wheeler, 1974).  

4. Improving results by steepest ascent 

If the goal of the experimentation has been to optimize something, the next step after 

analysing the results of a 2N  or a fractional 2N  design is to try to make improvement using 

knowledge provided by the analysis. The most common technique is the method of steepest 

ascent, also called the gradient (path) method. 

4.1 Calculating the gradient path 

It is well known from calculus that the direction of the steepest ascent on a response surface 

is given by the gradient vector, i.e. the vector of partial derivatives with respect to the design 

variables at a given point. The basic idea has been presented in section 3.2, and now we shall 

present the technical details. 

In principle, the procedure is simple. First we choose a starting point, say 0X , which 

typically is the centre point of the design. Then we calculate the gradient vector, say  at 

this point. Note that it is important to use coded variables in gradient calculations. Next, the 

gradient vector has to be scaled small enough in order to avoid zigzagging (see 2.2). This can 

be done by multiplying the corresponding unit vector, 0 /    , by a scaling factor, say 

c. Now, the gradient path points are obtained by calculating , 1,2, , 0
X = X + i (i-1) c i n  

where n is the number of points. Once the points have been calculated, the experimental 

points are chosen from the path so that the distance between the points matches the desired 

step size, typically 1 in coded units. Naturally, the coded values have to be decoded into 

physical values having the original units before experimentation. 

4.2 Alternative improvement techniques 

Another principle in searching optimal new experiments is to use direct optimization 

techniques using the current model. In this approach, first the search region has to be 

defined. There are basically two different alternatives: 1) a hypercube whose centre is at the 

design centre with a given length for the sides of the hypercube, or 2) a hypersphere whose 

centre is at the design centre with a given radius. In the first alternative, typically the length 

of the side is first set to a value slightly over 2, say 3, giving mild extrapolation outside the 

experimental region. In the latter, typically the length of the radius is first set to a value 

slightly over 1, say 1.5, giving mild extrapolation outside the experimental region. 

If the model is a linear plus pair-wise interactions model, the solution can easily be shown to 

be one of the vertices of the hypercube in the hypercube approach. If the model is a 

quadratic one, and the optimum (according to the model) is not inside the hypercube, the 

solution is a point on one of the edges of the hypercube and a point on the hypersphere in 

the hypersphere approach. In both approaches, the solution is found most easily using some 

iterative constrained optimization tool, e.g. Excel’s Solver Tool. In the latter (hypersphere) 

approach, it is easy to show, using the Lagrange multiplier technique of constrained 

www.intechopen.com



 
Experimental Optimization and Response Surfaces 

 

119 

optimization, that the optimal point Xopt  on the hypersphere of radius r is obtained by 

  1
2

 X B I bopt  , where   is solved from the equation   1 2 22
 B I b r . The notation is 

explained in section 5.2. Unfortunately,   must be solved numerically unless the model is 

linear. The benefit of using (numerical) iterative optimization in both approaches, or using 

the gradient path technique, is that they all work for all kind of models, not only for 

quadratic ones. 

4.3 Example 

Let us continue with the example of section 3.3.3 and see how the model can be used to 
design new experiments along the gradient path. The model of the previous example can be 
written (in coded variables) 

 0 1 1 2 2 4 4 5 5 23 2 3 45 4 5      y b b X b X b X b X b X X b X X  (7) 

The coefficients (b’s) refer to the values given in Table 12. The gradient, i.e. the direction of 
steepest ascent, is the vector of partial derivatives of the model with respect to the variables. 
Differentiating the expression given in Eq. 7 gives in matrix notation 

  1 2 23 3 23 2 4 45 5 5 45 4               T
b b b X b X b b X b b X  (8) 

Because this is a directional vector, it can be scaled to have any length. If we want it to have 

unit length, it must be divided by its norm, i.e. we use /  . Now, let us start the 

calculation of the gradient path from the centre of the design, where all coded values are 
zeros. Substituting numerical values into Eq. 8 gives 

  3.35  2.16   0.00   4.64   4.72    T  (9) 

The norm of this vector is ca. 7.73. Dividing Eq. 9 by its norm gives 

  0.43  0.28   0.00   0.60   0.61    T


 (10) 

These are almost the same values as in the example 6.3.2 in (Box & Draper, 2007) though we 
have used a different model with significant interaction terms included. The reason for this 
is that the starting point is the centre point where the interaction terms vanish because the 
coefficients are multiplied by zeros. 

The vector of Eq. 10 tells us that we should decrease the time by 0.43 coded units, the 
temperature by 0.28 coded units, and the amount of reagent D by 0.61 coded units and 
increase the amount of reagent C by 0.60 coded units.  Of course, there isn’t much sense to 
carry out this experiment because it is inside the experimental region. Therefore we shall 
continue from this point onwards in the direction of the gradient. Now, because of the 
interactions, we have to recalculate the normed gradient at the new point where 1 0.43 X , 

2 0.28 X , 3 0.00X , 4 0.60X , and 5 0.61 X . 

When this is added to the previous values, we get 1 0.80 X , 2 0.52 X , 3 0.05X , 

4 1.23X , and 5 1.25 X . These values differ slightly more from the values in the original 
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source; however the difference has hardly any significance. The difference becomes more 

substantial if we continue the procedure because the interactions start to bend the gradient 

path. Box and Draper calculated the new points at distances 2, 4 , 6 and 8 in coded units 

from the centre point. If we do the same we get the points given in Table 13. 
 

Distance X1 X2 X3 X4 X5 

2 -0.80 -0.52 0.05 1.23 -1.25

4 -1.38 -0.91 0.21 2.55 -2.57

6 -1.82 -1.25 0.40 3.90 -3.93

8 -2.18 -1.55 0.62 5.26 -5.23

Table 13. Four new experiments (in coded units) along the gradient path. 

For comparison, the values in the book together with the reported yields of these 
experiments are given in Table 14. 
 

Distance X1 X2 X3 X4 X5 yield

2 -0.86 -0.56 0.08 1.20 -1.22 72.6 

4 -1.72 -1.12 0.16 2.40 -2.44 85.1 

6 -2.58 -1.68 0.24 3.60 -3.66 82.4 

8 -3.44 -2.24 0.32 4.80 -4.88 80.8 

Table 14. Four new experiments (in coded units) along the gradient path given in (Box & 
Draper, 2007). 

The differences in the design variables in the last two rows start to be significant, but 
unfortunately we cannot check whether they had been any better than the ones used in the 
actual experiments. The actual experiments really gave substantial improvement; see 
Example 6.3.2 in (Box & Draper, 2007).  

Before going to quadratic designs and models, let us recall what was said about calculation 
step in section 3.2 and let us calculate the gradient using a step size 0.1 instead of 1.0, but 
tabulating only those points where the sum of the steps is two, i.e. the arc length along the 
path between two sequential points is approximately 2. These points are given in Table 15. 
 

Distance X1 X2 X3 X4 X5 

2 -0.74 -0.48 0.08 1.26 -1.27

4 -1.28 -0.87 0.24 2.58 -2.61

6 -1.70 -1.20 0.43 3.94 -3.96

8 -2.04 -1.50 0.64 5.30 -5.34

Table 15. Four new experiments (in coded units) along the gradient path using a small step 
size in the gradient path calculation. 

If you compare these values with our first table, the differences are not big. The reason is 
that the model has not quadratic terms and the zigzag effect, explained in section 3.2, would 
take place only with really large step sizes. In any case, the best way to do these calculations 
is to use appropriate software, and then it doesn’t matter if you calculate more accurately 
using a small step size. 
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Of course, before experimentation, one has to convert the coded units back to physical units. 
This could be easily done by solving for the variables in physical units from the equations 
given in the column Formula in Table 9. However, the easiest way is to use appropriate 
software. Table 16 gives the values in Table 15 in physical units. 
 

Distance t T B C D

2 6.5 86.3 46.1 118.2 38.6

4 5.4 85.3 48.6 134.8 32.0

6 4.6 84.5 51.5 151.7 25.2

8 3.9 83.7 54.6 168.8 18.3

Table 16. Experiments of Table 15 in physical units. 

5. Second and higher order designs and response surface modelling 

When the response doesn’t depend linearly on the design variables, two-level designs are 
not adequate. Nonlinear behaviour can typically be detected by comparing the centre point 
results with the actual 2N design point results. Alternatively, a nonlinear region is found by 
steepest ascent experiments. Sometimes nonlinearity can be assumed by prior knowledge 
about the system under study. There are several alternative designs for empirical nonlinear 
modelling. Before going to the different design alternatives let us review the most common 
nonlinear empirical model types. The emphasis is on so-called quadratic models, commonly 
used in the Box-Wilson strategy of empirical optimization. We shall first introduce typical 
models used with these designs, and after that, introduce the most common designs used 
for creating such models. 

5.1 Typical nonlinear empirical models 

The most common nonlinear empirical model is a second order polynomial of the design 

variables, often called a quadratic response surface model, or simply, a quadratic model. It is 

a linear plus pairwise interactions model added with quadratic terms, i.e. design variables 

ra ised to  power  2 .  For  example,  a  quadrat ic  model  for  two var iables  i s 
2 2

0 1 1 2 2 12 1 2 11 1 22 2     y b b X b X b X X b X b X . In general, we use the notation that   ib  is the 

coefficient of iX , iib  is the coefficient of 2
iX , and ,  ijb i j  is the coefficient of   i jX X . Fig. 11 

depicts typical quadratic surfaces of two variables 1X  and 2X . Now, let B be a matrix 

whose diagonal elements iiB  are defined by 2ii iiB b , and the other elements ,  ijB i j  are 

defined by ,  ij ijB b i j  and ,  ji ijB b i j . By definition, the matrix B is symmetric. Also, let 

b be the vector of main effect coefficients, i.e.  1 2,  ,  ,b  Nb b n
T

. Using this notation, a  

quadratic model can expressed in matrix notation as 0

1

2
  x b x Bx

T Ty b  where x is the 

vector  1 2, , , T
NX X X . 

If a quadratic model has more than 2 variables, any 2 variables can be chosen as free 

variables corresponding to the x and y axes of the plot, and the other variables are kept at 

constant levels. Varying the values of the other variables in a systematic way, a good 

overview of the dependencies can be obtained till up to 4 or 5 variables. With more 

variables, one must rely on computational techniques. 
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Fig. 11. Typical quadratic surfaces of 2 variables ( 1X  and 2X ): a surface having a minimum 

(upper left), a surface having a maximum (upper right), a surface having a saddle point 

(lower left), and a surface having a ridge (lower right). 

Other model alternatives are higher order polynomials, rational functions of several 
variables, nonlinear PLS, neural networks, nonlinear SVM etc. With higher order 
polynomials, or with linearized rational functions, it advisable to use ridge regression, PLS, 
or some other constrained regression technique, see e.g. (Taavitsainen, 2010). These 
alternatives are useful typically in cases where the response is bounded in the experimental 
region; see e.g. (Taavitsainen et. al., 2010).  

5.2 Estimation and validation of nonlinear empirical models 

Basically the analyses and techniques presented in sections 3.1.2 and 3.2 are applicable to 

nonlinear models as well. Actually, polynomial models are linear in parameters, and thus 

the theory of linear regression applies. Normally, nonlinear regression refers to regression 

analysis of models that are nonlinear in parameters. This topic is not treated in this chapter, 

and the interested reader may see e.g. (Bard, 1973) 

It should be noted that some of the designs presented in section 5.3 are not orthogonal, and 

therefore PLS or ridge regression are more appropriate methods than OLS for parameter 

estimation, especially in so-called mixture designs.  
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For quadratic models, a special form of analysis called canonical analysis is commonly used 
for gaining better understanding of the model. However, this topic is beyond the scope of 
this chapter, and the reader is advised to see e.g. (Box & Draper, 2007). Part of the canonical 
analysis is to calculate the so called stationary point of the model. A stationary point is a 
point where the gradient with respect to the design variables vanishes. Solving for the 
stationary point is straightforward. The stationary point is the solution of the linear system 
of equations     Bx b , obtained by differentiation from the model in matrix form given in 

section 5.1. A stationary point can represent a minimum point, a maximum point, or a 
saddle point depending on the model coefficients. 

5.3 Common higher order designs 

Next we shall introduce the most common designs used for response surface modelling 
(RSM). 

5.3.1 Factorial M
N
 designs 

Full factorial designs with M levels can be used for estimating polynomials of order at most 
1M . Naturally, these designs are feasible only with very few variables, say maximum 3, 

and typically for only few levels, say at most 4. For example, a 44 design would contain 256 
which would be seldom feasible. However, the recent development in parallel microreactor 
systems having e.g. 64 simultaneously operating reactors at different conditions can make 
such designs reasonable. 

5.3.2 Fractional factorial M
N
 designs, and mixed level factorial design. 

Sometimes it is known that one or more variables act nonlinearly and the others linearly. For 

such cases a mixed level factorial design is a good choice. A simple way to construct e.g. a 3 

or a 4 level mixed level factorial design is to combine a pair of variables in a 2N  design into 

a single new variable (Z) having 3 or 4 levels using the coding given in Table 17 

( 1 2 3,  ,x x x and 4x  represent the levels of the variable constructed from a pair of variables 

( ,i jX X ) in the original 2N  design). 

 
 

iX jX Z (3 levels) Z (4 levels)

-1 -1 1x 1x

-1 +1 2x 2x

+1 -1 2x 3x

+1 +1 3x 4x
 

Table 17. Construction of a 3, or 4 level variable from two variables of a 2N  design. 

There are also fractional factorial designs which are commonly used in Taguchi 
methodology. The most common such designs are the so-called Taguchi L9 and L27 
orthogonal arrays, see e.g. (NIST SEMATECH). 
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5.3.3 Box-Behnken designs 

The structure and construction of Box-Behnken designs (Box & Behnken, 1960) is simple.  

First, a 12 N  design is constructed, say X0, then a 12  NN  by N matrix of zeros X is created. 

After this, X is divided into N blocks of 12 N  rows and all columns, and in each block the 

columns, omitting the i’th column, is replaced by X0. Finally one or more rows of N zeros are 

appended to X. This is easy to program e.g. in Matlab or R starting from a 12  N  design.  The 

following R commands will do the work for any number of variables (mton is a function 

that generates NM  designs, and nrep is the number of replicates at the centre point): 

X0 <- as.matrix(mton(2,N-1)) 
M  <- 2^(N-1) 
X  <- matrix(0,N*M,N) 
for(i in 1:N) X[((i-1)*M+1):(M*i),(1:N)[-i]] <- X0 
X  <- rbind(X,rep(nrep,N)) 

As an example, Table 18 shows a Box-Behnken design of 3 variables and 3 centre point 

replicate experiments. 
 

1X 2X 3X

0 -1 -1 

0 -1 +1 

0 +1 -1 

0 +1 +1 

-1 0 -1 

-1 0 +1 

+1 0 -1 

+1 0 +1 

-1 -1 0 

-1 +1 0 

+1 -1 0 

+1 +1 0 

0 0 0 

0 0 0 

0 0 0 

Table 18. A Box-Behnken design with 3 variables. 

5.3.4 Central composite designs  

The so-called central composite (CC) designs are perhaps the most common ones used in 
RSM, perhaps due their simple structure (for other possible reasons, see section 5.3). As the 

name suggests they are composed of other designs, namely, of a factorial or fractional 2N  

www.intechopen.com



 
Experimental Optimization and Response Surfaces 

 

125 

part, of so-called axial points, and of centre points. Sometimes the latter two parts together 
are called a star design. As an example, Table 19 shows a CC design for two variables. 
 

1X 2X  

-1 -1 

F
acto

rial 2
2 

p
art 

-1 +1 
+1 -1 

+1 +1 
 0 A

xial 
p

o
in

ts 

0 
 0 

0 
0 0 Centre

points 0 0 

Table 19. A CC design with 2 variables. 

The value   depends on the kind of properties we want the design to have. Typical desired 

properties are orthogonality, rotatability, and symmetry. A rotatable design is such that the 

prediction variance of a point in the design space does depend only on its distance from. 

design centre, not on its direction. Let us denote the number of the centre points by cpN . 

Then, for an orthogonal design   is given by the following Eq. 11. 

  
1

2 42
2 2 2

4

 
     
  

N
N N

cpN N  (11) 

The derivation of this rather formidable looking equation, and of the two following ones, are 

given e.g. in (Box & Draper, 2007). It should be noted that the model matrix obtained with 

this choice for   is not strictly orthogonal, because the intercept column (the column of 

ones) vector is not orthogonal to the column vector of the quadratic terms. However, all the 

other columns of the model matrix are orthogonal to each other. This can also be expressed 

by saying that the quadratic effects are partially confounded with the intercept. 

For a rotatable design, the appropriate value for   is given by the equation Eq. 12. 

 42
N

  (12) 

For maximal symmetry, i.e. all points except for the centre point, lie on a hypersphere of 
radius   , the appropriate value for   is given by the equation Eq. 13 

  N  (13) 

A common fourth choice is to set   to 1. Such CC design is called a face centred CC design 

(CCF). For  ’s greater than 1 the designs are called circumscribed, CCC. Some other 

alternatives, e.g. compromising between orthogonality and rotatability, exist too. Sometimes 
a CCC design is scaled so that   is scale to 1, and the coordinates of the factorial points are 
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scaled to 1 /  . Such designs are called inscribed (CCI), though they actually are CCC 

designs with a different coding of variables. 

Figs. 12 and 13 depict a CCC and a CCF design of 3 variables. 

 

Fig. 12. A CCC design in coded units for 3 variables ( 1X , 2X and 3X ) with 
3

42 . 

5.3.5 Doehlert designs 

Doehlert designs are constructed from so-called regular simplexes. For example, a regular 

triangle and a regular tetrahedron represent regular simplexes in 2D and 3D, respectively. A 

Doehlert design for two variables consists of the vertexes of 6 adjacent regular triangles. 

Thus it comprises the vertexes of a regular hexagon plus the centre point. Doehlert designs 

fill the experimental space in a regular way in the sense that distances between the 

experimental points are constant. Doehlert designs have 21  N N  experimental points, 

which is less than in CC designs. Thus they are typically used in cases where the 

experiments are either very expensive or time consuming.  The interested reader may refer 

to e.g. (Doehlert, 1970). Construction of Doehlert designs for more than 2 variables is rather 

tedious, and use of appropriate software, or tables of Doehlert designs, are recommended, 

see e.g. (Bruns & al, 2006) 
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Fig. 13. A CCF design in coded units for 3 variables ( 1X , 2X and 3X ) with 1 . 

5.3.6 Mixture designs 

If the design variables are proportions of constituents in a mixture, then in each experiment 
the values of the design variables sum up to 1 (100 %). In such cases, ordinary designs 
cannot be applied, since the row sums of ordinary designs vary irrespective of the coding 
used. If there are no other constraints than the closure constraint, the most common designs 
are the so-called simplex lattice, and simplex centroid designs. If some constraints are 
imposed as well, a good choice is to use optimal designs (see the next section), though other 
alternatives exist as well; see e.g. (Cornell, 1981), or (Montgomery, 1991).  

The closure constraint has to be taken into account also in modelling results of mixture 
experiments. The closure means that the columns of the model matrix are linearly 
dependent making the matrix singular. One way to overcome this problem is to make the 
model using only 1N   variables, because we need to know only the values of 1N   

variables, and the value of the N’th variable is one minus the sum of the others. However, 
this may make the interpretation of the model coefficients quite difficult. Another 
alternative is to use the so-called Scheffe polynomials, i.e. polynomials without the intercept 
and the quadratic terms. It can be shown that Scheffe polynomials of N variables represent 
the same model as an ordinary polynomial of 1N   variables, naturally with different 

values for the polynomial coefficients. For example the quadratic polynomial of two 
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variables 1 1 2 2 12 1 2  y b X b X b X X can be simplified into   2
2 1 2 12 1 12 1    y b b b b X b X  if 

2 11 X X . This shows that it is a quadratic function of 1X  only; for more details see e.g. 

(Cornell, 1981).  

The model matrices of mixture designs are not orthogonal, and they are usually quite ill-
conditioned. For this reason, it is commonly recommended to use PLS or ridge regression 
for estimating the model parameters.  

5.3.7 Optimal designs 

The idea behind so-called optimal designs is to select the experimental points so that they 
satisfy some optimality criterion about the model to be used. It is important to notice that 
the optimality of such designs is always dependent on the model. For this reason, optimal 
designs are often used in designing experiments for mechanistic modelling problems. In 
empirical modelling we don’t know the model representing the ‘true’ behaviour, and even a 
good empirical model is just an approximation of the true behaviour. Of course, if it has 
been decided to use e.g. a quadratic approximation, using a design that is optimal for a 
quadratic model is perfectly logical. However, the design still should have extra 
experiments that allow assessing the lack-of-fit. 

Typically optimal designs are planned for quadratic models. Probably the most common 
optimality criterion is the D-optimality criterion. A D-optimal design is a design that 

minimizes the determinant of the information matrix, i.e. 
1

X X
T  where X  is the model 

matrix. There are several other optimality criteria, typically related to minimizing the 
variance of predictions, or to minimizing the variances of the model parameter estimates. In 
many cases, a design that is optimal according to one criterion is also optimal or nearly 
optimal according to several other criteria as well.  

A nice feature in optimal designs is that it is easy take into account constraints in the design 

space, e.g. a mixture constraint, or a constraint in which one variable always has to have a 

greater value than some other variable. Constraints can sometimes be handled by some 

‘tricks’, e.g. instead of using 1x  and 2x  when 1 2x x , one could use in design 1x  and 3x  

and set 2 1 3 x x x , i.e. to use a variable that tells how much greater to the value of 1x  the 

value of 2x  is. In general, using optimal designs is the most straightforward approach for 

constrained problems. 

In practice, constructing optimal designs requires suitable software. Optimal design routines 
are available in most commercial statistical software packages containing tools for DOE. 
There is also an R package for creating optimal designs, called AlgDesign (http://cran.r-
project.org/web/packages/AlgDesign/index.html). See also (Fedorov, 1972) or (Atkinson 
et. al., 2007). 

5.4 Choosing an appropriate second order design 

As we have seen, there are many types of designs for nonlinear empirical (usually 
quadratic) models. How does a practitioner know which one to choose? A good strategy is 
to try first a simple design that has extra degrees of freedom for validation and for checking 
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model adequacy. Of course, if the problem at hand is a mixture problem, one has to rely on 
mixture designs or optimal designs. If the experiments are very expensive, one may have to 
use saturated, or almost saturated designs, e.g. optimal designs or Doehlert  designs. In 
other cases CC or Box-Behnken designs are better choices. For 3 variables, a Box-Behnken 
design contains fewer experiments than a CC design for 3 variables, but for more variables it 
is the other way round. For example, a 4 variable Box-Behnken design (without replicates) 
contains 33 experiments, as the corresponding CC design contains 25 experiments. Thus, 
except for mixture problems or constrained problems, a CC design is usually the best choice. 
In general, CCC designs should be preferred to CCF designs, but otherwise choosing the 
value for   is usually not a big issue from the practical point of view; the differences in 

performance are minor. CCF designs should be used only in cases where there is a real 
benefit of having fewer variable levels than the 5 variable levels of CCC designs (CCF 
designs use only 3 variable levels). 

5.5 Example: Analysis of a Doehlert design for two variables 

This example comes from (Dos Santos et. al., 2008). The aim was to optimize the recovery 

percentage of several elements with respect to the temperature and the volume of 

concentrated nitric acid from which we take only the recovery percentage of manganese (for 

details, see (Dos Santos et. al., 2008). The design is a Doehlert design with 3 replicates, and it 

is given in physical units in Table 20. 
 

Temperature Volume Recovery %

135 5 89.0 

165 5 90.2 

120 3 90.4 

150 3 94.3 

150 3 91.6 

150 3 91.2 

180 3 91.0 

135 1 82.6 

165 1 88.0 

Table 20. A Doehlert design with 2 variables. 

Next, the variables are coded so that the maximum values are set to +1 and the minimum 

values are set to 1 . Thus the coding formulas will be 1
150

30




T
X , and 2

3

2




V
X . The 

design in coded units is given in Table 21. 
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1X  2X Recovery %

-0.5 +1 89.0 

0.5 +1 90.2 

-1 0 90.4 

0 0 94.3 

0 0 91.6 

0 0 91.2 

+1 0 91.0 

-0.5 -1 82.6 

+0.5 -1 88.0 

Table 21. A Doehlert design with 2 variables in coded units. 

Fig. 14 shows the design together with the recoveries visualizing the hexagonal structure of 
the design.  

 

Fig. 14. The design of example 5.4.1 together with the measured recovery percentages. 
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Next a quadratic model is fitted to the data. The parameter estimates and the related 
statistics are given in Table 22. 
 

 Estimate Std. Error t value p value 

(Intercept) 92.37 1.14 81.06 4.14e-06 

X1 1.30 1.14 1.14 0.337 

X2 2.15 0.99 2.18 0.118 

I(X1^2) -1.67 1.80 -0.93 0.423 

I(X1 * X2) -2.10 1.97 -1.06 0.365 

I(X2^2) -4.50 1.35 -3.33 0.045 

Residual standard error: 1.974 on 3 degrees of freedom 
Multiple R-squared: 0.8594,     Adjusted R-squared: 0.6251 
F-statistic: 3.668 on 5 and 3 DF,  p-value: 0.1569 

Table 22. Regression summary of the quadratic model. 

According to Table 22 only the intercept and the quadratic effect of 2x  are significant. The 

p-value of the lack-of-fit test based on the 3 replicates is ca. 0.28. Thus the lack-of-fit is not 

significant. The apparent reason for the low significance is the rather poor repeatability of 

the experiments. The standard deviation of the recoveries of the replicate experiments is ca. 

1.68 which is relatively high compared to the overall variation in the recoveries. 

Next, let us see the results of cross-validation. Before cross-validation, the 3 replicates are 
replaced by the average of them. Fig. 15 shows the cross-validation results. 

According to the cross-validation the predictions of the model are not very good. Due to the 

poor repeatability, i.e. large experimental error, it is hard to tell whether the reason for 

unreliable prediction is the large experimental error or something else, e.g. more 

complicated nonlinearity than quadratic one. According to the model, the optimum lies 

inside the experimental region and it corresponds to the stationary point. The optimal point 

in coded units is 1 0.25X  and 2 0.17X  which corresponds to T = 158 and V = 3.35 in 

physical units. This should be compared to Fig. 16 which shows the corresponding response 

surface. 

6. Multi-response optimization 

A common problem is to optimize the values of several responses simultaneously. This 

occurs quite frequently, because many products have to meet several different goodness 

criteria. The problem in such applications is that the individual optima can be contradictory, 

i.e. the optimal values for one of the responses may be far from the optimal values for some 

other response. Several different techniques, such as finding the so-called Pareto optimal 

result, exist. By far the simplest approach to this problem is to use so-called desirability 

functions, presented in the next section. The idea was first presented by (Derringer & Suich, 

1980) in an application of product development in rubber industry. 

Optimization using the desirability function technique can be divided into the following 
steps: 
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Fig. 15. Cross-validation of the quadratic model. Left panel: Recovery % vs. the number of 
experiment; black circles: data; blue triangles: fitted values; red pluses: cross-validated 
leave-one-out prediction. Right panel: Normal probability plots of the cross-validated leave-
one-out residuals. 
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Fig. 16. Recovery % vs. Temperature and Volume. 

First make a regression model, based on the designed experiments, individually for each 
response. Validate the models and proceed to step 2 after all models are satisfactory. 

Make a desirability function  i i id D y  for each response separately (i goes from 1 to the 

number responses, say q). Remember that the responses have been modelled as functions of 

the design variables, i.e.  1 2,  , , i i Ny f X X X .   

Building the desirabilities should be done together with a person who knows what the 
customers want from the product, and it is typically team work. How to build such 
functions in practice is explained later. Note that combining the two functions, desirabilities 
can be expressed as functions of design variables only. 
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Use an optimizer to maximize the combined desirability D which is the geometric mean of 

the individual desirabilities, i.e.  
1

1 2    q
qD D D D , with respect to the design variables. 

Check by experimentation that the found optimum really gives a good product. 

There are many ways to produce suitable desirability functions, one of which is explained in 
(Derringer & Suich, 1980). Any function that gives the 1 value for a perfect response and the 
value 0 for an unacceptable product and continuously values between 0 and 1 for responses 
whose goodness is in-between unacceptable and perfect can be used. One of the simplest 

alternatives is to use the following functions: 

1

1


 

  
 
 

iy a

b
id e  for one-sided desirabilities, 

and 






c
iy a

b
id e  for two-sided desirabilities. The parameters a, b and c are user-defined 

parameters chosen with the help of an expert on the product quality. 

The idea is best illustrated by an example. Let us consider an example where the product 
would be the better the higher its elasticity is. Let us also assume that elasticity from 0.60 
upwards would mean a practically perfect product and elasticity below 0.30 would mean a 
totally unacceptable product. Then the one-sided desirability function looks like (with a = 
0.46 and b = 0.028) the one given in Fig. 17. 

 

Fig. 17. A one-sided desirability function for elasticity that should be 0.60 or more and that 
would be totally unacceptable below 0.30. 
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If for some reason, the elasticity should not be higher than 0.60, and the elasticity over 
0.90 or elasticity below 0.30 meant an unacceptable product, we would need a two-sided 
desirability function, e.g. like the one given in Fig. 18 (with a = 0.60, b = 0.028 and c =  
2.5). 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 18. A two-sided desirability function for elasticity that should be 0.60 and that would be 
totally unacceptable below 0.30 or above 0.90. 
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For practical examples see e.g. (Taavitsainen et. al., 2010) or (Laine et. al., 2011). 

7. Conclusion 

Design of experiments is as much of an art as of science. Becoming an expert in the field 

requires both theoretical studies and experience in practical applications. Although many 

problems can be solved in principle by hand calculations, in practice use of suitable software 

is needed. If the person involved is not familiar with command line style programs whose 

use is essentially that of programming, he or she is recommended to use some commercial 

software that typically also guide the user in the design and in the analysis of the results. 

The use of simulation models, where artificial experimental error is added into the results of 

the simulation, is highly recommended. 
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