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1. Introduction 

Model comparison plays a central role in statistical learning and chemometrics. 
Performances of models need to be assessed using a given criterion based on which 
models can be compared. To our knowledge, there exist a variety of criteria that can be 
applied for model assessment, such as Akaike’s information criterion (AIC) [1], Bayesian 
information criterion (BIC) [2], deviance information criterion (DIC),Mallow’s Cp statistic, 
cross validation [3-6] and so on. There is a large body of literature that is devoted to these 
criteria. With the aid of a chosen criterion, different models can be compared. For 
example, a model with a smaller AIC or BIC is preferred if AIC or BIC are chosen for 
model assessment.  

In chemometrics, model comparison is usually conducted by validating different models on 
an independent test set or by using cross validation [4, 5, 7], resulting in a single value, i.e. 
root mean squared error of prediction (RMSEP) or root mean squared error of cross 
validation (RMSECV). This single metrics is heavily dependent on the selection of the 
independent test set (RMSEP) or the partition of the training data (RMSECV). Therefore, we 
have reasons to say that this kind of comparison is lack of statistical assessment and also at 
the risk of drawing wrong conclusions. We recently proposed model population analysis 
(MPA) as a general framework for designing chemometrics/bioinformatics methods [8]. 
MPA has been shown to be promising in outlier detection and variable selection. Here we 
hypothesize that reliably statistical model comparison could be achieved via the use of 
model population analysis.  

2. Model population analysis 

2.1 The framework of model population analysis 

Model population analysis has been recently proposed for developing chemometrics 
methods in our previous work [8]. As is shown in Figure 1, MPA works in three steps which 
are summarized as (1) randomly generating N sub-datasets using Monte Carlo sampling (2) 
building one sub-model on each sub-dataset and (3) statistically analyzing some interesting 
output of all the N sub-models.  
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Fig. 1. The schematic of MPA. MCS is the abbreviation of Monte Carlo Sampling. 

2.1.1 Monte Carlo sampling for generating a sub-dataset 

Sampling plays a key role in statistics which allows us to generate replicate sub-datasets 
from which an interested unknown parameter could be estimated. For a given dataset (X, y), 
it is assumed that the design matrix X contains m samples in rows and p variables in 
columns, the response vector y is of size m×1. The number of Monte Carlo samplings is set 
to N. In this setting, N sub-datasets can be drawn from N Monte Carlo samplings with or 
without replacement [9, 10], which are denoted as (Xsub, ysub)i, i = 1, 2, 3, …N.  

2.1.2 Establishing a sub-model using each sub-dataset 

For each sub-dataset (Xsub, ysub)i, a sub-model can be constructed using a selected method, 
e.g. partial least squares (PLS) [11] or support vector machines (SVM) [12]. Denote the sub-
model established as fi (X). Then, all these sub-models can be put into a collection: 

 C = (f1(X), f2(X), f3(X),…, fN(X))   (1) 
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All these N sub-models are mutually different but have the same goal that is to predict the 
response value y. 

2.1.3 Statistically analyzing an interesting output of all the sub-models  

The core of model population analysis is statistical analysis of an interesting output, e.g. 
prediction errors or regression coefficients, of all these sub-models. Indeed, it is difficult to 
give a clear answer on what output should be analyzed and how the analysis should be 
done. Different designs for the analysis will lead to different algorithms. As proof-of-
principle, it was shown in our previous work that the analysis of the distribution of 
prediction errors  is effective in outlier detection [13].  

2.2 Insights provided by model population analysis  

As described above, Monte Carlo sampling serves as the basics of model population analysis 
that help generate distributions of interesting parameters one would like to analyze. 
Looking on the surface, it seems to be very natural and easy to generate distributions using 
Monte Carlo sampling. However, here we show by examples that the distribution provided 
by model population analysis can indeed provide very useful information that gives 
insights into the data under investigation. 

2.2.1 Are there any outliers? 

Two datasets are fist simulated. The first contains only normal samples, whereas there are 3 
outliers in the second dataset, which are shown in Plot A and B of Figure 2, respectively. For 
each dataset, a percentage (70%) of samples are randomly selected to build a linear 
regression model of which the slope and intercept is recorded. Repeating this procedure 
1000 times, we obtain 1000 values for both the slope and intercept. For both datasets, the 
intercept is plotted against the slope as displayed in Plot C and D, respectively. It can be 
observed that the joint distribution of the intercept and slope for the normal dataset appears 
to be multivariate normally distributed. In contrast, this distribution for the dataset with 
outliers looks quite different, far from a normal distribution. Specifically, the distributions of 
slopes for both datasets are shown in Plot E and F. These results show that the existence of 
outliers can greatly influence a regression model, which is reflected by the odd distributions 
of both slopes and intercepts. In return, a distribution of a model parameter that is far from 
a normal one would, most likely, indicate some abnormality in the data.  

2.2.2 Are there any interfering variables? 

In this study, we first simulate a design matrix X of size 50 × 10, the response variable Y is 
simulated by multiplying X with a 10-dimensional regression vector. Gussian noises with 
standard deviation equal to 1 are then added to Y. That is to say, all the variables in X 
are ”true variables” that collectively predict Y. This dataset (X, Y) is denoted SIMUTRUE. 
Then another design matrix F is simulated of size 50 × 10. Denote the combination of X and 
F as Z=[X F]. This dataset (Z, Y) is called SIMUINTF, which contains variables that are not 
predictive of Y. For both datasets, we randomly choose 70% samples to first build a 
regression model which is then used to make predictions on the remaining 30% samples, 
resulting in a RMSEP value. Repeating this procedure 1000 times, we, for both datasets,  
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Fig. 2. A simulation study illustrating the use of model population analysis to detect 
whether a dataset contains outliers. Plot A and Plot B shows the data simulated without and 
with outliers, respectively. 1000 linear regression models computed using 1000 sub-datasets 
randomly selected and the slope and intercept are presented in Plot C and D. Specifically, 
the distribution of slope for these two simulated datasets are displayed in Plot E and Plot F. 
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Fig. 3. The distribution of RMSEPs using the variable set that contains only “true variables” 
(upper panel) and the variable set that includes not only “true variables” but also 
“interfering variables” (lower panel). 

obtain 1000 RMSEP values, of which the distributions are given in Figure 3. Clearly, the 
distribution of RMSEP of the SIMUINTF is right shifted, indicating the existence of variables 
that are not predictive of Y can degrade the performance of a regression model. We call this 
kind of variables “interfering variables”. Can you tell whether a dataset contains interfering 
variables for a real world dataset? Curious readers may ask a question like this. Indeed, we 
can.  We can do replicate experiments to estimate the experimental error that could serve as 
a reference by which it is possible to judge whether interfering variables exist. For example, 
if a model containing a large number of variables (with true variables included) shows a 
large prediction error compared to the experimental error, we may predict that interfering 
variables exist. In this situation, variable selection is encouraged and can greatly improve 
the performance of a model. Actually, when interfering variables exist, variable selection is a 
must. Other methods that use latent variables like PCR or PLS cannot work well because 
latent variables have contributions coming from interfering variables.  

2.3 Applications of model population analysis 

Using the idea of model population analysis, we have developed algorithms that address 
the fundamental issues in chemical modeling: outlier detection and variable selection. For 
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outlier detection, we developed the MC method [13]. For variable selection, we developed 
subwindow permutation analysis (SPA) [14], noise-incorporated subwindow permutation 
analysis (NISPA) [15] and margin influence analysis (MIA) [16]. Here, we first give a brief 
description of these algorithms, aiming at providing examples that could help interested 
readers to understand how to design an algorithm by borrowing the framework of model 
population analysis.  

As can be seen from Figure 1, These MPA-based methods share the first two steps that are 
(1) generating N sub-datasets and (2) building N sub-models. The third step “statistical 
analysis of an interesting output of all these N sub-models” is the core of model population 
analysis that underlines different methods. The key points of these methods as well as 
another method Monte Carlo uninformative variable elimination (MCUVE) that also 
implements the idea of MPA are summarized in Table 1. In a word, the distribution from 
model population analysis contains abundant information that provides insight into the 
data analyzed and by making full use of these information, effective algorithms can be 
developed for solving a given problem. 

 
Methods* What to statistically analyze 
MC method Distribution of prediction errors of each sample 
SPA Distribution of prediction errors before and after each variable is 

permuted 
NISPA Distribution of prediction errors before and after each variable is 

permuted with one noise variable as reference 
MIA Distribution of margins of support vector machines sub-models 
MCUVE Distribution of regression coefficients of PLS regression sub-models 

*: The MC method, SPA, NISPA, MIA and MCUVE are described in references [13], [14], [15] [16] and 
[27]. 

Table 1. Key points of MPA-based methods. 

2.4 Model population analysis and bayesian analysis 

There exist similarities as well as differences between model population analysis and 
Bayesian analysis. One important similarity is that both methods consider the parameter of 
interest not as a single number but a distribution. In model population analysis, we generate 
distributions by causing variations in samples and/or variables using Monte Carlo 
sampling [17]. In contrast, in Bayesian analysis the parameter to infer is first assumed to be 
from a prior distribution and then observed data are used to update this prior distribution 
to the posterior distribution from which parameter inference can be conducted and 
predictions can be made [18-20]. The output of Bayesian analysis is a posterior distribution 
of some interesting parameter. This posterior distribution provides a natural link between 
Bayesian analysis and model population analysis. Taking Bayesian linear regression (BLR) 
[20] as an example, the output can be a large number of regression coefficient vectors that 
are sampled from its posterior distribution. These regression coefficient vectors actually 
represent a population of sub-models that can be used directly for model population 
analysis. Our future work will be constructing useful algorithms by borrowing merits of 
both Bayesian analysis and model population analysis.  
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2.5 Model population analysis and ensemble learning  

Ensemble learning methods, such as bagging[21], boosting [22] and random forests [23], 
have emerged as very promising strategies for building a predictive model and these 
methods have found applications in a wide variety of fields. Recently, a new ensemble 
technique, called feature-subspace aggregating (Feating) [24], was proposed that was shown 
to have nice performances. The key point of these ensemble methods is aggregating a large 
number of models built using sub-datasets randomly generated using for example 
bootstrapping. Then ensemble models make predictions by doing a majority voting for 
classification or averaging for regression. In our opinion, the basic idea of ensemble learning 
methods is the same as that in model population analysis. In this sense, ensemble learning 
methods can also be formulated into the framework of model population analysis.  

3. Model population analysis for statistical model comparison   

Based on model population analysis, here we propose to perform model comparison by 
deriving an empirical distribution of the difference of RMSEP or RMSECV between two 
models (variable sets), followed by testing the null hypothesis that the difference of RMSEP 
or RMSECV between two models is zero. Without loss of generality, we describe the 
proposed method by taking the distribution of difference of RMSEP as an example. We 
assume that the data X consists of m samples in row and p variables in column and the 
target value Y is an m-dimensional column vector. Two variable sets, say V1 and V2, selected 
from the p variables, then can be compared using the MPA-based method described below.   

First, a percentage, say 80%, from the m samples with variables in V1 and V2 is randomly 
selected to build two regression models using a preselected modeling method such as PLS 
[11] or support vector machines (SVMs) [12], respectively. Then an RMSEP value can be 
computed for each model by using the remaining 20% samples as the test set. Denote the 
two RMSEP values as RMSEP1 and RMSEP2, of which the difference can be calculated as  

 D = RMSEP1-RMSEP2  (2) 

By repeating this procedure N, say 1000, times, N D values are obtained and collected into a 
vector D. Now, the model comparison can be formulated into a hypothesis test problem as: 

Null hypothesis: the mean of D is zero. 

Alternative hypothesis: the mean of D is not zero. 

By employing a statistical test method, e.g. t-test or Mann-Whitney U test [25], a P value can 
be computed for strictly assessing whether the mean of D is significantly different from zero 
(P<0.05) or not (P>0.05). If P<0.05, the sign of the mean of D is then used to compare which 
model (variable set) is of better predictive performance. If P>0.05, we say two models have 
the same predictive ability.  

4. Results and discussions 

4.1 Comparison of predictive performances of variables subsets 

The corn NIR data measured on mp5 instrument is used to illustrate the use of the proposed 
method (http://software.eigenvector.com/Data/index.html). This data contain NIR spectra 
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measured at 700 wavelengths on 80 corn samples. The original NIR spectra are shown in 
Figure 4. The chemical property modeled here is the content of protein. As was 
demonstrated in a large body of literature [26-30], variable selection can improve the 
predictive performance of a model. Here we would like to investigate whether the gain in 
predictive accuracy using variable subsets identified by variable selection methods is 
significant.  
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Fig. 4. Original near infrared spectra of corn on the mp5 instrument. 

Uninformative variable elimination (UVE) is a widely used method for variable selection in 
chemometrics [26]. Its extended version, Monte Carlo UVE (MCUVE), was recently 
proposed [27, 31]. Mimicking the principle of “survival of the fittest” in Darwin’s evolution 
theory, we developed a variable selection method in our previous work, called competitive 
adaptive reweighted sampling (CARS) [8, 28, 32, 33], which was shown to have the potential 
to identify an optimal subset of variables that show high predictive performances. The 
source codes of CARS are freely available at [34, 35].  

In this study, MCUVE and CARS is chosen to first identify two variable sets, named V1 and 
V2, respectively. The set of the original 700 variables are denoted as V0. Before data analysis, 
each wavelength of the original NIR spectra is standardized to have zero mean and unit 
variance. Regarding the pretreatment of spectral data, using original spectra, mean-centered 
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Fig. 5. Comparison of selected wavelengths using MC-UVE (red circles) and CARS (blue 
dots). The green line denotes the mean of the 80 corn NIR spectra.   

spectra or standardized spectra indeed would lead to different results. But the difference is 
usually not big according to our experience. The reason why we choose standardization is to 
remove the influence of each wavelength’s variance on PLS modeling because the 
decomposition of spectrum data X using PLS depends on the magnitude of covariance 
between wavelengths and the target variable Y. The number of PLS components are 
optimized using 5-fold cross validation. For MCUVE, the number of Monte Carlo 
simulations is set to 1000 and at each simulation 80% samples are selected randomly to build 
a calibration model. We use the reliability index (RI) to rank each wavelength and the 
number of wavelengths (with a maximum 200 wavelengths allowed) is identified using 5-
fold cross validation. Using MCUVE, 115 wavelengths in 5 bands (1176-1196nm, 1508-
1528nm, 1686-1696nm, 1960-2062nm and 2158-2226nm) are finally selected and shown in 
Figure 5 as red circles. For CARS, the number of iterations is set to 50. Using CARS, 
altogether 28 variables (1188, 1202, 1204, 1396, 1690, 1692, 1710, 1800, 1870, 2048, 2050, 2052, 
2064, 2098, 2102, 2104, 2106, 2108, 2166, 2168, 2238, 2270, 2382, 2402, 2434, 2436, 2468 and 
2472 nm) are singled out and these variables are also shown in Figure 5 as blue dots. 
Intuitively, MCUVE selects 5 wavelength bands while the variables selected by CARS are 
more diverse and scattered at different regions. In addition, the Pearson correlations 
variables selected by both methods are shown in Figure 6.  
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Fig. 6. The Pearson pair-wise correlations of variables selected using MCUVE (115 variables, 
left) and CARS (28 variables, right). 

We choose PLS for building regression models. For the MPA-based method for model 
comparison, the number of Monte Carlo simulations is set to 1000 and at each simulation 
60% samples are randomly selected as training samples and the rest 40% work as test 
samples. The number of PLS components is chosen based on 5-fold cross validation. In this 
setting, we first calculated 1000 values of RMSEP0, RMSEP1 and RMSEP2 using V0, V1 and 
V2, respectively. The distributions of RMSEP0, RMSEP1 and RMSEP2 are shown in Figure 7. 
The mean and standard deviations of these three distributions are 0.169±0.025 (full spectra), 
0.147±0.018 (MCUVE) and 0.108±0.015 (CARS). On the whole, both variable selection 
methods improve the predictive performance in terms of lower prediction errors and 
smaller standard deviations. Looking closely, the model selected by CARS has smaller 
standard deviation than that of MCUVE. The reason may be that CARS selected individual 
wavelengths and these wavelengths display lower correlations (see Figure 6) than those 
wavelength bands selected by MCUVE. The lower correlation results in better model 
stability which is reflected by smaller standard deviations of prediction errors. Therefore 
from the perspective of prediction ability, we recommend to adopt methods that select 
individual wavelengths rather than continuous wavelength bands. 

Firstly, we compare the performance of the model selected by MCUVE to the full spectral 
model. The distribution of D values (MCUVE – Full spectra) is shown in Plot A of Figure 8. 
The mean of D is -0.023 and is shown to be not zero (P < 0.000001) using a two-side t test, 
indicating that MCUVE significantly improves the predictive performance. Of particular 
note, it can be observed that a percentage (83.1%) of D values are negative and the 
remaining (16.9%) is positive, which indicates model comparison based on a single split of 
the data into a training set and a corresponding test set may have the potential risk of 
drawing a wrong conclusion. In this case, the probability of saying that MCUVE does not 
improve predictive performances is about 0.169. However, this problem can be solved by 
the proposed MPA-based method because the model performance is tested on a large 
number of sub-datasets, rendering the current method potentially useful for reliably 
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Fig. 7. Distributions of root mean squared errors of prediction (RMSEP) from 1000 test sets 
(32 samples) randomly selected from the 80 corn samples using full spectra and variables 
selected by MCUVE and CARS, respectively. 

statistical model comparison. With our method, we have evidence showing that the 
improvement resulting from MCUVE is significant.  

 
Fig. 8. The distributions of D values. The P values of t test for these three distributions are 
8.36×10-120, 0 and 0, respectively. 
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Further, the performance of the model selected by CARS is compared to the full spectral 
model. The distribution of D values (CARS – Full spectrum) is shown in Plot B of Figure 8. 
The mean of D is -0.061 which is much smaller that that from MCUVE (-0.023). Using a two-
side t test, this mean is shown to be significantly different from zero (P = 0), indicating that 
the improvement over the full spectral model is significant. Interestingly, it is found that all 
the D values are negative, which implies the model selected by CARS is highly predictive 
and there is little evidence to recommend the use of a full spectral model, at least for this 
dataset. 

Finally, we compare the models selected by MCUVE and CARS, respectively. The 
distribution of D values (CARS – MCUVE) is shown in Plot C of Figure 8. The mean of D 
values is -0.039. Using a two-side t test, this mean is shown to be significantly different from 
zero (P = 0), indicating that the improvement of CARS over MCUVE is significant. We find 
that 98.9% of D values are negative and only 1.1% are positive, which suggests that there is a 
small probability to draw a wrong conclusion that MCUVE performs better than CARS. 
However, with the help of MPA, this risky conclusion can be avoided, indeed.  

Summing up, we have conducted statistical comparison of the full spectral model and the 
models selected by MCUVE and CARS based on the distribution of D values calculated 
using RMSEP. Our results show that model comparison based on a single split of the data 
into a training set and a corresponding test set may result in a wrong conclusion and the 
proposed MPA approach can avoid drawing such a wrong conclusion thus providing a 
solution to this problem. 

4.2 Comparison of PCR, PLS and an ECR model 

In chemometrics, PCR and PLS seem to be the most widely used method for building a 
calibration model. Recently, we developed a method, called elastic component regression 
(ECR), which utilizes a tuning parameter α∈[0,1] to supervise the decomposition of X-matrix 
[36], which falls into the category of continuum regression [37-40]. It is demonstrated 
theoretically that the elastic component resulting from ECR coincides with principal 
components of PCA when α = 0 and also coincides with PLS components when α = 1. In this 
context, PCR and PLS occupy the two ends of ECR and α∈(0,1) will lead to an infinite 
number of transitional models which collectively uncover the model path from PCR to PLS. 
The source codes implementing ECR in MATLAB are freely available at [41]. In this section, 
we would like to compare the predictive performance of PCR, PLS and an ECR model with 
α = 0.5. 

We still use the corn protein data described in Section 4.1. Here we do not consider all the 
variables but only the 28 wavelengths selected by CARS. For the proposed method, the 
number of Monte Carlo simulations is set to 1000. At each simulation 60% samples selected 
randomly are used as training samples and the remaining serve as test samples. The number 
of latent variables (LVs) for PCR, PLS and ECR (α = 0.5) is chosen using 5-fold cross 
validation.  

Figure 9 shows the three distributions of RMSEP computed using PCR, PLS and ECR (α = 
0.5). The mean and standard deviations of these distributions are 0.1069±0.0140, 
0.1028±0.0111 and 0.0764±0.0108, respectively. Obviously, PLS achieves the lowest 
prediction errors as well as the smallest standard deviations.  In contrast, PCR performs the 
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worst. As a transitional model that is between PCR and PLS, ECR with α = 0.5 achieves the 
medium level performance.  

  
Fig. 9. The distributions of RMSEP from PCR, PLS and an ECR model with α =0.5 

  
Fig. 10. The distributions of D values. The P values of t test for these three distributions are 
0, 0 and 0, respectively. 
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The distributions of D values are displayed in Figure 10. The means of these three 
distributions are -0.0041 (Plot A), -0.0305 (Plot B) and -0.0264 (Plot C), respectively. Using a 
two-side t test, it is shown that all these three distributions of D values have a mean value 
that is significant not zero with P values equal to 0 , 0 and 0 for Plot A, Plot B and Plot C. To 
conclude, this section provides illustrative examples for the comparison of different 
modeling methods. Our example demonstrates that PLS (an ECR model associated with α = 
1) performs better than PCR (an ECR model associated with α = 0) and a specific transitional 
ECR model associated with α = 0.5 has the moderate performance. 

4.3 Comparison of PLS-LDA models before and after variable selection 

Partial least squares-linear discriminant analysis (PLS-LDA) is frequently used in 
chemometrics and metabolomics/metabonomics for building predictive classification 
models and/or biomarker discovery [32, 42-45]. With the development of modern high-
throughput analytical instruments, the data generated often contains a large number of 
variables (wavelengths, m/z ratios etc). Most of these variables are not relevant to the 
problem under investigation. Moreover, a model constructed using this kind of data that 
contain irrelevant variables would not be likely to have good predictive performance. 
Variable selection provides a solution to this problem that can help select a small number of 
informative variables that could be more predictive than an all-variable model.  

In the present work, two methods are chosen to conduct variable selection. The first is t-test, 
which is a simple univariate method that determines whether two samples from normal 
distributions could have the same mean when standard deviations are unknown but 
assumed to be equal. The second is subwindow permutation analysis (SPA) which was a 
model population analysis-based approach proposed in our previous work [14]. The main 
characteristic of SPA is that it can output a conditional P value by implicitly taking into 
account synergistic effects among multiple variables. With this conditional P value, 
important variables or conditionally important variables can be identified. The source codes 
in Matlab and R are freely available at [46].We apply these two methods on a type 2 diabetes 
mellitus dataset that contains 90 samples (45 healthy and 45 cases) each of which is 
characterized by 21 metabolites measured using a GC/MS instrument. Details of this dataset 
can be found in reference [32].  

Using t-test, 13 out of the 21 variables are identified to be significant (P < 0.01). For SPA, we 
use the same setting as described in our previous work [14]. Three variables are selected 
with the aid of SPA. Let V0, V1 and V2 denote the sets containing all the 21 variables, the 13 
variables selected by t-test and the 3 variables selected by SPA, respectively. To run the 
proposed method, we set the number of Monte Carlo simulations to 1000. At each 
simulation 70% samples are randomly selected to build a PLS-LDA model with the number 
of latent variables optimized by 10-fold cross validation. The remaining 30% samples 
working as test sets on which the misclassification error is computed. 

Figure 11 shows the distributions of misclassification errors computed using these three 
variable sets. The mean and standard deviations of these distributions are 0.065±0.048 (all 
variables), 0.042±0.037 (t-test) and 0.034±0.034 (SPA), respectively. It can be found that the 
models using selected variables have lower prediction errors as well as higher stability in 
terms of smaller standard deviations, indicating that variable selection can improve the  
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Fig. 11. The distributions of misclassification error on 1000 test sets using all variables and 
variables selected by t test and SPA, respectively. 

performance of a classification model. The reason why SPA performs better than t-test is 
that synergistic effects among multiple variables are implicitly taken into account in SPA 
while t-test only considers univariate associations.  

 
Fig. 12. The distributions of D values. The P values of t test for these three distributions are 
1.66×10-46, 1.02×10-57 and 1.27×10-8. 
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We conducted pair-wise comparison of performances of the three variable sets described 
above. The distribution of D values (t-test – all variables) is shown in Plot A of Figure 12. 
The mean of D is -0.023 and is demonstrated to be significantly not zero (P=0) using a two-
side t test, suggesting the improvement of variable selection. In spite of this improvement, 
we should also notice that a percentage (17.3%) of D values is positive, which again imply 
that model comparison based on a single split of the data into a training set and a 
corresponding test set is risky. However, with the aid of this MPA-based approach, it is 
likely to reliably compare different models in a statistical manner.  

The distribution of D values (SPA – all variables) is shown in Plot B of Figure 12. The mean of 
D is -0.031 and is shown to be not zero (P = 0). Also, 171 D values are positive, again indicating 
the necessity of the use of a population of models for model comparison. In analogy, Plot C in 
Figure 12 displays the distributions of D values (SPA-t-test). After applying a two-side t-test, 
we found that the improvement of SPA over t-test is significant (P= 0). For this distribution, 
22.7% D values is positive, indicating that based on a random splitting of the data t-test will 
have a 22.7% chance to perform better than SPA. However, based on a large scale comparison, 
the overall performance of SPA is statistically better than t-test. 

To conclude, in this section we have compared the performances of the original variable set 
and variable sets selected using t-test and SPA. We found evidences to support the use of 
the proposed model population analysis approach for statistical model comparison of 
different classification models. 

5. Conclusions 

A model population analysis approach for statistical model comparison is developed in this 
work. From our case studies, we have found strong evidences that support the use of model 
population analysis for the comparison of different variable sets or different modeling 
methods in both regression and classification. P values resulting from the proposed method 
in combination with the sign of the mean of D values clearly shows whether two models 
have the same performance or which model is significantly better. 
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