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1. Introduction 

1.1 Abdominal Aortic Aneurysm (AAA) 

Human body is subjected to many cardiovascular diseases (CVDs) claiming 17.1 million 

lives a year. Abdominal aortic aneurysms (AAAs), for instance, are the 3th leading 

cardiovascular cause of death (Sakalihasan et al., 2005; Allaire et al., 2009). The AAA 

represents a widening of the abdominal aorta generally caused by the hardening of the 

arteries known as the atherosclerosis. The accumulation of the plaques on the arterial wall 

leads to its weakness. The blood flow pressure can therefore cause the expansion of the 

weak arterial part leading thereby to abdominal aneurysm rupture. The AAA can affect 

either men and women, however statistics have shown that male are five times more likely 

than female to get AAA. Apart from atherosclerosis, there are many factors which may 

contribute to the AAA development such as smoking, high blood pressure (hypertension), 

diabetes, aging, etc. 

1.2 Actual pathology solutions 

The surgical treatment has been developed in order to avoid aneurysm rupture. Until now, 
the management of AAAs is instrumental, with intervention decided once the risk of aortic 
rupture exceeds the risk of elective repair. Traditionally, there are currently two modes of 
repair available for AAAs, open aneurysm repair, and endovascular stent grafting repair. 
The first repair consists of opening the abdomen in order to remove the aneurismal aorta 
part and replace it by a synthetic Dacron tube sewn in place. The second method is less 
invasive than the open surgey and consists on guiding a graft (stent) within the blood vessel 
by a catheter just above the damaged aorta section and fastening it to the vessel wall. This 
technique aims to strengthen the aorta wall and therefore to prevent aneurysm bursting.  

It must be noted that the surgical treatment of AAAs carries a high mortality rate of 6 to 14% 

(Teufelsbauer et al., 2002). No proved cellular or gene therapy exists to inhibit growth or 
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promote healing human AAA. For this reason, fundamental studies were developed in-vivo 

in animal models to recapitulate features of human aneurysms in the hope of finding 

treatments which could stop AAA expansion (Dobrin et al., 1984) or promote repair. Thus, 

different experimental approaches have been used like elastase perfusion (Anidjar et al., 

1990) or xenograft implantation (Allaire et al., 1994). Elastase perfusion targetting elastin 

provides vessels which have some characteristics similar to those observed in human AAAs 

and has been used to study in-vitro the “pressure – diameter” response in canine carotids 

and human iliacs (Dobrin et al., 1984). O’Connell et al. (2003) employed a rat elastase AAA 

model to investigate the correlation between arterial mechanical properties and tissue 

microstructure of AAA. Nevertheless, the clinical relevance of the elastase model is not 

sufficient since it doesn’t create the thrombus as observed in the human AAA. 

1.3 AAA Cell therapy (endovascular gene) and biomechanical approach 

Apart from surgey and endoprothesis treatments, clinical solutions based on cell therapy 

have been developed. These approaches are based on the finding that AAAs develop 

because of extracellular matrix destruction and wall atrophy. The xenograft model, for 

example, consists in decellularizing an abdominal aorta of a particular animal species (i.e. 

guinea pig), and to graft it orthotopically into a different species (i.e. rat). This process was 

used by Allaire et al. (2004) in order to evaluate the impact of the injection of smooth muscle 

cells into formed AAAs and to determine the proportions of elastin, collagen, and nuclear 

density in the three layers of the graft wall by morphometric methods after diameter 

stabilization. The authors investigated the efficiency of endovascular smooth muscle cell 

seeding in promoting endovascular healing and stability in already-developed AAA by 

matrix metalloprotease-driven injury. In the same experimental model Dai et al. (2005) have 

developed an endovascular gene therapy approach and showed that a time-limited 

expression of TGF-ß1 is sufficient for diameter stabilization. 

So far no mechanical approach has been developed to evaluate the impact of gene therapy 
on AAA stabilization. In fact, one of the challenges is to investigate this experimental 
approach to estimate the variation of stress distributions in the AAA during its expansion 
and stabilization. 

Thus, much attention has been focused over the years on the biomechanics of aneurysms 
especially to wall stress assessment and constitutive models (Raghavan et al., 1996; Li and 
Kleinstreuer, 2005; Di Martino et al., 2006; Watton and Hill, 2009). Accordingly, numerous 
analytical and numerical models have been developed for this objective (Humphrey, 2002; 
Vorp, 2007) but none in endovascular biotherapies of expanding AAAs using the Xenograft 
model.  

2. Xenograft model 

In order to validate concepts of an endovascular gene therapy developed in surgical 

research laboratory (Allaire et al., 2004; Dai et al., 2005; Allaire et al., 2009), the experimental 

xenograft model of AAA was used. First, the abdominal aorta of male guinea pigs was 

removed and decellularized with a detergent, 0.1% sodium dodecyl sulfate (SDS). Then, the 

aorta was grafted orthotopically into male Lewis rats (200g). Two weeks after 
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xenotransplantation, the aneurysm was formed. The rats were reoperated in order to 

exclude the xenograft from the blood flow by clamps. An aortectomy performed in the 

healthy aorta so that a PE10 catheter was introduced into the lumen of AAA. A suspension 

of viruses representing the gene of interest, TGF-ß1 (Ad-sTGF-ß1), or a control gene, 

Escherichia coli ß-galactosidase (Ad-LacZ) was injected. Finally, the aortotomy was sutured 

and the blood flow reestablished (Figure 1). Both length and diameter of AAA were 

measured using an operative microscope under beating heart, before artery treatment or 

harvest. The measured length corresponded to the distance between the two suture lines of 

the xenograft. The diameter indicated the maximum dilatation level. Note that no tortuosity 

of the AAA was observed during measurement.  

 

Fig. 1. Different stages of a Xenograft process 

In order to study the mechanical behaviour of AAAs in rats during their expansion, , we 

have used here a membrane model (Humphrey, 2002) based on our experience in gene 

therapy as well as the xenograft model. Accordingly, it was assumed that the shape of 

aneurysms is a “parabolic-exponential” function (Elger et al., 1996; Rodriguez et al., 2008, 

Mohand-Kaci et al., 2011) depending on diameter and length measurements so that the 

mechanical problem can be solved analytically. Then, in order to investigate the influence of 

parametric random uncertainty on the growth of AAAs, experimental measurements 

performed in laboratory were used. A stochastic approach (Jaynes, 1957; Eddhahak et al., 

2009) using the principle of maximum entropy is described here to investigate the effect of 

experimental uncertainties on the evaluation of aorta wall stresses.  

3. Mechanical model 

Note that the shape of AAAs represents a critical factor influencing the stress distributions in 
the aorta wall and the aorta rupture mechanism. It was revealed by imaging techniques (Sacks 
et al., 1999; Lu et al., 2007) that aneurysm can occur in a large variety of complex shapes and 
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sizes. Nevertheless, for simplification reasons, we considered in the present study that the 
AAA of rats can be described by an axisymmetric “perfect” membrane (Figure 2). Thus, the 
AAA is defined with a « parabolic-exponential » shape (Elger et al., 1996; Rodriguez et al., 
2008) with the parameters R0, Ra and La which denote respectively the initial radius of the 
abdominal aorta, the radius and the length of the AAA measured during its expansion.  

 

Fig. 2. AAA simplified shape 

In the following, given the experimental uncertainties of aorta geometric variables, both 
radius Ra and length La of the aneurysm will be modelled respectively by the random 
variables Ra and La (in bold letters). Accordingly, the considered shape was defined by the 
following function   
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Moreover, a mechanical study of AAAs has been suggested based on data derived from the 
xenograft rat protocol. For that, we considered the static membrane theory (Humphrey, 
2002) which is independent of the AAA wall material properties. By assuming that the AAA 
is in equilibrium under a uniform intraluminal pressure, one can write the equilibrium 
equations for the membrane as 
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where σ1 and σ2 represent respectively the longitudinal and circumferential stresses. These 
stresses, normalized by the pressure, are given by  
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K1 and K2  represent the local curvatures functions obtained from Eq. (1) and expressed as 
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In order to investigate the wall stresses variations, Von-Mises characteristic equivalent stress 
was also computed 

 
2 2 .= + −
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 (6) 

Note that the normalized stresses given by Eq. (4) and Eq. (6) depend on geometric random 
variables characterizing the expansion of AAAs. 

In Table 1, we present the measurements corresponding to 4 control and treated groups of 
rats sacrified at 3 or 28 days. All data are expressed as the average ±  the standard 
error/deviation (SE). Statistical analysis was carried out by one-way ANOVA followed by 
the Mann Whithney U test. The information p < 0.05 was considered statistically significant. 
In addition, it must be also highlighted that the intraluminal pressure was taken constant 
and equal to the mean value during a cardiac cycle in AAA of rats. The days D0 and D14 
correspond respectively to the Xenograft implantation and the endovascular gene therapy in 
the artificially formed AAAs. 

 

Table 1. Experimental measurements of aorta radius and length 
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The plots of figure 3 depict the longitudinal and circumferential membrane stresses σ1 and 

σ2 computed with respect to the mean (or deterministic) model. The stresses are 

corresponding to the observation days D0=14days, D3=D0+3days and D28=D0+28days. 

The notation “Dx Ly” in the graph denotes the measurement recorded at the day x and 

corresponding to the rats group y. The comparison with the initial AAA at D0 reveals that 

the membrane aortic stresses change very slightly after 3 days in both control and treated 

cases. On the contrary, a significant increase is noticed at D28. Furthermore, as 

consequence of a stress gradient due to the axial lesion one can also remark that the stress 

pick appears always at the maximum radius of the AAA and the medium axial position (Z 

= 0).  

  
 

 

Fig. 3. Variation of normalized aortic stresses versus axial position (Right: σ2, Left: σ1). 

Indeed, the expansion of AAA influences the magnitude of the peak stress in the aorta wall. 

The stress amplification is then evaluated to 58% and 55 % for respectively σ1 and σ2 as 

shown in the upper curves. In addition, one can note that the difference between the upper 

row curves corresponding to the control case (case 1) is more important that the one of the 

Case 1 
Case 1 

Case 2 Case 2 
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second row corresponding to the gene therapy case (case 2) notably at the axial position Z = 

0. This first biological finding highlights the advantageous of the suggested gene therapy 

treatment which decreases the wall mechanical stresses in AAAs and improves therefore 

their mechanical behaviors. In Figure 4, we emphasize on this last finding by comparing the 

differences of membrane stresses in both treated and control cases.  

   

Fig. 4. Effect of gene therapy treatment on the membrane stresses (Right: σ2, Left: σ1).  

4. Probabilistic parametric modelling of AAA uncertainties 

In this section, a stochastic approach taking into account the random dispersion of the 

experimental measurements related to the growth of AAAs is presented. Dealing with in-

vivo measurements of rat aortas, the experimental recorded values are often subjected to 

uncertainties due to the lack of accuracy. The probabilistic parametric approach is an 

efficient mechanical tool which allows the description of random uncertain parameters by 

adequate random variables. This description is performed by the attribution of suitable 

probability density functions (pdf) respective to the considered random variables. The 

construction of the pdf is not arbitrary and shall take into consideration the available 

information which may be, for instance, the mean of the random variable, the interval to 

which it belongs, the standard deviation, the higher order moment, etc.  

More general, let consider a parameter x subjected to uncertainty, the random variable 

denoted X is the stochastic modelling associated to x. The dispersion of X is then measured 

by the entropy function defined by 

 X XS(X) p (x)log(p (x))dx.
+∞

−∞

= −   (7) 

where pX is the pdf associated to the random variable X. This function is determined 

according to the principle of maximum entropy (Shannon, 1948) which states that the 

determination of the pdf is obtained by the maximization of the uncertainty on the light of 

the available used information. The latter defines a set of constraints which govern the 

optimization problem. The mathematical resolution leads to express the pdf as 
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where λi are the Lagrange multipliers, gi(x) are the different constraints of the optimization 

problem and Π is the indicator function given by  
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Where [V-, V+] represents the support of the pdf associated to the random variable X 

The reader could consult (Soize, 2001; Kapur, 1992) for further information on the 
parametric probabilistic approach using the principle of maximum entropy. 

The proposed stochastic approach is adapted to the biomechanical membrane model in 
order to analyze the influence of geometric parameters on the aorta stress distributions 
during the expansion of AAAs in the xenograft model. 

In our case, the knowledge of the available information (average + support + standard 
deviation), the pdf of each random variable X can be expressed as 

2
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where λ0, λ1 and λ2  are the optimal values which minimize the convex function H 
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Where m2 denotes the second order moment linked to the average and the standard 
deviation of X by 

 2 2
2 x xm m= + σ . (12) 

For instance, the values of λ0, λ1 and λ2 corresponding to Ra (control case, at D28) are 
respectively equal to 134.48, -150.41 and 41.32. 

Thus, for each random variable, we performed 2000 random independent realizations 
according to the considered pdf. Figure 5 presents the different realizations of Ra and La for 
the control case.  

The numerous trials performed for the random variables Ra and La allow the determination 
of different responses/realizations corresponding to the longitudinal and circumferential 

normalized membrane stresses σ1 and σ2. Accordingly, a confidence region with a high 
probability of 99% can be defined in order to predict the numerous potential aorta wall 
stresses responses. The upper and lower bounds of this confidence interval are plotted in 
figure 6 and compared with the mean model result for both treated and non treated cases. 

As can be noticed, the deterministic model response lies inside the confidence interval. The 
stochastic membrane stresses results show a similar evolution than the deterministic model. 

Note that the estimation error recorded for σ1 and σ2, in cases 1 and 2, can reach  
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Fig. 5. Realizations and pdf of AAA radius and length 

 

approximately 28%. The aortic mechanical stresses may be underestimated when a 

stochastic modelling is not considered. This last finding highlights the importance to take 

into account the parametric random uncertainties in order to obtain realistic estimations of 

the wall aorta membrane stresses.  

Simulations of Monte Carlo (Kalos and Whitlock; 1992) are also carried out to show the 

convergence of the stochastic process by computing both the mean and the standard 

deviation (Std) of the Von-Mises stress for cases 1 and 2. Figure 7 illustrates this convergence 

reached at nearly the 1400th realization for cases 1 and 2. At convergence, the Von Mises 

equivalent stress is recorded. One can note that the averages of the normalized Von Mises 

stresses for cases 1 and 2 are respectively equal to 1.54 and 1.43. 
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Fig. 6. Stochastic confidence intervals for the aorta membrane stresses (Right: σ2, Left: σ1).  
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Fig. 7. Monte Carlo simulations 
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5. Conclusions 

In this chapter, a stochastic biomechanical approach adapted to a xenograft model for AAA 
therapy is presented. The in-vivo geometric aorta characteristics (radius and length) were 
recorded at several days for both control and artificially damaged aortas. Thereby, 
experimental measurement uncertainties were considered and used for the assessment of 
parametric probabilistic model based on the principle of maximum entropy. It was shown 
that the presented endovascular gene therapy reduces significantly the stress variations 
while stabilizing AAA and likely prevented rupture probability of the artery. In addition, 
from a stochastic point of view the random experimental uncertainties were described by 
adequate probability density functions for a safe estimation of AAA wall stresses. Monte 
Carlo stochastic solver was used and it was noticed its reliability to reach convergence of the 
probabilistic simulations. This approach can also be generalized for other arterial diseases 
and can contribute to the improvement of our understanding of the arterial mechanical 
behavior.  
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