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1. Introduction 

Schizophrenia is one of the most devastating psychiatric disorders. Schizophrenia affects 

1.1% of the population or 51 million people (NIMH). Schizophrenia is a disorder that affects 

multiple brain regions and systems. Symptoms include positive symptoms, negative 

symptoms and cognitive deficits. Much research has focused on two neurotransmitter 

systems, dopamine and glutamate. Postmortem studies examining morphology have found 

alterations in dendrites and spines in the prefrontal cortex and the hippocampus, changes in 

cell number in volume in the thalamus and alterations in protein expression in the 

prefrontal cortex. Genetic studies have found a number of genes associated with 

schizophrenia including but not limited to DISC1, neuregulin1, and Dysibindin 1. The 

current hypothesis based on the postmortem work and genetic studies suggests the etiology 

of schizophrenia has its origins in development. The changes in dendrites and spines 

observed in the prefrontal cortex and hippocampus without a change in cell number could 

occur as a result of alterations in calcium signaling levels in development due to alterations 

in synaptic input into the prefrontal cortex and hippocampus. The various genes that have 

been shown to be altered in schizophrenia are also involved in neurodevelopment. DISC1, 

neuroregulin 1 and Dysbindin 1 have all been shown to be involved in neurite outgrowth 

and differentiation (Ghiani et al, 2010; Kamiya et al, 2005; Pitcher et al, 2011; Sebat et al., 

2009; Wiliams et al., 2010). These data support the above hypothesis that schizophrenia is a 

neurodevelopmental disorder that may or may not have a genetic predisposition. In order to 

better understand the etiology of the disease, research needs good models with which to test 

theory. Genetic models, chemical lesions, and physical lesions have been used to produce 

animal models to mimic human disorders and are becoming the hallmark of translational 

research. Animal models in the past have been used to understand how the nervous system 

develops by using lesions to examine pathways or genetic knockouts to examine the role of 

genes in development and function of the nervous system. The use of animal models is not 

limited to basic research but is also used by pharmaceutical companies to test drugs to treat 

diseases to determine their viability. Whatever their use, animals provide us with a unique 

way in which to view how the nervous system develops, functions and what happens when 

development goes wrong. This chapter will focus on the use of animal models as a potential 

method to study neuropsychiatric disorders.  
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2. Animal models 

Over 50 animal models have been described in the past 30 years (Tseng et al., 2009). The first 
models tended to be pharmacological constructs linked to dopamine and glutamate. The 
issue with these models is that they leave out certain aspects of the disorder such as the idea 
that schizophrenia is a disorder founded in development, cognitive deficits as well as 
alterations in neuroanatomy and interactions between systems. A review by Harrision 
(2011) suggests that the problem with modeling schizophrenia is that since it is a disorder 
that involves so many brain regions, how does one choose a target for the lesion? 
Schizophrenia therefore, appears to be a disorder involving circuits (Fig 1). One way to 
choose a target is by picking a brain region shown to be altered anatomically or by choosing 
a gene whose expression is involved in the development of the structures shown to be 
altered in schizophrenia. With this in mind two of the most consistent postmortem findings 
in schizophrenia are lateral ventricular enlargement and a decrease in volume and cell 
number in the thalamic medial dorsal nucleus. Several models have been designed around 
these two findings and will be discussed in this chapter. The use of knock out mice to model 
schizophrenia has also been very popular. The mouse model for Dysbindin 1 has shown 
much promise in the field of schizophrenia. 

 
 
 

 
 
 

Fig. 1. Schematic showing the circuits thought to be involved in schizophrenia (Tseng et al, 
2009). 
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3. Animal models involving the hippocampus 

Lesions of the ventral hippocampus in the rat involve using iobotinic acid to cause a 

bilateral excitotoxic lesion at postnatal day 7 (Lipska et al, 2002; Becker et al, 1999; Sams-

Dodd et al, 1997). One such model involves the neonatal damage of the rat ventral 

hippocampus; typically, ibotenic acid, causing an excitotoxic lesion, is applied to the 

ventral hippocampus at postnatal day 7 (Lipska et al 2002; Becker et al, 1999; Sams-Dodd 

et al, 1997). The animals are allowed to mature and are tested for social interactions 

(Sams-Dodd et al, 1997), aggression (Becker et al, 1999), and performance in working 

memory tasks (Lipska et al 2002). This model mimics a spectrum of behavioral features of 

schizophrenia; it produces functional pathology in other brain regions also implicated in 

schizophrenia, such as the striatum, the nucleus accumbens, and the prefrontal cortex 

(PFC). Furthermore, the social and functional effects are not evident until the rat subjects 

reach adolescence, thus mimicking the timing of onset of symptoms (for review see 

Lipska, 2004 and Tseng et al, 2009). Following the bilateral lesion at P7 the behaviors 

emerge in a manner consistent with schizophrenia. Negative symptoms such as 

aggression and deficits in grooming appear prior to puberty. The cognitive symptoms 

such as deficits in various types of memory appear at the onset of puberty and the 

positive symptoms appear late in adolescence (Tseng et al, 2009). This delayed emergence 

of behaviors mimics that observed in schizophrenia. This model appears to be consistent 

with many of the behavioral aspects of schizophrenia; however, it lacks construct validity, 

as schizophrenics do not have a lesion in their hippocampus similar to that seen in the 

model. Postmortem studies have reported morphometric abnormalities in the 

hippocampal formation, such as decreased volumes (Falkai & Bogerts, 1986; Heckers et al, 

1991) and decreased number of neurons and smaller pyramidal cells in schizophrenia 

(Falkai & Bogerts, 1986; Jonsson et al, 1999). Other studies have not been able to replicate 

such findings (Heckers et al, 1991; Walker et al, 2002). Further discrepancy is seen in the 

morphological evaluation of this model which reports an increase in synaptic density, 

number of branches, and dendritic length in the pyramidal cells of the PFC (Robinson and 

Kolb, 1997), which contradicts the compromised morphological evidence in schizophrenia 

(Byne W et al; 2001, Jones L, Mall N, Byne W; 1998, Bunney WE and Bunney BG; 2000, 

Schindler MK et al; 2002, Jonsson SAT et al; 1999; Broadbelt et al, 2002, Kalus, 2000; Black 

et al, 2004; Pierri et al, 2001; Garey et al, 1998; Glantz and Lewis, 2000). Although the 

discrepancy in anatomical findings between this model and schizophrenia are great, it 

prevails to be an attractive model because of its implications in the dopaminergic system, 

a neurotransmitter system known to be affected in this disorder and a major target for 

therapeutic agents. Recent investigations using this model examined cell excitability in 

PFC neurons, and it was concluded that the PFC dopamine-glutamate interactions were 

altered after puberty in the lesioned rats (Tseng et al, 2007). Specifically, the PFC neurons 

showed enhanced excitability in lesioned animals, which contradicts the common concept 

of hypofrontality, characteristic of schizophrenic subjects. While the model may have its 

inconsistencies, the approach using neurodevelopmental damage has merits in 

developing models for schizophrenia. 

The use of excitatory lesions of the entorhinal cortex (EC) has furthered investigation of the 
effects on the dopaminergic system. It was observed that an EC lesion resulted in the 
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enhancement of methamphetamine-induced dopamine release in the nucleus accumbens 
and basolateral amygdala (Uehara, et al 2007), implying dysregulation in the dopaminergic 
neurotransmission in the limbic regions. Although these models offer great insight into 
circuitry of the dopaminergic system and potential for development of therapeutic agents, it 
is evident that models based on manipulations of the dopamine system have limited 
promise. They can imitate a spectrum of schizophrenic behaviors, but they fall short on 
morphological and physiological findings. 

Keeping with the idea that schizophrenia is a disease that affects circuits, another 

mesiotemporal limbic area used for lesion studies is the amygadala. The amygdala receives 

projections from the hippocampus and projects to the nucleus accumbens (Fig. 1). A model 

put forward by Francine Benes examines the effects of altering the circuitry between the 

amygdala and the hippocampus. The non-competitive GABA-A receptor antagonist 

picrotoxin was infused into the basolateral complex of the amygdala. This was done to 

mimic a GABA defect in this region. This model shows alterations in GABAergic neurons in 

the CA2/3 region of the hippocampus similar to that seen in schizophrenia (Berretta and 

Benes 2006; Berretta et al, 2009). Daenen et al, (2001) examined several behaviors in rats 

following a lesion of the amygdala at P7 or P21. The lesions at P7 but not P21 showed 

alterations in locomotor stereotypy (Daenen et al, 2001) as well as play (Daenen et al, 2002) 

and exploratory activities (Woletrink et al, 2001). These lesion studies tend to find deficits in 

social behavior (Becker et al, 1999; Sams-Dodd et al, 1997), working memory (Lipska et al, 

2002), and abnormalities in locomotor stereotypy (Daenen et al 2001, 2003). Daenen et al, 

(2003) also lesioned the ventral hippocampus at P7 and P21 and examined the response to 

acoustic startle and found that the lesions had no effect on the response to acoustic startle. A 

final study examined the effect of a mesiotemporal limbic lesion on the expression NAA, a 

neuronal viability marker in the PFC, and they found a developmental effect in the early-

lesioned animals, which was absent from the animals lesioned as adults (Bertolino et al, 

1997). In humans, these temporal association areas have widespread connections with the 

medial dorsal nucleus of the thalamus and the pulvinar nucleus of the thalamus (Byne et al, 

2001), which has also been implicated in schizophrenia (Byne et al, 2002; 2001) (Fig. 2). When 

one looks at the brain regions involved in schizophrenia and the circuits involved, one 

target region emerges as a location to target in modeling schizophrenia, the medial dorsal 

nucleus of the thalamus. This nucleus receives multiple inputs from the hippocampus as 

well as the amygdala and projects to the prefrontal cortex as well as other regions involved 

in schizophrenia.  

4. Animal models and the thalamus 

Thalamic association nuclei, such as the medial dorsal nucleus (MD) (Paxinos G, 1986), 
which have connections to many regions involved in schizophrenia (Paxinos G, 1986; 
Kuroda et al, 1998), represents an important relevant target for lesion studies (see figure 2). 

Normal development of the cerebral cortex is dependent upon reciprocal connections with 
the thalamus. The close association between the MD and the PFC and EC initiates early in 
development. The cortical plate differentiates from a densely packed zone of immature cells 
into lamina, resembling future cortical layers (van Eden 1986); axons from early postmitotic  

www.intechopen.com



 
From Humans to Animals: Animal Models in Schizophrenia 

 

145 

 

Fig. 2. Circuitry formed by the MD in rats. MD projects to cortex and receives feedback, as 
well as projections from subcortical structures. 

neurons of the cortical subplate pioneer the pathway from the cortex toward subcortical 

targets, prior to neurons from cortical layers V and VI migrating into position (Molnar 2000). 

By postnatal day 4 and 5, layer V can be distinguished from the upper cortical plate 

containing the elements to become layers II and III. The first evidence of retrograde labeling 

from PFC to MD becomes apparent at this time (Van Eden 1986). The arrival of the MD 

afferent fibers in the upper cortical plate precedes the completion of layer III differentiation, 

occurring on postnatal days 9 to 10 (Van Eden 1986). The predominant thalamic input to the 

PFC is from the medial dorsal nucleus (Negyess et al., 1998, Kuroda 1995a, 1995b). Afferents 

from the MD synapse on spines and dendritic shafts of pyramidal cells in the PFC (Negyess 

et al., 1998). Myelination of the axons from the MD to the PFC occurs approximately in the 

second decade of life (Molnar 2000). Developmental maturation of neurons is activity-

dependent (Van Pelt et al., 1996, Kossel et al., 1997, Baker et al., 1997); an early lesion of the 

MD could therefore result in abnormal development of the PFC. In particular, a decrease in 

thalamic input to PFC may result in decrease of calcium-mediated stimulation of dendritic 

remodeling. Binding of glutamate to the N-methyl-D-Aspartate (NMDA) receptor causes an 

influx of calcium, which triggers the release of calmodulin from the calcium binding protein 

neurogranin (Ramakers et al., 2001), allowing for calmodulin to bind to calcium. Calcium-

calmodulin can activate calcium calmodulin kinase (CaMK) II (Petit et al., 1998), CaM 

kinase, and CaM Kinases I and IV (Petit et al., 1998). CaMK II has been shown to be 

important in controlling spine formation (Petit et al., 1998), as well as neuronal arborization, 

both pre- and post-synaptically (Ramakers et al., 2001, Petit et al., 1998, Kater et al., 1988). 

CaMK II also phosphorylates MAP2, which in turn promotes dendritic branching. 
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Dephosphorylation of MAP2 by calcineurin promotes dendritic elongation (Ramakers et al., 

2001, Petit et al., 1998, Kater et al., 1988). Current postmortem studies of the PFC have 

shown a decrease in neurogranin and calmodulin in areas 9 and 32 (Broadbelt et al., 2006, 

2008). These data suggest possible alterations in calcium signaling in the PFC. Thus, changes 

in proteins involved in calcium signaling may lead to changes in dendritic arbors and 

spines, which are critical to neuronal function, leading to possible alterations in integration 

of synaptic inputs. Thus information transfer between cells can be altered. In addition, these 

data suggest that the medial dorsal nucleus is a potential target for a lesion during 

development that may result in alterations similar to those seen in schizophrenia.  

Research has shown that two of the most consistent findings in schizophrenia are volume 
and cell loss in the MD of the thalamus and enlarged anterior and posterior horns of the 
lateral ventricles (Pakkenberg; 1990, 1992, Popken et al 2000, Young et al 2000, Byne et al 
2001, 2002, Lewis et al 2001). Previous MD lesion studies have primarily looked at the effect 
of the lesions on behavior (Volk & Lewis 2003; Van Eden et al, 1994; Isseroff et al, 1982). 
Studies have shown that a lesion of the MD leads to impairments in spatial memory tasks in 
rats (Isseroff et al, 1982) as well as in monkeys (Aggleton et al., 1983). This spatial memory 
loss is qualitatively similar to that seen after damage of the prefrontal cortex (Isseroff et al, 
1982). MD lesions can also affect working memory as assessed by radial maze tests 
(Aggleton, 1983; Stokes1990). These findings are consistent with reports of working and 
spatial memory deficits in schizophrenic patients (Perry et al, 2001). An embryonic animal 
lesion model for schizophrenia includes intrauterine radiation of rhesus monkeys during 
thalamic neurogenesis, which results in a 25% loss of thalamic volume, neuron loss, and 
nonuniform damage to the thalamic complex (Schindler et al, 2002). Although this model is 
simulating the consistent finding of neuron loss and decreased volume in the thalamus 
(Pakkenberg; 1990, 1992, Popken et al 2000, Young et al 2000, Byne et al 2001, 2002, Lewis et 
al 2001), it offers too many variables as the entire fetus is subjected to radiation and thus a 
spectrum of possible side effects. Several studies showed alterations in working and short-
term memory in adult rats following early N-methyl-D-aspartate (NMDA) receptor 
inhibition in the MD (Garter et al., 1992, Sicar et al., 1998, 2003, Stefani et al., 2005, Wang et 
al., 2001 for review see Pehrson et al., 2007). 

Focusing on the relevant circuitry between the MD and the PFC, one study examined the 

structural and functional effects of a MD lesion on the PFC in the rat (Van Eden et al, 1998). 

A study using an electrothermal lesion on the MD on the day of birth analyzed prefrontal 

architecture on day 35, as well as performance on a delayed alternation task. They found no 

significant gross changes in the PFC, except for local decreases in cortical width. The 

behavioral ability in spatial task was also examining the morphology in the PFC; they only 

examined gross morphology and not specific cellular morphology, which is known to be 

affected in schizophrenic brains (Garey et al, 1998; Broadbelt et al, 2002; Glantz & Lewis 

2000). When using animals as models it is important to understand timing of developmental 

events. In rats, thalamic fibers grow into the cortex between postnatal day 0 and 7 (Wise et 

al, 1979), and a lesion performed too early may reflect the plastic ability of the brain. An 

additional MD lesion study looked at whether an acute excitotoxic lesion of the MD on 

periadolescent monkeys could produce decreased PFC glutamate decarboxylase mRNA 

expression (Volk & Lewis, 2003). They found that a substantial lesion did not reduce levels 

of this GABA-synthesizing enzyme in the PFC four weeks after lesions were performed 
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(Volk & Lewis, 2003). Their inability to see a change in PFC enzymatic levels may have 

occurred as a result of the acute lesion in prepubescent animals. The connections between 

the MD and the PFC may have been well established by the time the lesions were 

performed, therefore, may not accurately reflect the development. Our laboratory is 

currently developing an animal model for prefrontal cortical development. Our model is 

based on the interplay between the prefrontal cortex and the MD and that pyramidal cell 

development is activity dependent. Our data suggest that the model may also model some 

of the morphological alterations seen in the prefrontal cortex, such as loss of dendrites and 

spines, and in the hippocampus, such as change in cell density in CA1. Further work 

examining behavior needs to be performed to more accurately characterize the model as 

having relevance for studying schizophrenia. 

5. Conclusion 

While many of the models discussed reflect the ability to express multiple symptoms of 

schizophrenia from behavior to genetics to morphology, none of the models appear to 

mimic all of the symptoms. A current review article by Harrison et al., (2011) suggests that 

the complexity of the disorder makes it very difficult to accurately model schizophrenia. The 

authors question how you choose your target for alteration when so many targets appear 

possible. The point is a valid one, as schizophrenia does not present itself the same way in 

all individuals. Schizophrenia has many symptoms that can be grouped into three 

categories: positive, negative and cognitive. Schizophrenics may have symptoms from 1, 2 

or all 3 categories. Therefore, it may be very difficult to have one model for all of the 

symptoms exhibited in schizophrenia. Instead several models may need to be used to 

understand how schizophrenia manifests itself. What does seem to be consistent in all of the 

research is the agreement that schizophrenia manifests itself during development, which 

leads to behavioral alterations in late adolescence and early adulthood that may or may not 

progress throughout the rest of the individual’s life. While one model may not fit all of the 

symptoms of schizophrenia, it may model enough aspects to help us understand how the 

disease manifests itself and eventually help us come up with better treatments for a complex 

disorder which affects over 50 million people. 
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