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1. Introduction 

Recent researches have demonstrated the importance of structured light patterns for use in 
the quality control of industrial workpieces. These researches have been focused on the 
adaptation of the projected light patterns and the direct interpretation of the recorded scenes 
by means of image content description methods. The novelty of these investigations relies 
on the fact that the stripe patterns permit at the same time the visual enhancement of the 
relevant information and a significant reduction of the amount of data to be processed. Such 
an approach therefore satisfies the major conditions inline inspection systems must fulfill: 
the robustness in terms of high signal to noise ratio and the low computational costs in 
order to achieve high inspection throughputs. 

The major purposes of this chapter are (i) to give an overview of the actually achieved 
research results concerning the surface characterization based on the projection and the 
direct interpretation of structured light patterns, and (ii) to demonstrate that this approach 
serves the characterization of complex industrial surfaces. The whole quality control process 
in case of the industrial inspection is addressed. For each main element of the processing 
chain, a focus on the major achievements is provided: the projection and adaptation of 
specific stripe patterns (data generation), the segmentation and characterization of these 
adapted patterns (data processing), and the classification of the corresponding surfaces 
(data interpretation). This chapter ends by proposing a possible generalization method and 
gives important further research directions in order to address the inline characterization of 
complex free-form surfaces. 

This chapter is organized into three paragraphs. Paragraph “Data Generation” tackles two 
possible illumination techniques for the generation of structured patterns. Also the recording 
of regular patterns in case of complex surface geometries is addressed. The automatic 
segmentation of disturbed stripe regions is described in paragraph “Data Processing”, which 
also introduces the considered three feature sets for stripe image description. Finally, an 
application example in case of cylindrical surfaces and its generalization for complex 
geometries is described in the last paragraph “Data Classification”. 

In order to consider real-time inline inspection requirements, all the experiments were 
validated by means of industrial image datasets. Important aspects, such as high robustness 
against varying recording conditions but also fast data processing for real-time applications 
are considered. 
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2. Data generation 

The inspection problem is primary tackled under its optical and physical aspects so that the 
purpose is to define the optimal data generation in case of structured light based surface 
inspection. This paragraph is therefore dedicated to the optimization possibilities in case of 
the generation of optimal stripe structures for the inspection of complex industrial surfaces. 

At first, the chose of the appropriate illumination technology is addressed. Two different 
approaches, a “transmission”-based and “collimation”-based are described and compared. It 
is demonstrated that the latter is more appropriate for the visual enhancement of 
geometrical surface deformations on semi-reflective surfaces. The generation of adapted, 
“inverse patterns”, is tackled afterwards. It is demonstrated how far pattern adaptation 
improves the visual interpretation of geometrical complex surfaces. 

2.1 Defining the adequate illumination 

2.1.1 Generalities 

In the optical inspection domain, the observation of surfaces having different reflection 
coefficients or various geometries for quality control or metrology purposes is done by 
means of specific lighting approaches. The key point, and common process for all methods, 
is to visually enhance and characterize the relevant information. The chose of the adequate 
lighting is task dependant and must be defined according to the surface characteristics 
(reflectivity, geometry). 

Within this context, the use of structured light patterns to reveal geometrical and/or textural 
surface characteristics has a broad range of applications. While deflectometric approaches 
(fringe structure projection) are dedicated to specular surface inspection, bright- or dark-
field methods (projection of collimated light) can be perfectly suited to matt surface quality 
control (Abouelela, 2005). However, different techniques to generate such light patterns to 
be projected exist. We might distinguish between two different light projection approaches, 
a general one called ”transmission”, and a more specific one named ”collimation”. The 
formalism used here is based on the physical generation principle of the stripe patterns. 
Each illumination is described in detail, so that the geometrical arrangement and the optical 
properties of the illumination’s main elements are tackled. 

2.1.2 The transmission and the collimation approaches 

The "transmission" based fringe projection technique is the mostly used and developed 
within the computer vision community. It can consist in the transmission of diffusing light 
trough a light-transmissive structure or in the transmission of a structured light pattern 
through a diffusing element. In the last case, structured light patterns can be produced by a 
LCD (Liquid Crystal Display), a DMD (Digital Micromirror Device), or a DOE (Diffractive 
Optical Element) device. The principle of the "collimation" is to direct incoming light with, 
e.g. a 3D fringe selection object (Caulier, 2007), or directional LEDs. Fig. 1 shows the two 
fringe pattern generation principles with image examples. 

Both lighting techniques consist of two different parts: a diffuse illumination and a pattern 
generation element which filters the light rays using "transmission" or "collimation" 
techniques. The depicted examples demonstrate that both illuminations lead to similar 
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fringe structures if similar geometrical deformations on specular surfaces are considered. 
The case of two different deformations is tackled here: dents (concave) and blisters (convex). 
Even if the images depict different surfaces, the red bold marked surface regions leading to 
visible fringe perturbations clearly show the similarity of both lighting techniques, in case of 
the visual enhancement of geometrical structures. 

 

Fig. 1. Principle of the two (i) “transmission” and (ii) "collimation" approaches (left). The 
theoretical explanation is done for an elementary light source dL (right). For the 
transmission technique, the light distribution remains lambertian, whereas for the 
collimation one, the light intensity profile is more directional. The directionality degree is 
proportional to the exponent n of the cosine function, where n varies from 0 to infinity. 
Theoretical intensity profiles TfI and DfI for both lightings are depicted. 

However, if both illuminations permit similar visual enhancements, the depicted images in 
Fig. 1 show that the recorded structures are depicted differently, i.e. that the contrast of the 
light structures is different. The transmission-based lighting seems to produce “smoother” 
structures than the collimation-based one. This is a fundamental difference which has a 
direct influence of the processing methods and also on the considered inspection 
requirements. In the following, both illuminations are theoretically described. 

A first simplification hypothesis consists of considering that the diffuse illumination placed 
before the pattern generation element is an ideal lambertian light source. Thus, the light 
profile of an elementary illumination element dL placed before the pattern generation can be 

modeled by a cos() function, where  is the angle between the direction of observation and 
the normal of dL. The light profile of an elementary illumination element dL’ after the pattern 
depends of the properties of the structured light filtering element. Light intensity profiles of 
both models can be expressed with a cosn() function, where n is a factor modeling the light 
directivity. n=1 for the “transmission” approach and n>=1 for the collimation approach, so 

that higher values of n are synonymous a higher directivity. If the cosn() function models 
the shape of the structured light, the light intensity can be modelled by two one-dimensional 
functions TfI(x) and DfI(x), where x is the spatial position along the fringe structure.  

These profiles depend on fringe pattern geometrical and physical parameters, which are the 

transmission factors of bright and dark fringes b and d for the "transmission solution", the 
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height h, and the fringe width w for both solutions, where b > d, {b;d } in [0:1]) and h << 
1 for the "transmission" one. Both intensity profiles after fringe light source are obtained by 
summing for elementary surface dL'(x) at point x the amount of light coming from all 
neighboring points on the X-axis. The TfI(x) and DfI(x) curves in Fig. 1 vary between two 
values kImin, kImax, where k stands for transmission T and directed D. As stated before, the 
“transmission” lighting consists of a purely diffuse TIdif, whereas the “collimation” is made 
of a diffuse CIdif and a directional CIdir part. kIdif,all is a diffuse part induced by all the dark and 
bright structures, while kIdif,d, kIdif,b, and kIdir,b are diffuse and directed parts induced by the 
considered dark and bright structures. All these values, and so the bright and dark fringe 

contrast in the images, depend on the illumination specific parameters b, d, w, h. 

One of the important aspects of the projected fringe structure is to optimally visually 
enhance the relevant surface information, whether for direct interpretation (qualitative) or 
for reconstruction (quantitative) purposes. Optimal fringe interpretation can be obtained 
when foreground fringe structure is easily distinguishable, i.e. can be segmented from 
background object structure. Hence, being able to influence the kImax, kImin ratio Rb,d, but also 
the kIdif and kIdir ratio kRdif,dir is of major importance. For the theoretical considerations, it can 
be assumed without loss of generality, that each elementary light source has a diffuse and a 
directed part. The proportion of each part determines the diffuseness of the directivity of the 
light source. Thus, the ratios for the "transmission" and "collimation" methods can be 
expressed as follows (l is a constant and f the light distribution function): 
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Major difference of both lightings is that, whereas for the transmission solution, the diffuse 
part Idif,all is unavoidable, the second solution offers the possibility to have only the directed 
light component Idir,b, i.e. to strongly reduce the diffuse part by increasing the h/w ratio. This 
is an interesting property, as it permits to increase the visual enhancement of geometrical 
structures, especially for semi-reflective surface inspection, and decrease the visual 
appearance of the surface texture. 

For surfaces with a non-negligible diffuse reflecting part, geometrical structures are all the 
more enhanced for high ratios kRb,d and kRdir,dif. In case of the "transmission" approach, these 
ratios are theoretically always l-limited, a theoretically infinite ratio can be obtained with the 
"collimation" approach. This effect is clearly observable in the corresponding images of Fig. 
1 representing a dent-like defect. In case of the "collimation" approach, fringe structures, and 
so the geometrical surface information, are better visually enhanced, than in case of the 
"transmission" approach. This is the reason why former approaches are used in case of 
controlled environments, i.e. when optimal lighting conditions are possible, permitting 
optimal fringe segmentation, in case e.g. of quantitative 3D reconstruction of matt surfaces. 
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These results show that in case of geometrical information retrieval, and especially for 
surfaces with a non-negligible diffuse reflecting part, "collimation" approaches are more 
appropriate. Values of illumination parameters w and h should be determined in accordance 
to the inspection requirements, as increasing the ratio h/w decreases the amount of 
additional diffusing perturbing light Idif,all, but also decreases the total amount of projected 
light Idir,b + Idif,all. 

2.1.3 The considered illumination technique and reference patterns 

As the purpose of this chapter is to propose an alternative surface inspection procedure for 

the inline characterization of complex objects, a robust methodology based of the projection 

and interpretation of stripe patterns, will be proposed. These investigations are based in 

images recorded with an industrial inspection system using a "collimation” illumination, see 

Fig. 2 Therefore, for the rest of the chapter, the "collimation” lighting will be used. The 

“transmission-one” will only be considered for theoretical considerations. 

 

Fig. 2. Considered image datasets (right), recorded with a "collimation” illumination (left), 
and photos of the cylindrical inspected surfaces (bottom). The illumination L is made of a 
cylindrical diffusing element D and a slit object AR to collimation the incoming diffuse light. 
The line scan camera C records the constant moving surface to be inspected Sinspect. 

Fig. 2 shows some image examples of the considered reference dataset. Each stripe image 

depicts one type of surface to be characterized, and has been recorded by a special 

“collimation” illumination producing vertical and periodical stripe structures. The whole set 

of reference patterns is made of 252 elements manually annotated and classified into three 

distinct classes OK, 3D, and 2D. These classes correspond to 139 acceptable surfaces, 48 

non-acceptable geometrical defects, and 65 non-acceptable textural defects. 

2.2 Generating the appropriate adapted patterns 

The second step of the proposed method of this chapter concerns the generation of so called 

inverse patterns, geometrically adapted to the shape of complex surfaces. Major purpose of 

this surface inspection methodology, based on the interpretation of regular patterns, is to 

simplify the processing of the stripe images and therefore to increase the robustness of the 

proposed approach in case of real-time inline processes. Indeed, as periodical and vertical 
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bright/dark structures have to be processed, the scene interpretation method is equivalent 

to a matching operation where an a priori known structure, a regular pattern, is compared 

with an observed one, the pattern being disturbed by a defective surface. The considered 

approach, i.e. the recording set-up, the inverse pattern generation principle and the 

recorded images of complex surfaces, is depicted in Fig. 3. 

 

Fig. 3. Considered set-up (left), homography between projector and camera screens 

(middle) and recorded regular pattern for different complex surfaces (right). The set-up is 

made of a camera C which records the light structure (i) projected by the projector P and 

(ii) reflected by the surface to be inspected S. The homography, which permits to link each 

point pp of the projector image Ip with a point pc of the camera image Ic, permits the 

determination of the adapted patterns, so that vertical and periodical patterns are 

recorded by the camera. 

The provided solution consists of an iterative approach for the determination of the optimal 

homography linking the projecting screen P and the sensor C recording complex specular 

surfaces S Inverse image determination permits the projection of an irregular or "inverse" 

pattern Ip, so that after its projection on the free-form reflective surface, a regular pattern is 

depicted in the camera image Ic. For Ic calculation, the following three-step approach was 

considered in this paper: (i) determination of the position and the size of the structured 

pattern to be projected, (ii) computation of the screen to camera transformation, and (iii) 

retrieval of the transformation matrix H, where Ic = H x Ip, permitting the determination of 

the pattern to be projected. These three steps are addressed in the next paragraphs. 

2.2.1 Determining the projector pattern 

The size and the position of the structured pattern to be projected have a direct influence on 

the appearance of the observed structured pattern in the camera image. Thus, pattern 

position and size in the projector image Ip have to be adapted in order to reduce noisy 

effects, as double reflection of the structured pattern or the influence of diffuse lighting. 

Concerning the investigations presented in this paper, these parameters were determined 

empirically. The point correspondence is then applied to the depicted projector and camera 

structured patterns. 
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2.2.2 Iterative matrix transformation determination 

Once the correspondence between projector points pp and camera points pc is determined, 

the transformation matrix H linking the two images can be computed. As point 

correspondence is done in case of free-form surfaces, H must be modeled by a polynomial 

equation of degree r, by means of n corresponding reference points, where n > nr, and nr is 

the minimum necessary number of points to retrieve the coefficients of polynomial degree r. 

The optimization approach here consists of retrieving optimal degree r and number n of 

points, in order to minimize the value ec,p, which is the Residual Mean Square Error (RMSE) 

of known camera points pc and estimated points estimpc after applying H to projector points 

pp. The optimization procedure is described in the following equation: 

 

 estimH / , RMSE p , p ,

[1 : [, [ [

where = number of correspondance points.

c c c

r ref

ref
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A two-step procedure is considered here: (i) retrieval of appropriate degree r, its value will 

depend on the geometrical complexity of the surface (r = 1 for the particular case of a planar 

surface), (ii) determination of optimal number of points n for the transformation. The former 

serves the determination of the optimal transformation according to the considered free-

form surface, the latter permits to consider only robust points, by successively forward 

selecting the most relevant points. The stopping criterion of forward selection is an a priori 

defined threshold. An example depicting known points pc (green), estimated points estimpc 

(red) and error ec,p (blue) is depicted in Fig. 3. 

2.2.3 Surface characterization with computed patterns 

The evaluation of the method is done visually. For this, three different free-form surfaces 

with different geometrical complexity are considered. The depicted images in Fig. 3 show 

how surface visual enhancement is improved by means of the proposed “inverse pattern” 

method. A geometrical defect is depicted on two of these three surfaces, S2 and S3. These 

results are comparable to the detection of sub-millimeter depths defects using the 3D 

surface reconstruction with the shape from specular reflection technique, see (Balzer, 

2010). 

The proposed method permits to project an adapted pattern, so that a regular vertical 

pattern can be observed in the camera image. As discussed previously, pattern regularity 

will depend on different parameters, where the geometrical surface complexity is the most 

determinant. 

These results show that the appearance of the regular patterns generated with a 

“transmission” lighting is similar to the patterns generated by a “collimation” one, see the 

reference dataset depicted in Fig. 2. This is the reason why, the next paragraphs dedicated to 

the data processing and classification will tackle the interpretation of the “collimation” 

patterns. The similarity between both types of patterns will also permit to generalize the 

results to the automatic inspection of complex surfaces. 
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3. Data processing 

The second part of this chapter involves specific signal and image processing methods. The 
investigations are focused on multiresolution approaches in the frequency and in the spatial 
domains. The aim is to retrieve the relevant information from the recorded stripe data, i.e. to 
segment the perturbed stripe structures synonymous of defective surfaces and to 
characterize the selected regions by means of appropriate feature-based approaches. These 
two aspects are tackled in the next paragraphs. 

3.1 Free-form segmenting stripe image regions 

Once the scene to be characterized has been visually enhanced, the next step consists of the 
characterization of the stripe regions synonymous of defective surfaces. As the purpose of 
the characterization is to describe the image regions depicting disturbed stripes, these image 
parts must be preliminary segmented before being described via feature-based approaches. 

The segmentation of stripe structures, so that only the disturbed stripe structure to be 

characterized is depicted in the pattern, has been addressed is previous researches. It has 

been demonstrated that for some image content analysis approaches, the segmented images 

leads to higher classification rates than the images with fixed square sizes (Caulier, 2010). 

However, hand-segmenting each image region before its classification is, of course, not 

possible in terms of a fully automatical inspection process, so that unsupervised and 

adapted segmentation procedures should be defined. Such automatic processes are very 

often linked with segmentation errors (Unnikrishnan, 2007).  

Conventional segmentation processes can be coarsely divided into contour-based approaches 
consisting of determining the transitions between image regions, and region-based 
approaches whose principle is to group image points together with similar characteristics. 
Although these techniques have been extensively described in the literature, we did not find 
yet some automatic segmentation approaches of stripe structures. This is in fact a rather 
complex task, as the depicted defective surfaces by means of stripe patterns are usually not 
characterized by sharp contours, as these are overlayed by the projected bright/dark stripes. 
A “simple” solution would be to segment the image patterns to classify by means of sliding 
overlapping windows of constant sizes. The magnitude of the overlapping regions should 
be defined according to the specifications of the inspection task.  

However, the considered stripe segmentation methodology in this chapter uses an 
innovative multiscale (wavelet-based) technique permitting the segmentation of free-form 
relevant image regions. The proposed method, originally developed for the automatic 
detection of visual saliencies, relies on the assumption that the regions to be detected 
correspond to denser energy distributions at different scales and frequency subbands. As 
visual saliencies methods mimic the human visual perception, these are also part of bio-
inspired approaches. 

3.1.1 The bio-inspired approach 

The principle of the bottom-up visual attention model attempts to predict which location in 
the image will automatically and unconsciously attract the observer’s attention towards 
them. In this biologically-inspired system, an input image is decomposed into a set of 
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multiscale neural ``feature maps'' which extract local spatial discontinuities in the modalities 
of color, intensity and orientation. Each feature map is endowed with non-linear spatially 
competitive dynamics, so that the response of a neuron at a given location in a map is 
modulated by the activity in neighboring neurons. Such contextual modulation, also 
inspired from recent neurobiological findings, has proven remarkably efficient at extracting 
salient targets from cluttered backgrounds. All feature maps are then combined into a 
unique scalar ``saliency map'' which encodes for the salience of a location in the scene 
irrespectively of the particular feature which detected this location as conspicuous. Fig. 4 
depicts the considered model of (Itti, 1998). 

3.1.2 Stripe segmentation based on visual saliency map 

Concerning the bio-inspired stripe structure segmentation, following reasoning is made. 
Visual saliency algorithms permit to sample in detail the most relevant features of a scene, 
i.e. the scene parts containing most important image information. Thus, it is assumed, that 
in case of the addressed stripe segmentation problematic in this paper, the image parts to be 
segmented also correspond to the parts with high visual saliency, so that a biological 
approach can be used as a preliminary segmentation step. 

For the purposes of this chapter, we will consider the approach of Itti and Koch (Itti, 1998), 
encompassing a feature map generation, a center-surround computation, and an across-
scale combination until final saliency map generation. The considered method is an image to 
image transformation, where input data is the stripe structured scene to be segmented and 
characterized, and output data is the saliency representation of the input scene, which 
corresponds to high attention degree. Fig. 4 shows the computed saliency maps by means of 
the considered ITTI approach (Itti, 1998) for three different scene examples belonging to the 

three considered classes OK, 3D, 2D. 

 

Fig. 4. Considered bio-inspired approach of Itti (Itti, 1998) and examples of saliency maps for 
three different surface types. The red rectangles correspond to the image regions to be 
automatically segmented. The green rectangles are the selected regions after binarization of 
the saliency maps. 
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The Fig. 4 shows how saliency maps permit to reveal certain stripe structures. If the image 
contains a salient region, i.e. a locally disturbed pattern, the values of this saliency map 
region are higher than the surrounding ones. Otherwise, if the pattern remains 
homogeneous, i.e. corresponds to a non defective surface, no particular image region is 
revealed by the map. In case of the depicted images, the grey values of the saliency map are 
higher on the defective regions in case of the 3D and the 2D images, whereas grey values 

are more homogeneous for the OK image. A simple binarization of the maps followed 
shows how far the ITTI approach permits a good object/background differentiation, in 
particular for locally disturbed patterns. In the following we will see how these saliency 
representations can be used for the segmentation of stripe patterns. 

Saliency maps give a spatial representation the saillancies in an image: the higher the values 
of a map, the higher the probability that the region (object) differ from the surrounding 
pixels (background). These maps can therefore be seen as the results of a testing procedure, 
as the grey value of a pixel map IS(i,j) is proportional to the probability P(O) that this pixel 
belongs to a region to be classified. Thus, the discrimination between object and background 

classes,object and background, is equivalent to a classification procedure consisting of the 

determination of a binarization threshold . All pixel whose grey values are higher than  
are classified as object region, whereas all other as background region. This can be stated as 
follows: 
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However, a global binarization procedure also implies falsely classified pixels. The 

fundamental problem therefore consists of determining the most optimal threshold optim, so 

that most of the image pixels are correctly classified into the classes object and background. 
For the following we will consider the classification error rate perror of [Zha01], who permits 

to evaluate the segmentation process of a map IS for a certain threshold  and the previously 
described reference image database. 

Reference Segmentation

Automatic Segmentation
Reference Background
Over-Segmentation
Under-Segmentation
Common Regions

m(perror), (perror) for the 252 patterns

Binarization thresholds

optim = 180

perror

perror
 

Fig. 5. Computation principle of perror (left) and curves m(perror), ²(perror) permitting the 

determination of optim (right). 

The consider approach for determining the optimal threshold optim consists of computing 
the error rate perror for all threshold values [0,255], so that optimal threshold will correspond 
to the lower rates perror. In order to define one threshold for the segmentation of all possible 
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stripe images, the mean m(perror) and the variance ²(perror) for the error rates for all 252 

images of the reference dataset will be used to evaluate each threshold . Fig. 5 depicts show 

the computation principle of perror and the computed values of m(perror) and ²(perror) for the 
252 stripe images. 

The two curves represent the evolution of m(perror) and ²(perror), computed with the 

considered dataset of 252 stripe images, for each threshold . It is noticeable how both 

curves reach a minimum for the same value of optim = 180. This value, which corresponds to 

the lowest classification error rate, is the optimal threshold values optim. 

3.2 Characterization of stripe image regions 

Once the regions of interest, i.e. these depicted non-acceptable surface parts, have been 
segmented, these can be characterized in a second step by means of feature-based 
approaches. Preliminary investigations showed that optimal stripe characterizations are 
achieved using adapted and Fourier features. New multiresolution features are introduced 
in this paragraph. Spatial transformations using Gabor filters are considered. In the 
following all the considered feature sets are introduced. 

3.2.1 The feature based image characterization principle 

According to Randen and Husoy (Randen, 1999), it is a-priori not possible to know which 
textural method is more appropriate for a specific task. A selection of the most appropriate 
one (methods partially based on work by Wagner and Kueblbeck (Wagner, 1996) and 
Wagner (Wagner, 1999) was done. Most publications dedicated to specific features-based 
stripe structure characterization are related to fringe pattern identification within the field of 
interferometric non-destructive inspection. Type and number of described fringe features 
are task dependent. We may distinguish between spatial-based (Jueptner, 1994; Zhi, 1992), 
frequency-based (Takeda, 1982; Qian, 2005}, and mixed (wavelet) (Krueger, 2001; Li, 2000) 
approaches. 

The selected methods for the addressed problems in this chapter correlate with the highest 
recognition rates of the described methods and studies: (i) the transform of Weska, (ii) the 
adapted of Zhi (Zhi, 1992), and (iii) the multiresolution of Mallat (Mallat, 1989). As few 
publications tackle the problems of image structure characterization, a particular attention 
was given to the retrieval of specific adapted features. For our purposes, four geometry and 
two statistic-based features proposed by (Zhi, 1992) for bright stripe pattern characterization 
were applied. The contribution to specular surface inspection is achieved through the 
completion of these features with additional four specific features. The novel aspect consists of 
the use of these features for the characterization of the bright stripes, but also of the dark 
stripes within the pattern. 

These methods being part of general approaches belonging to the main texture families 
(Tuceryan, 1998) or of specific methods, specially developed for the characterization of image 
structures. Each of these procedures was optimized by adapting method innate parameters 
towards the depicted disturbed or non-disturbed stripe pattern (shape, intensity e.g.). 

Fig. 6 shows the computation principle for the first two considered features sets, the Fourier 
and the Stripe ones. 
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Fig. 6. Computation principle of the Fourier (left) and the Stripe (right) feature sets. The 
Fourier features correspond to the spectral energy of different regions of the Fourier 
spectrum. The figure shows the original image F, its power spectrum P and horizontal, 
vertical, directional and radial energy regions. The stripe features correspond to the 
intensity- and geometry-based description of the segmented bright and dark stripe 
structures. Each feature is first locally computed for different image pixels using a window 
w. The final feature value for an image F is the average of all the locally computed feature 
values. 

3.2.1.1 Fourier textural features 

The DFT (Discrete Fourier Transform) made the spectral analysis of discrete images 

possible, by decomposing the image function into a sum of finite sinusoids.  The textural 

transform approach proposed by Weska (Weszka, 1978) is based on the spectral domain 

analysis. The features are computed from values in the Fourier spectrum corresponding to 

different rF radial and d directional spectral regions. As the characterized stripes have a 

vertical and periodical structure, further uF and vF spectral regions along the u-horizontal 

and the v-vertical image axes were defined. 

The vector computation for the involved Fourier textural analysis method is depicted below: 

    , , , , 33 8 10 5 10F F F F F
r v h r v h cC = C ;C ;C ;C N = =      (4) 

3.2.1.2 Adapted fringe and stripes features 

The considered bottom-up approach is based on preliminary investigations (Caulier, 2008) 

involving specific geometry-based and intensity-based features according to a two-step 

procedure, stripe segmentation and characterization. Each process is characterized by 

following parameters: the segmentation function f utilized and the image areas a that are 

covered by a local window w sliding over the entire pattern described. Notation for the sub-

pixel segmentation peak detectors are b5 for the ``Blais-and-Rioux" and c5 for the ``Center-of-

Mass", see (Caulier, 2008). Hence notations for considered segmentation functions are f  { 

b5; c5 }. Concerning the characterization of the extracted bright and dark regions each feature 

cSa(m) represents the average result of an Oa(m)(m) operation applied to a bright or dark stripe 

element. The computation of Oa(m)(m) is applied to an image area a(m), whose magnitude is 

feature dependent. 

The new contributions consist of applying the features 9 to 14 defined in (Caulier, 2008) for 

the bright stripes, also to the dark stripes, so that a total of 20 features are considered here, m 

F

P

F

20 Features

w

c
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 { 0,...,19 }. Hence, from these 20 features, 8 were specially developed for the considered 

stripe images, whereas the 12 remaining were described within the context of fringe 

structure characterization (Zhi, 1992) and adapted for our purposes. It is these 8 features 

which were used in the industrial application (Caulier, 2008). The description of the stripe 

feature vector with the different area magnitudes a(m) is as follows: 

 
       

   
,

2 2 2

and a 0 ,..., ,..., 19 ,

5 7 ... 17 , 20

S
f a b c

u u c

C : f f ; f = a a m a

a m ; ; ; ; M N =

   

             

 (5) 

The maximal value of a(m) is determined according to the minimal possible size of the 

reference stripe patterns which is approximately 20 pixels. As mentioned above, the 

computation of the stripe feature vector relies on two segmentation functions f. Then, each 

of the stripe feature vector's 20 elements can be computed by means of 8 different area sizes 

of a(m). Hence, 2 x 820 stripe feature vectors can be retrieved based on the definition 

provided in Equation 5. In order to reduce the number of possible feature stripe vectors, and 

thereby avoiding dimensionality-based problems, a preliminary optimization process to 

retrieve the most adequate area size of a(m) for each feature cSa(m) is necessary. 

When considering the definitions of the 20 operators, we can distinguish between the 

features whose computation relies on fixed and adapted image areas a(m), where m is the 

feature index. For fixed areas, the only condition is that the area sizes must be large enough 

to allow both operators to be applied. For adapted image areas, the most appropriate area 

size must be defined according to the stripe structures to be characterized. 

Preliminary studies (Caulier, 2008) show that an optimal set of image areas a1, depicted in 
following Equation, can be defined (maximum possible area size is noted M² = [ Mu x Mv]): 

 

       

           

   

1 2

2

2

a : {{a 00 a 05 ;a 08 a 09 } = ;...

...{a 06 - a 07 ;a 10 - a 15 ;a 18 - a 19 } = 17 ;

...{a 16 - a 17 } = 5 }

M    
 
 

 
 

 (6) 

In order to validate the tests described in (Caulier, 2008), an additional ``non-optimal" set a2, 
complementary of a1, i.e. M² = [Mu x Mv] value remains, 5² and 17² values must be 
exchanged, was also considered. 

3.2.2 Proposed Gabor wavelet features 

Generalities 

Major drawback of the Fourier approach, is that if it permits a good spatial resolution, it is 

not possible in the same time to have a good resolution in the frequency domain, this 

phenomena is known as the Heisenberg inequality or uncertainty principle. The purpose is 

here to investigate how far a multiresolution approach can be used for the classification of 

stripe image patterns. The considered procedure consists of using the approach of Mallat 

(Mallat, 1989) and to systematize it to another other wavelet family. The Gabor one will be 

www.intechopen.com



 
Machine Vision – Applications and Systems 190 

used. For the Fourier approach, the directional regions of the power spectrum lead to best 

discrimination results, see paragraph 5.2.1. Hence, using a wavelet decomposition approach, 

the influence of the combined selection of different frequency regions with the selection of 

different decomposition levels will be investigated. 

For each level, the wavelet coefficients are obtained by convolutions of input image f(u,v) 

with two one-dimensional filters: h a lowpass filter and g a highpass filter, with g(n) = (-

1)1-n h(1-n). A detailed procedure of the image wavelet decomposition can be found in 

(Mallat, 1989). Fig. 7 describes the wavelet decomposition and reconstruction principle at 

level r of an image signal f(u,v) with a pyramidal representation according to Mallat 

(Mallat, 1989). 

 

Fig. 7. Decomposition and reconstruction principle of the discrete wavelets transform in the 

spatial domain according to (Mallat, 1989). 

Classification methodology with wavelets 

First classification step consists of wavelet decomposing each image. The energy measure of 

the four subband images A2rf, D12rf, D22rf and D32rf for each decomposition level r is used as 

signature for each image. Unlike the Fourier transform, which just utilizes the sine and 

cosine as basis functions, each new wavelet family brings its own set of new basis functions 

(the necessary conditions such functions must fulfill are defined in (Mallat, 1989) Section 

III.A). 

As the purpose is to evaluate the classification of stripe image patterns using different 

types of textural features, the activities are focused on one wavelet family, the Gabor 

wavelet filters (Kovesi, 2011). This approach was considered to be an appropriate 

enhancing function, as these filters permit the enhancement of image structures of 

different shapes, frequencies and orientations. In the following a brief overview of 2D 

Gabor is provided. 

According to the definition of Dunn (Dunn, 1995) which is based on the definition of 

Daugman (Daugman, 1985), a 2D Gabor filter h is an oriented complex sinusoidal wave hsin 

modulated by a 2D Gaussian envelope hgau, h = hsin x hgau. Filter main parameters are the 

wavelength  = 1/f, f is the frequency, the standard deviation  and the orientation . 
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Different values of these parameters permit the elaboration of different filters of different 

shapes, sizes and directions. 

For the purpose of this chapter, the Gabor filter definition given by Kovesi will be 
considered. The author defines three output images, Ir, Ii, Ia, results of the convolution of the 
input image Iin with the (i) real part hr of the 2D filter h, the (ii) imaginary part hi of the 2D 
filter h and the (iii) amplitude of both real and imaginary images. Filter description 
according to Kovesi (Kovesi, 2011) for the x-direction is provided by the following equation 
(for the sake of simplicity, the x-direction was considered, same equations hold for the y-
direction by replacing the x with y): 

 

2 2

2 2

r in

2. 2.
=

                                                                  where   

                                     I = I

x x

x x

r i

x x

f cos e f    f = sin e f

= k
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   

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i in a r i  I = I    I = I + Ir if f 

 (7) 

f is a rotating function defined for an angle  in degrees (an angle of 0 gives a filter that 

responds to vertical features. The scale factors kx and the filter x relative to the wavelength 

of the filter. This is done so that the shapes of the filters are invariant to the scale. kx controls 

the shape of the filter in the x-direction. 

According to equation 7,  permits to regulate the modulation of the cos and sin waves with 

the Gaussian envelope. For =1 the filtering is equivalent to an image blurring with a 

Gaussian kernel, and therefore reveals low image frequencies. Higher values of  and of k 

permit image filtering with Gaussian kernel modulated with cos or sin envelopes, which is 

equivalent to convolve the image with second or first derivative filter kernels. Thus, in case 

of high image frequencies enhancement and if the edge information is considered as 

important images signatures, a variation of the variance  of the Gaussian kernel between 
 [2:4] seems to be an adequate choice. 

Therefore, for the purposes of this chapter, the Gabor filterbank is made of Gabor filter 

values, l = 2 and k=2, so that = 4, two orientations,  = 0° and  = 90°. The sin function was 

considered. These filters were applied for the computation of image features. Four 

decomposition levels r = { 2, 3, 4, 5 }, corresponding to object sizes in the image of { 4, 8, 16, 

32 } were considered. Hence, the resolution given by the considered stripe structure which is 

dP,px=8 pixels is taken into consideration, see the images in Fig. 2. It is assumed that the 

resolution level r=3 could bring interesting classification results. 

Classification methodology with wavelets simple decomposition 

This first classification procedure uses all computed approximation and detail images 
during Mallat's decomposition algorithm using the Gabor wavelet. First element of 
Wavelet's simple decomposition feature vector cWS equals the energy value of original 
image F. Then, the remaining elements of cWS are filled with the energy values of the 
approximated and all detail images obtained by decomposing the image F. Following 
expression of feature vector cWS   RNc is obtained by decomposing image F until level r 
with Gabor wavelet: 
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c
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N
WS c
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R ,      N = r

j = Z

 


 (8) 

Where E(0,f) is the energy of original image pattern F. 

Classification with wavelets generalized decomposition 

A shortcoming of the conventional dyadic wavelet transform is that it does not benefit from 
possibly useful features that can be obtained by further decomposing the high frequency 
subbands. An improvement therefore consists of decomposing also the high frequencies 
(Coifman, 1992; Tikkanen; 1997, Nasir, 2002; Cohen1997) i.e. in computing the 
approximation and detail images not only for the approximation image A2^(r+1)f at each level 
r but also for the detail images D12^(r+1)f, D22^(r+1)f, and D32^(r+1)f (r > 1, r   Z). This general 
wavelet decomposition approach will be named the generalized multiresolution decomposition 
also named wavelet packet analysis (Tikkanen, 1997). 

A feature vector c is made of the energy values of all approximation and detail images 
computed during the generalized multiresolution decomposition. First element of c equals 
the energy value of original image F. Following expression feature vectors of Wavelet's 
generalized decomposition is obtained: 
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 

 



  (9) 

Where E(0,f) is the energy of the original image pattern F and E(j,k,A), E(j,k,D1), E(j,k,D2), 
E(j,k,D3) are the energies at level j of the subband image numbers k. 

Classification with subband wavelet generalized decomposition 

This further investigation consists of the evaluation of each subband separately, in order to 
figure out how far the selection of a particular subband can lead to an improvement of the 
reached classification rates. For this purpose the images are classified each by means of the 
four subband images obtained with a generalized wavelet decomposition approach. In 
order to really estimate which of the four coefficients contain the most discriminating 
information, we consider the generalized wavelet decomposition for the decomposition level 
r=3, as this level correspond to the size of the considered period of the reference images, 
which is 23 = 8. 

Doing this, four feature vectors are defined. cSWG,(D2,3,A) contains the energy of all 
approximation images A2^(r+1)f up to level r=3 using Gabor wavelet and the generalized 
Wavelet decomposition. Feature vectors cSWG,(3,A), cSWG,(3,D1), cSWG,(3,D2) and cSWG,(3,D3) are filled 
with the energy of all detail images D12^(r+1)f, D22^(r+1)f, and D32^(r+1)f up to level r=3 using 
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Gabor wavelet and the generalized Wavelet decomposition. Following expressions of feature 
vector using the Wavelet's subband generalized decomposition are obtained: 
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Where E(j,k,A), E(j,k,D1), E(j,k,D2), E(j,k,D3) are the energies at level j of the subband image 
numbers k. 

4. Data interpretation 

The third and last part of this chapter is dedicated to the interpretation, i.e. classification, of 
the generated metadata by means of data mining techniques. The general purpose is to 
retrieve, for a specific inspection task, the optimal processing chain, i.e. leading to high 
detection and low false alarm rates. The proposed procedure uses a classification factor as 
an evaluation criterion for the direct evaluation and comparison of different data processing 
approaches. 

It is demonstrated that this procedure can be applied for the evaluation of any image 
processing tasks. In a first step, the method is validated for a certain surface shape within 
the context of a specific inspection purpose. In a second step, the case of complex free-form 
structure characterization is used for the generalization of the method. The considered 
reference stripe image dataset was introduced at the beginning of this chapter in paragraph 
3.1.3. 

4.1 Optimal processing chain determination 

As described at the beginning of this chapter, the purpose is to demonstrate how the 
projection of adapted structured patterns can be used for the inline inspection of complex 
reflective surfaces. Within the context of industrial non destructive testing, an inspection 
system has been developed for the characterization of cylindrical specular surfaces (Caulier, 
2009). The principle relies on the combination of a collimation-based illumination and line 
scanning cameras to record and process the reflected regular patterns. Fig. 2 shows some 
images examples depicting defective cylindrical surface parts. 

The system’s requirements are automatically to classify the surfaces of the recorded 
cylindrical objects into non-defective, defective geometrical or defective textural. This three-
class problem consists of determining the most optimal processing chain based on the 
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feature-based description of the recorded stripe image. The aims are here (i) to determine 
most appropriate stripe segmentation approach, (ii) to evaluate the relevance of the 
proposed feature sets, (iii) to retrieve the most optimal one, and (iv) to generalize the 
approach and the results obtained with the inspection of cylindrical surfaces to the 
interpretation of complex surfaces. 

The problem is therefore tackled in two steps. At first, the lowest complexity problem of 
most appropriated processing chain retrieval within the context of regular stripe 
characterization is addressed. For this, in order to retrieve the most appropriate feature set, 
the previously described Fourier and Stripe features are evaluated by means of three 
different image sets, three different classifiers, and one classification methodology. Thus, for each 
of the four feature sets, nine different pattern analysis procedures were considered. 

Then, the generalization is done by using the most optimal features defined for the 
characterization of “simple” surface for the interpretation of complex objects. As the aim is 
also to retrieve the most appropriate feature sets, here also different processing chains will 
be evaluated. However, as the purpose is the generalization to complex surfaces, the 
investigations will be focused on (i) the compare of nine different image sets taken reference 
databases, and on (ii) the involving of special feature subset selection (FSS) methods based 
on the previously defined optimal classifier. 

4.2 Optimal processing chain for cylindrical surfaces 

As defined previously, concerning the image sets, three segmentation approaches were 
considered: (i) a free-form approach as described in the paragraph 4.1, image sets ff, and (ii) 
fixed sizes of 64x64 pixels and 128x128 pixels, with image sets 64², 128². The patterns were 
recorded with the industrial system (Cau2007c), see the examples in Fig. 2. 

In order to address a general stripe pattern characterization approach, the proposed 
empirical method involved three different classification principles, all using a specific 
technique or a particular configuration. Following classifiers were involved: The non-
parametric Nearest-Neighbor approach, 1-NN for k=1, 3-NN for k=3, and, the parametric 
Naive Bayes NB, applied to the previously cited classifiers. As to the classification 
methodology, and a stratified 10-fold cross validation (Kohavi, 1995), were chosen. 

All the results are shown in Tables 1 and 2. These tables list the stripe patterns' (i) 
classification using Fourier's, the Stripe's and the Gabor wavelet’s features. 

Different generalities can be done concerning the segmentation process, the classification 
approach and of course the feature sets, on the basis of the results listed in both tables. 

At first, free-form segmentation approaches seem to be more appropriated for Wavelet and 
Stripe features. The common aspect of both approaches is to use the average results of 
spatial filters applied to the reference images for feature vector construction.  Free-form 
segmentation permits to retrieve only the disturbed parts of the whole stripe structures to be 
characterized, and to discard the undisturbed ones in case of defective surface 
characterization, and contrariwise to retain only the undisturbed part in case of non 
defective surface characterization, see Fig. 4. In other word, free-form segmentation permits 
a first spatial discrimination between disturbed and undisturbed stripe regions. The 
assumption is therefore that, such segmentation techniques are more appropriate to 
classification methods using spatial filters for feature vector computation. 
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 Fourier 

vectors 

Image sets Stripe 

vectors 

Image sets 

 ff 64² 128² ff 64² 128² 

NB 

cF 63,4 75,4 61,5 cSISC,g1,BR5 84,9 84,5 78,3 

cF, (r) 58,3 67,2 57,8 cSISC,g1,CM5 83,7 82,8 60,0 

cF,() 66,4 80,4 55,8 cSISC,g2,BR5 79,6 75,8 61,4 

cF,(v) 49,2 79,3 58,8 cSISC,g2,CM5 77,6 73,8 57,1 

cF,(u) 54,8 41,0 36,2     

1-NN 

cF 79,2 84,9 84,4 cSISC,g1,BR5 88,1 85,3 8,2 

cF, (r) 72,7 69,8 65,7 cSISC,g1,CM5 88,9 81,6 82,8 

cF,() 78,2 87,9 83,6 cSISC,g2,BR5 86,1 85,9 83,5 

cF,(v) 76,9 79,2 75,9 cSISC,g2,CM5 84,6 78,4 78,8 

cF,(u) 65,0 75,6 61,5     

3-NN 

cF 76,2 58,3 81,3 cSISC,g1,BR5 86,5 84,3 80,5 

cF, (r) 68,6 70,6 65,8 cSISC,g1,CM5 84,5 77,7 80,9 

cF,() 75,8 81,2 82,5 cSISC,g2,BR5 83,5 81,7 81,1 

cF,(v) 74,3 77,8 75,7 cSISC,g2,CM5 82,2 78,8 74,8 

cF,(u) 63,9 75,6 64,7     

 
 
 
 
 
 

Table 1. Rates of correctly classified patterns of the three image sets ff 64², 128² for the 
Fourier and the adapted Stripe features. 
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  Image sets  Image sets  Image sets 

 Vector ff 64² 128²  ff 64² 128²  ff 64² 128² 

NB 

cW,S,(D2,2) 53,7 53,7 51,1 cW,G,(D2,2) 58,1 56,4 52,1 cSW,G,(D2,3,A) 64,9 59,2 48,5 

cW,S,(D2,3) 78,5 71,2 63,1 cW,G,(D2,3) 64,2 58,2 51,6 cSW,G,(D2,3,D1) 78,3 75,4 66,0 

cW,S,(D2,4) 83,9 80,3 77,4 cW,G,(D2,4) 65,1 61,8 75,4 cSW,G,(D2,4,D2) 60,0 58,6 55,1 

cW,S,(D2,5) 86,5 83,2 61,8 cW,G,(D2,5) 70,1 64,5 57,3 cSW,G,(D2,5,D3) 85,7 77,3 71,2 

1-NN 

cW,S,(D2,2) 74,1 71,6 73,9 cW,G,(D2,2) 72,0 71,4 71,6 cSW,G,(D2,3,A) 76,4 75,2 70,2 

cW,S,(D2,3) 82,6 79,2 75,2 cW,G,(D2,3) 84,2 82,8 75,2 cSW,G,(D2,3,D1) 78,7 75,5 66,3 

cW,S,(D2,4) 76,5 74,5 74,0 cW,G,(D2,4) 83,0 82,1 78,4 cSW,G,(D2,4,D2) 80,9 81,6 81,4 

cW,S,(D2,5) 76,0 76,2 75,2 cW,G,(D2,5) 81,0 81,6 79,4 cSW,G,(D2,5,D3) 82,3 79,4 72,6 

3-NN 

cW,S,(D2,2) 70,4 72,4 69,5 cW,G,(D2,2) 78,6 74,5 68,7 cSW,G,(D2,3,A) 78,4 76,1 68,4 

cW,S,(D2,3) 75,0 75,0 75,5 cW,G,(D2,3) 80,1 76,4 72,0 cSW,G,(D2,3,D1) 79,3 75,5 68,5 

cW,S,(D2,4) 80,1 76,0 77,6 cW,G,(D2,4) 83,7 81,2 78,8 cSW,G,(D2,4,D2) 81,9 81,7 81,4 

cW,S,(D2,5) 75,4 75,4 74,8 cW,G,(D2,5) 81,2 79,2 76,9 cSW,G,(D2,5,D3) 82,4 82,0 74,6 

Table 2. Rates of correctly classified patterns of the three image sets ff 64², 128² for the 
Gabor Wavelet features. 

Concerning the use of adapted images, we remark that better classification rates are reached 

for fixed image sizes, and especially for the 64² image set. In fact, the Fourier spectrum is 

applied to images whose sizes equal a power of two, so that in case of variable image sizes a 

padding with zeros is necessary. Hence, as far as Fourier features are concerned, the image 

region containing the stripe to be characterized but also the surrounding image region 

contains important discriminative information. 

Then concerning the classifiers, Tables 1 and 2 show that in general best classification rates 

were obtained using the 1-NN classifier for the three consider feature types. For the Wavelet 

features, the most appropriate classifiers depend on the involved feature vector 

computation techniques. For the Fourier features, we remark that optimal results were 

reached for the reduced feature set cF,() involving only the ten directionality power 

spectrum features. For this configuration, the classification rates are similar to those 

obtained with the whole 33 features and even better. 
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To conclude, it is observable that wavelet features do not seem to be the more appropriate in 
case of the considered classification task, i.e. in comparison with the Fourier and the Stripe 
techniques. Classification rates with Wavelet features are the lowest and no particular 
classifier seems to be more appropriate, as for each of the three considered wavelet feature 
computation techniques, a different classifier leads to highest classification rates. 

4.3 Generalization to complex surfaces 

4.3.1 Generalization of the reference image dataset 

The generalization concerns the projection of adapted patterns in order to observe regular 

patterns, which can be characterized with the previously described methodology. Major 

advantage of the adapted pattern projection method, compared to similar 3D reconstruction 

ones, see (Ihrke, 2008; Balzer, 2010), is to visually enhance geometrical defects on complex 

free-form surfaces, for the purpose of qualitative direct surface characterization. 

However, in case of inline inspection systems perturbing effects leading to non optimal 

surface characterization by means of adapted projected pattern interpretation may occur. 

Major perturbing factors are due to imperfect recording conditions or surface characteristics. 

In case of workpiece positioning above the defined moving tolerances e.g., additional noise 

such as defocusing or light glares, will perturb the reference point determination. Also in 

case of small surfaces, whose size does not permit to project enough stripe patterns, the 

point determination might not be optimal. In addition, certain surfaces, such as e.g. several 

layered light transmitting ones, may also lead to sub-optimal visual appearance of the stripe 

in the recording sensor. 

This signifies that in case of a generalization of the proposed surface characterization 

method based on the projection of stripe patterns, the reference dataset must be enlarged in 

order to cover all possible regular patterns to be characterized. 

The task is not to enumerate all possible regular stripe pattern disturbances. This would 

hardly be possible. Hence, it is preferable to focus our investigations on a restricted and 

predefined number of not perfectly vertical and not perfectly periodical stripe patterns. 

Further pattern structures have therefore to be defined. The easiest and simplest way 

consists of using the considered set introduced in paragraph 4.2 and to ``transform" or 

“adapt” them, so that these can be used for the characterization of free-form surfaces. 

Thus, the stripe-illumination-based complex surface inspection task will be addressed by 

means of different image sets: The reference initial set 00 previously introduced, and eight 

further derived sets. The four sets 11-14 correspond to the warping of all patterns of 11 

with increasing projective transformations. The four sets 21-24 correspond to the warping 

of all patterns of 00 with increasing cylindrical transformations. Two projective -1- and 

cylindrical -2- transformations have been considered. All sets are made of 252 patterns. 

Fig. 8 shows 3 of the 9 considered stripe image data sets. 00 is the reference set where the 

stripe structures are periodical and vertical, 14 is the set corresponding to the warped 

patterns of set 00 with a maximum perspective distortion -1- and 24 is the set 

corresponding to the warped patterns of set 00 with a maximum cylindrical distortion -2-. 
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Fig. 8. Reference patterns for the classification of free-form rough and specular surfaces. The 

figure shows 6 image examples taken from the three different pattern sets Ф00, Ф14 and  

Ф24. 

These image patterns correspond to three different complex surfaces illuminated with an 

adapted pattern: -0- for surfaces ideally depicted, and -1- and -2- for surfaces inducing 

perspective and cylindrical distortions. 

Ф14 and Ф24 corresponds to patterns with a maximal perturbation of type -1- and a maximal 

perturbation of type -2-. These patterns have been simulated by transforming patterns Ф00 

[The first number is an indices the second is an exponent] with perspective and cylindrical 

distortions. All the patterns have a size of 64 x 64 pixel. 

4.3.2 Optimal processing chain for increased surface complexity 

This paragraph addresses the procedure for the determination of optimal feature subsets 

using feature evaluation, grouping, fusing, and selection in case of the general inspection 

problem stated in this paper, i.e. the inspection of complex objects using structured 

illumination. It has been demonstrated in the previous paragraph 4 that two feature 

families, the 33 Fourier and the 20 adapted stripe features, lead to best classification rates. In 

order to define to appropriate features sets in case of the generalization to complex surfaces, 

feature subset selection (FSS) methods are evaluated by considering the generalized 

reference databases. 

The question is to what extend an appropriate fusion and selection of the Fourier and the 

adapted stripe feature sets can lead to a better quality control of the complex surfaces? For 

this purpose, two group of three feature vectors will be considered. First group consists of 

vectors cFr,,v,u, made of the 33 Fourier features, cF, made of the 10 directional Fourier 

features, and cS consisting of the 20 adapted features. Second group encompasses vectors 

cFr,,v,uS, made of the 33 Fourier features and the 20 adapted stripe features, cFS made of the 

10 directional Fourier features and the 20 adapted stripe features, and 1-NNcFS made of the 

selected features of vector cFS using a 1-NN-wrapper-based FSS method. Classification 

results using the three two feature vector groups and the two distortion types are depicted 

in Fig. 9. 
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Fig. 9. Classification rates for image distortions of type -1- and of type -2- by means of the 

two groups of feature vectors { cFr,,v,u; cF; cS } and { cFr,,v,uS; cFS; 1-NNcFS }. 

The detection rates were computed for different image sets and correspond to increasing 

distortions of type -1- and of type -2-. Left to right values: detection rates for image set Ф00 to 
image sets Ф14 and Ф12. On the whole, the reported classification rates in Fig. 9 (right) are 
higher than those depicted in Fig. 9 (left). This shows the importance of determining the 
adequate features with the appropriate feature selection processes. In case of the considered 

inspection task, optimal features sets are 10 directional Fourier features and the 20 adapted 
stripes feature, whereas the optimal feature selection method is the wrapper-based 1-NN 
approach. However, if the feature fusion permits to reach higher classification rates of 

approximately 2 % (difference between the maximal detection rates of both considered 
graphics), the FSS method does not improve the classification rates, as similar or even lower 
classification results are observed when the FSS method is applied. 

The last investigation is dedicated to a more detailed depiction of the considered FSS 

method, in order to determine the relevant features. 

4.3.3 Optimal features in case of the generalization approach 

In order to determine the most relevant features the influence of increasing distortions of 
type -1- and of type -2- on the number and types of selected features is investigates. Table 3 
shows the results in case of a wrapper 1-NN approach and a 10-fold cross-validation. 
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 Type -1- distortion 
 

Type -2- distortion 

Feature set 00 14 24 34 44 


00 14 24 34 44 
Nc,sub 90 90 95 107 108 

 

90 99 107 116 107 
            

cS(00) 0 0 0 0 0 
 

0 0 1 0 0 

cS(01) 1 1 0 0 3 
 

1 1 0 1 0 

cS(02) 0 0 0 0 0 
 

0 0 2 0 0 

cS(03) 0 0 1 2 3 
 

0 0 3 2 3 

cS(04) 3 3 2 8* 2 
 

3 3 4 5 3 

cS(05) 4 4 1 3 3 
 

4 2 1 3 5 

cS(06) 2 2 4 1 0 
 

2 4 1 5 8* 

cS(07) 9** 9** 3 8* 3 
 

9** 8* 7 6 5 

cS(08) 6 6 6 3 3 
 

6 6 6 6 6 

cS(09) 7 7 4 6 4 
 

7 5 4 4 2 

cS(10) 7 7 6 7 5 
 

7 4 6 6 1 

cS(11) 0 0 3 5 4 
 

0 0 1 1 0 

cS(12) 6 6 3 3 5 
 

6 6 2 6 1 

cS(13) 2 2 6 8* 10*** 
 

2 5 5 8* 4 

cS(14) 0 0 1 0 7 
 

0 4 4 4 3 

cS(15) 0 0 3 2 7 
 

0 5 0 2 6 

cS(16) 9** 9** 6 6 9** 
 

9** 4 6 3 4 

cS(17) 2 2 5 10*** 6 
 

2 1 4 5 8* 

cS(18) 1 1 5 4 6 
 

1 3 0 4 6 

cS(19) 6 6 8* 10*** 9** 
 

6 7 7 7 4 

cF(0) 0 0 2 1 0 
 

0 0 0 0 1 

cF(1) 0 0 2 1 1 
 

0 1 3 3 2 

cF(2) 5 5 3 4 1 
 

5 7 4 5 5 

cF(3) 4 4 5 2 3 
 

4 2 5 2 3 

cF(4) 4 4 4 1 3 
 

4 5 9 6 6 

cF(5) 10*** 10*** 10*** 10*** 10***
 

10*** 10*** 10*** 10*** 10*** 

cF(6) 0 0 0 1 0 
 

0 2 4 0 0 

cF(7) 1 1 2 1 0 
 

1 2 2 5 4 

cF(8) 1 1 0 0 1 
 

1 1 5 3 1 

cF(9) 0 0 0 0 0 
 

0 1 1 4 6 

Table 3. Selected features when a wrapper 1-NN approach is used for increasing distortion 
of type -1- and -2-. The maximum number of times a feature can be selected is 10. The 

variables Nc,sub on the left give the total number of selected features after the 10 runs. The 10 
time, 9 time and 8 time selected features are marked with ***, ** and *. Results for all relevant 
features are marked in bold. 

An important parameter is the variable Nc,sub, which is the total number of selected features 
after the 10 runs of the 10-fold cross-validation. As 10 is the maximum number of times a 
feature can be selected, Nc,sub / 10 is the average measure of feature relevance. For both 
tables, increasing the distortion of the bright/dark structures, leads to an increase of the 

necessary relevant features. 
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A general remark for both tables concerns the types and the number of selected features, 

which are approximately the same. It appears that approximately seven features, i.e. only a 

fourth of the initial 30 ones, are relevant. Most of the selected features are adapted ones, 

whereas mainly the directional 90° Fourier features have a strong relevance. 

It is also noticeable, that feature relevance is related to the bright/dark structure distortion 

degree. As an example, in case of both tables, the importance of feature cS(13) is proportional 

to the distortion degree, whereas the contrary is observed for feature cS(07). 

5. Conclusion 

The chapter addressed the inspection by means of structure lighting of complex surfaces 

within the context of industrial inline quality control processes. The whole processing chain 

was considered by first tackling the structured light generation, then the processing of the 

acquired images, and finally the classification of the segmented and characterized 

structured light patterns. 

At first, the generation of appropriate structured light patterns has been tackled. From the 

two described illumination techniques, the “transmission” and the “collimation” one, it has 

been demonstrated that the latter is more appropriate for the characterization of geometrical 

structures as such a lighting technology permits to reduce the diffuse part of the reflected 

light. As the aim of the chapter is to define a general approach for complex surface 

interpretation by means of structured lighting, a general and adapted method has been 

presented. The principle consists of recording and processing regular patterns by projecting 

patterns which are adapted to the complex geometries of the surfaces under inspection. The 

generation of adapted patterns uses coded light to determine the homography linking the 

screen and camera points for pattern adaptation. Different images examples validate the 

proposed procedure. 

The second part was dedicated to the adapted segmentation of the generated structured 

patterns. The originality of the proposed method relies on the use of a bio-inspired approach 

to compute saliency maps. It has been showed how such maps permit to reveal disturbed 

regions of stripe patterns synonymous of defective surface parts. The proposed free-form 

segmentation procedure consists of a saliency map generation preceding a binarization. It 

has been showed how a supervised approach permits to compute the most optimal 

threshold for all the considered reference images. The segmented stripe patterns were 

characterized afterwards by means of different features, whose innate parameters were 

adapted to the special task of stripe pattern interpretation. Two features sets lead to highest 

classification rates, the Fourier and the adapted Stripe features. 

The third and last part addressed the definition of the most optimal stripe structures 

processing chain by using the classification rate as evaluation criteria. The purpose is to 

tackle the inspection of complex surfaces. At first, a reference industrial inspection system 

using a “collimation” lighting for generating regular patterns, has been considered. By 

means of the classification rate, it has been demonstrated that the most optimal chain 

consists of (i) defining 64 x 64 pixels fixed size patterns, (ii) processing them with Fourier 

and adapted Stripe features, and (iii) classifying the computed vector with a 1-NN classifier. 
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In a second part, the general inspection task consisting of interpreting complex surface has 

been tackled. The most optimal processing chain for complex surface interpretation was 

defined (i) by generalizing the reference dataset to more complex surfaces and (ii) by 

retrieving the adapted feature sets using a wrapper-based selection feature procedure. The 

results showed that only a certain number of features are relevant, and that reduced but 

appropriate features permit to reach classification rates for complex surfaces similar to rates 

obtained with more "simple” geometries. 

To conclude, this chapter proposed a feature-based surface characterization methodology 

based on the direct interpretation of regular patterns, adapted to the geometrical 

complexity of the surface. This approach permits to reach higher positioning tolerances in 

case of real-time surface inspection. As no depth information is computed, the proposed 

inspection procedure is more dedicated to binary decisions, i.e. whether the surface is 

defective or not. However, such detailed characterization is not necessary in case of the 

real-time industrial surface inspection. A preliminary determination of the projected 

pattern characteristics in accordance to the smallest critical defects to be detected is 

sufficient in this context. 
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