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1. Introduction 

1.1 Understanding hypoxia tolerance and the challenge of clinical neuroprotection  

Most of the existing research on brain hypoxia mainly focused mainly on understanding the 
mechanisms of neuronal death as the means of identifying targets for therapy. This 
approach has not been helpful in understanding how the brain of humans can be made to 
resist tissue hypoxia. This is a major factor that leads to neuronal death during stroke, for 
example. Hypoxia tolerance is a robust fundamental adaptation to low oxygen supply and 
represents a novel neuroscience problem with significance to mammalian physiology as 

well as human health. Physiological and molecular changes during hypoxia are critical to 

the prevention, management, and treatment of many important health conditions, such as 
stroke and cardiac arrest. However, the initiation and maintenance of physiological changes 
during hypoxia tolerance can be very difficult, and even those interventions that succeed in 
laboratory animals and controlled clinical trials do not always translate into clinical therapy. 
Transformative advances in the science of mammalian physiology, especially those that can 
connect mammalian physiological, molecular changes and diseases are urgently needed. In 
this review, we discussed major molecular and physiological adaptations during hypoxia 
tolerance that can be developed for the induction of clinical neuroprotection to tissue 
hypoxia during brain injuries. 

2. Convergence between a specific neurotransmitter system and 
physiological mechanisms maybe critical for tissue hypoxia during brain 
injuries 

Comparative studies of adaptive physiology demonstrated that hypoxia tolerant animal 
species represent  potential sources of new strategies in our search for brain protection. This 
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is because studies on the neurons of these animals repeatedly reminded us that we are closer 
to understand  how cells and tissues develop resistance to hypoxia. Hypoxia tolerant species 
are very valuable models for understanding oxygen signaling processes simply because the 
responses to hypoxia are well developed. The possibility of separating adaptive signaling or 
defense responses from injury is a major benefit of studying hypoxia tolerant cells. They also 
serve as models for the slow adaptation of tissues to hypoxia, which humans are clearly 
capable of, and which might be enhanced to improve adaptation to diseases involving 
oxygen deficits. 
Studies on the pathophysiology of shock-induced disturbances in tissue homeostasis reveal 
that tissue hypoxia is a consequence of distressed microcirculation that worsens  
the diffusion geometry, such that tissue hypoxia induced significant physiological changes 
in brain cells. Measuring the targets that detect tissue hypoxia is known to reveal  
the immediate effect of the distressed microcirculation. Recent studies on hypoxia 
neurobiology research have advanced a considerable body of evidence supporting the 
hypothesis that convergence between neurotransmitter systems and physiological 
mechanisms is protective in hypoxia tolerant species. Establishing this protective phenotype 
in response to hypoxic stress depends on a convergence response at the genomic, molecular, 
and cellular and tissue levels (Singer, 2004, Jeffrey, 2006). At the cellular level, studies  
in mammalian hibernation that explore hypoxia tolerance capability reveal evidence of  
ion channel arrest, regulation of inhibitory neurotransmission and suppression of substrate 
oxidation as cellular physiological adaptations (Gentile et al., 1996, Wang et al., 2002). 
Furthermore, extracellular levels of GABA decline in the striatum during hibernation,  
while extracellular glutamate remains unchanged during steady-state torpor of hibernation 
when compared with euthermic animals (Zhou et al., 2001). A decrease in the tissue-specific 
depression of substrate oxidation is also thought to decrease oxygen consumption,  
and consequently attenuate cytotoxic events that lead to cell death (Barger et al., 2003). This 
effect was attributed to a decrease in ATP demand resulting in the maintenance of 
homeostasis of brain energy demand and supply. The central mechanism that underlies 
hypoxia preconditioning-induced tolerance, which maintains the homeostasis of brain 
energy demand and supply, remains unclear. Interestingly, a number of potential 
neurochemical induction pathways have been proposed to control hypoxia tolerance in 
natural genetic systems of hypoxia tolerance. Such pathways include neuroactive cytokines 
(Nawashiro et al., 1996), glutamate receptors (Ravid et al., 2007, Sivakumar et al., 2009), 

adenosine receptors (Perez-Pinzon et al., 2005), the ATP-sensitive potassium Channel 
(Reshef et al., 2000), nitric oxide (Gonzalez-Zulueta et al., 2000) and oxidative stress (Dalen et 
al., 2009).  
Taken together, findings from the aforementioned studies indicate that neuroprotective 
mechanisms against hypoxic insults in natural genetic systems of hypoxia or ischemic 
tolerance maybe be hinged on the convergence between a specific neurotransmitter system 
and physiological mechanisms. Although only few of the existing studies have been 
demonstrated in humans, one of these few studies indicates that elucidation of the central 
neurochemical mechanism of hypoxia tolerance is in this area of interest because  
the tolerance has been experimentally induced by clinically approved drugs (Konstantin et 
al., 2003). In another human study, it was found that adenosine plasma levels strikingly 
increased, such that the adenosine flow lasted days after transient ischemic or hypoxia 
attack and weeks after stroke (Moncayo et al., 2000, Pasini et al., 2000). Our view openly 
acknowledges the existence of hypoxia tolerance capacity in human brains and a possible 
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central endogenous neuroprotective mechanism for hypoxia brain injuries in humans.  
In this context, considering the roles of adenosine as a molecule, it is possible that adenosine 
might represent a potential central neurotransmitter system that modulates physiological 
mechanisms during hypoxia protection. It is also important to emphasize that hypoxia itself 
could be the driving force for the convergence between a specific neurotransmitter system 
such as adenosine and physiological mechanisms during protection in hypoxia tolerant 
species. Since extensive studies have been done on adenosine system in the context  
of hypoxia protection over the past twenty years, we will now summarize the  
existing knowledge of specific roles of adenosine (A1) receptor in inducing survival during 
hypoxia.  

3. Specific roles of A1 receptor during hypoxia tolerance 

Survival in a severe hypoxic stress during which arterial oxyhemoglobin saturation is equal 
to 35% or less is connected with the ability of the brain to adapt to low oxygen supply and 
demand, and is thought to be regulated by a specific neurotransmitter system, such as 
adenosine (Blood et al., 2002). Studies in young sheep and adult rats indicate that 
intracerebral A1 concentrations increased during hypoxia. The specific role of A1 was linked 
to its ability to inhibit neuronal activity (Fowler et al., 1999). In vitro studies on hippocampal 
slices indicate that elevation of A1 receptors is associated with hypoxia (Jin and Fredholm, 
1997), and severe asphyxia in vivo (Hunter et al., 2003c), following inhibition of neuronal 
activity. Studies in the fetal sheep further revealed that breathing movements can be 
inhibited by hypoxia and that such adaptation could be abolished by adenosine-receptor 
blockade at the level of the thalamus due to the inhibition of thalamic neurons (Chau and 
Koos, 1999). In a mouse knocked-out of A1 receptor, there is a significant decrease in 
tolerance to hypoxia (Johansson et al., 2001). Involvement of adenosine or adenosine 
triphosphate-sensitive potassium (KATP) channels in the development of tolerance has been 
suggested in global ischemia and hypoxia models (Kumral et al., 2010), cross-tolerance 
models (Xu et al., 2002) and in vitro studies (Perez-Pinzon et al., 2005). Activation of A1 
receptors directly accelerate neuritogenesis in the primary neuronal precursor cells of 
rats(Canals et al., 2005). This finding suggests that A1 receptors may play an important role 
in myelinization and neuronal differentiation with the potential for clinical management of 
neuronal repair in hypoxic-induced brain injury. 
By evaluating the action of hypoxia on synaptic transmission in hippocampal slices 
Sebastião and Ribeiro (2001) revealed that γ-aminobutyric acid (GABA), acetylcholine, and 
even glutamate may also have a neuroprotective role; however their action is evident only 
when activation of adenosine A1 receptors is impaired. This finding indicates that adenosine 
A1 receptors have a pivotal role of neuromodulating during hypoxia, though other 
substances can enhance adenosine actions when the nucleoside is not operative. A1 
receptors fine tuning neuromodulation is a very restrained change, similar to what e.g., a 
pianist does, modulating a tune through introduction of another tune to modify the 
characteristics of the previous tune. A1 receptors have specificity of interacting with 
receptors of other neurotransmitters and neuromodulators as well as with adenosine 
transport systems. A1 receptors and other cellular elements involved in brain insults act via 
interconnections between the cellular elements and their secretions, such as the immune 
system(Ribeiro, 2005). In this manner, the nervous system can be highly regulated in normal 
physiology to induce neuroprotection against hypoxia. The fact that chemical 
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neuromodulators such as A1 receptors are already part of normal physiology, either during 
embryonic development or adulthood, implies that their activity can be modified by specific 
pharmacological agonists and antagonists to restore homeostasis or to promote the safe 
pathways that can lead to tissue hypoxia protection. 

4. Cellular mechanisms that promote neuronal death can be manipulated to 
promote neuronal survival 

It is well known that neuronal death or apoptosis may result from continued activation of 
damaging molecular processes or pathways set in motion by a series of hypoxic insults, 
with the ultimate breakdown of the cell as a unit. According to Lipton (1999) such 
neuronal death is a morphological one, during which the cell cannot recover to perform 
its anatomical function. The idea is that the study of molecular processes of neuronal 
death at this point provides an understanding of what leads to these drastic structural 
changes and what needs to be done to promote neuronal survival. An interesting question 
in this regard is how can the molecular mechanisms or pathways that promote hypoxia-
induced neuronal death be manipulated to promote neuronal survival? By targeting the 
disruption of the mouse caspase 8 genes, it has been shown that caspase 8 can regulate the 
activities of death promoting receptor signaling within the TNFR superfamily. For 
example, the deletion of caspase 8 gene completely abrogated TNFR12 and Fas receptor-
induced apoptosis that was enacted via generation of reactive oxygen species during 
hypoxia (Cobelens et al., 2007). In other studies that explore the mechanisms of hypoxia-
induced cell death in primary cortical neurons, it was found that TNFalpha was 
responsible for inducing cell death in the cortical neurons of cultured rats (Reimann-
Philipp et al., 2001). These investigations established that TNF receptors are responsible 
for neuronal apoptosis because of the formation of an intracellular protein complex 
induced by hypoxia.  
Although TNFalpha is directly implicated in neuronal apoptosis, TNFalpha-induced 
neuronal death can be inhibited by nerve growth factors (Haviv and Stein, 1999). This 
finding indicates that  that hypoxia-associated apoptotic effects of TNFalpha can be 
converted by trophic factors (NGFs), and that the survival-promoting effect of NGF is 
mediated by a specific  pathway not shared by all tyrosine kinase receptors. This implies 
that the manipulation of caspases and NGFs during hypoxia-induced activation of 
TNFalpha in the cortical neurons can prevent apoptotic effect of TNFalpha during hypoxia. 
Phosphorylation networks regulating JNK activity have evolved to enable swift and 
accurate responses, even in the face of hypoxia-induced cellular perturbations (Bakal et al., 
2008). The JNK signaling network is thought to maintain cell and tissue integrity during 
hypoxia-induced cellular stress that involves stress-activated protein kinases (SAPKs), also 
known as JUN NH2-terminal kinases (JNKs). Hypoxia-induced activation of JNK is an early 
response to hypoxic stress (Antoniou et al., 2009). When treated with CEP-1347, which 
inhibits JNK activation, the increase of cellular JNK activity was blocked, such that 
sympathetic and cortical neurons were saved from hypoxia-induced stress (Qi et al., 2009). 
Hypoxia-induced cell death can be averted by inhibiting JNK activation(Wardle, 2009). The 
explanation for this is that C-jun, a transcription factor that controls genes involved in cell 
death, is a constituent of another transcription factor called AP-1, and when phosphorylated 
by JNK, c-jun becomes activated and induces apoptosis, by withdrawing survival signals 
but when inactivated, metabolically vulnerable neurons can be saved from apoptosis. 
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Apart from JNK, there are other molecular systems that are able to induce apoptosis or 
neuronal death when in an active form, yet in an inactive form fail to do so. Molecular 
factors such as CREN, NF-kB (238) and FKHRL1 (Obexer et al., 2006), must be in its 
inactive form in order to refrain from inducing the expression of death genes in cerebellar 
granule neurons during hypoxia. These factors (CREN, NF-kB and FKHRL1) can be 
activated by Akt (Akt is a protein family of the kinases B (PKB) that is involved in cellular 
signaling to support their continued existence in brain cells to promote apoptosis (Park et 
al., 2007). Akt can also inhibit the cellular machinery that functions in killing cells. This is 
possible by phosphorylation at sites both upstream (BAD) and downstream (Caspase 9) of 
mitochondrial cytochrome c release (Dashniani et al., 2009). Such phosphorylation has 
been previously suggested to regulate glucose metabolism, thus, helping cells to live 
rather than die following hypoxic insults (Zhou et al., 2001). In summary, most of the 
aforementioned studies have been done in rats, exploring similar studies in hypoxia 
tolerating species will provide an in-depth-understanding of the activities of these 
molecular mechanisms or pathways during neuronal survival in hypoxia tolerating 
conditions. 
Hormones are chemical substances produced by specialized glands with the primary 
function of regulating cellular activity. Levels of hormones in the brain demonstrate 
unique secretory characteristics that are linked to hypoxia. Leptin is a protein hormone 
with important effects in regulating metabolism functions. Most recent evidence has 
implicated leptin, the product of the obese gene derived from fat cells and placenta 
known to regulate body weight and food intake (Otukonyong et al., 2005), and synaptic 
plasticity during hypoxia neuroprotection (Shanley et al., 2001). More recently, the 
neuroprotective effects of leptin against tissue hypoxia have been explored (Perez-Pinzon 
and Born, 1999). This study revealed that leptin receptors are expressed in neurons of the 
hypothalamus. Another study (Guo et al., 2008),revealed the expression of leptin in the 
hippocampus and cerebral cortex. Endogenous synthesis and release of leptin by the brain 
may explain how localized leptin could protect neurons during hypoxia. For instance, 
cumulative evidence indicate that leptin could exert its neuroprotective effects to enhance 
neuronal survival both in vitro and in vivo by a mechanism involving stimulation of the 
Janus kinase (JAK)-signal transducers and activator of transcription (STAT) pathways. It 
has been shown that leptin protects neurons from neurotoxic 1-methyl-4-pyridinium 
(MPP+)-induced cell death in a dose dependent manner by activating the 
phosphatidylinositol 3-kinase (PI3-K)/Akt pathway; Jingnan et al., 2006). In mice model, 
systemic administration of leptin was shown to decrease infarct volume induced by focal 
cerebral hypoxia ischemia (Zhang et al., 2007). Apoptosis resulting from hypoxia or global 
ischemia is involved in the pathology of cerebral infarction and neuronal death. Leptin 
has been reported to inhibit apoptosis by removing growth factor from neuroblastoma 
cells utilizing JAK2-STAT3 and P13K/AKT signaling pathways (Guo et al., 2008). In 
seizures and epilepsy related hypoxia, leptin has been shown to protect hippocampal 
neurons against excitotoxicity in leptin deficient ob/ob mice, which are more prone to 
seizures (Erbayat-Atlay et al., 2006). Leptin has been reported as a hypoxic response gene 
whose transcription is induced by transcription factor HIF-1. Understanding the specific 
role of leptin in hypoxia conditioning can add leptin to the list of potential molecules for 
the treatment of hypoxia-associated brain injury. 
Ghrelin is another peptide hormone that has been implicated in regulating glucose 
homeostasis (Andrews, 2011). The discovery of ghrelin was based on its ability to stimulate 
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growth hormone (GH) release by activating the GH secretagogue receptor (GHSR1a) widely 
distributed in the hypothalamus and the pituitary gland. The neuroprotective effect of 
ghrelin has been demonstrated in many animal models of hypoxic-induced brain injury and 
stroke (Donnan et al., 2008). Injection of ghrelin intraperitonealy or intravenously in rats 
(both in vivo and in vitro) neuroprotects the forebrain by reducing infarct volume and  
cell death (Liu et al., 2009). Ghrelin has also been shown to attenuate CAI and CA3 
hippocampal neuronal loss by inhibiting casp 3 activation in the pilocarpine-model of 
epilepsy (Xu et al., 2009). It is also important to point out that the crosstalk in leptin and 
ghrelin secreting sites to contribute to neuroprotection during the period of hibernation. 
Precisely, during the winter months hibernating mammals, such as the Arctic ground 
squirrel undergo physiological and behavioral changes to cope with seasonal periods of 
food scarcity and high energy demand. Before going into hibernation, the Arctic ground 
squirrel eat a lot and accumulate body fat, such that leptin level increases resulting in the 
development of leptin resistance without which the process of adipose mass deposition will 
fail, and hibernation which is also characterized with hypoxia tolerance will be in jeopardy. 
When hibernating, the Arctic ground squirrels do not eat because food is scarce, body 
metabolism decreases and hypothermia sets in. Since ghrelin stimulates appetite, and the 
animals are able to eat after hibernation is over. Leptin resistance is known to allow fat to be 
stored in anticipation of another season. Therefore, we propose that the understanding of 
the interconnections between the leptin and ghrelin with the metabolic networks could open 
new windows on the treatment that identifies the role of leptin and ghrelin in the 
preservation of metabolically vulnerable neurons during tissue hypoxia following the onset 
of stroke. 

5. Conclusion 

Analysis of brain mechanisms that control hypoxia tolerance in natural systems indicate 
that the physiological and molecular mechanisms of hypoxia neuroprotection represent 
the core of our understanding of how the brain can be made to resist tissue hypoxic 
insults. Studies of mammalian hypoxia physiology revealed that hypoxia tolerating 
models have an intrinsic ability to resist hypoxia. The physiological and intracellular 
mechanisms underlying such protection are not fully understood. Transformative 
advances in the science of mammalian physiology, especially those that can connect 
mammalian physiological and molecular changes and diseases, such as stroke and cardiac 
arrest, are urgently needed. In this review, we suggest that the protective physiological 
and molecular mechanisms employed by hypoxia-tolerant species offer clues on strategies 
to adapt for the clinical management of brain injuries where oxygen demand fails to 
match the supply.  
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