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1. Introduction  

Patients with pancreatic cancer have an especially poor prognosis, with a 5-year survival 
rate of <1% and a median survival of 4-6 months (Jemal, Siegel et al., 2010). The 
management of patients with pancreatic cancer depends on the extent of the disease at 
diagnosis. However, approximately 80% of patients present with advanced-stage disease 
that precludes surgical resection (pancreaticoduodenectomy) and long-term survival is poor 
(Sener, Fremgen et al., 1999). Even after resection, the majority of patients relapse, leading to 
a median survival of about 18 months after resection (Neoptolemos, Stocken et al., 2004). In 
this time, gemcitabine-based chemotherapy is typically offered as standard of care. 
However, most patients treated with gemcitabine alone do not survive longer than 6 
months, as the tumor cells are naturally resistant to current chemotherapy (Neoptolemos, 
Stocken et al., 2004). Importantly, the tumors that develop gemcitabine resistance would still 
be a suitable target for immunotherapy. Therefore, cancer immunotherapy for pancreatic 
cancer may be one attractive approach to treatment. This chapter summarizes the effect of 
immunotherapy for inducing cytotoxic T lymphocytes (CTLs) in patients with pancreatic 
cancer and discusses recent advances in concept of combination therapy of immunotherapy 
and chemotherapy. 

2. Chemotherapy 

Gemcitabine (2’2’-difluorodeoxycytidine) is a synthetic pyrimidine nucleoside analog that 
has become the standard first-line treatment for patients with advanced pancreatic cancer 
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based on clinical benefit and survival improvement compared with 5‑fluorouracil (5-

FU)‑based chemotherapy (Burris, Moore et al., 1997). Gemcitabine is phosphorylated 
intracellularly to difluorodeoxycytidine triphosphate, which terminates DNA-chain 
elongation and competitively inhibits DNA polymerase and ribonucleotide reductase, 
leading the cells into the apoptotic pathway (Storniolo, Allerheiligen et al., 1997). However, 
most patients treated with gemcitabine alone do not survive longer than 6 months. 
Moreover, the addition of the cytotoxic agents (platinums, fluoropyrimidines, or 
topoisomerase inhibitors) or radiation therapy to gemcitabine did not lead to a 
statistically significant improvement in overall survival (OS) in patients with metastatic 
pancreatic cancer (Moore, Goldstein et al., 2007; Van Cutsem, Verslype et al., 2007; Philip 
2008b; Cascinu, Berardi et al., 2008). Recently, Thierry Conroy and colleagues randomly 
assigned 342 patients to receive combination chemotherapy regimen of FOLFIRINOX 
(consisting of oxaliplatin, irinotecan, fluorouracil, and leucovorin) (n=171) or gemcitabine 
(n=171) (Conroy, Desseigne et al., 2011). In selected patients with good performance 
status ECOG 0-1, the FOLFIRINOX regimen, when compared with gemcitabine, was 
associated with significantly increased median survival from 6.8 to 11.1 months. 
However, as compared with gemcitabine, FOLFIRINOX had increased toxicity. 
Gemcitabine is still the reference treatment in patients with ECOG performance status 2. 
Therefore, there is still great need for a novel therapeutic approach with low toxicity for 
advanced pancreatic cancer. Cancer immunotherapy for pancreatic cancer may be one 
attractive approach to cancer treatment. 

3. Targeted therapy 

The era of targeted therapies has generated a lot of interest in discovering better approaches 

for patients with pancreatic cancer. While traditional cytotoxic drugs also target specific 

cellular process, the newer generation of agents is set apart by their targeting of a pathway 

or molecule that derives the growth, speed, survival, or maintenance of tumor cells 

specially. Overexpression of human epidermal growth factor receptor type 1 (HER1/EGFR) 

has been suggested to be associated with the malignant transformation of pancreatic cancer 

(Tobita, Kijima et al., 2003). Therefore, there is a sound rationale for combining HER1/EGFR 

inhibitor and gemcitabine in pancreatic cancer. Erlotinib (Taraceva, Genentech, South San 

Francisco) is a small molecule HER1/EGFR tyrosine kinase inhibitor. Pancreatic cancer 

patients given the combination of erlotinib with gemcitabine showed a statistically 

significant improved survival compared with those given gemcitabine alone (Moore, 

Goldstein et al., 2007). The median and 1-year survival rates were better for the combination 

treatment: 6.24 months versus 5.91 months and 23% versus 17%, respectively. Therefore, the 

US Food and Drug Administration (FDA) recently approved erlotinib for use in the first-line 

setting of advanced pancreatic cancer in combination with gemcitabine. However, this 

survival benefit was small and, therefore, erlotinib has not yet been widely incorporated 

into standard treatment protocols. On the other hand, cetuximab, a monoclonal antibody, 

has been shown to significantly suppress the growth of implanted pancreatic cancer cells, 

and this effect was enhanced by the addition of gemcitabine in mice study (Bruns, Harbison 

et al., 2000). The study evaluating cetuximab in pancreatic cancer has been completed. In 

patients with advanced pancreas cancer, cetuximab did not improve the outcome compared 

with patients treated with gemcitabine alone (Philip, Benedetti et al., 2010). Moreover, the 
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addition of cetuximab to gemcitabine did not contribute to improvement in the patient-

reported health-related quality of life (HRQL) outcomes (Moinpour, Vaught et al., 2010). 

The next generation of single-target trials is moving toward a focus on antiangiogenic 

agents, including anti-VEGF and anti-VEGFR strategies combined with gemcitabine. 

However, the addition of Axitinib that is a potent, selective inhibitor of vascular endothelial 

growth factor (VEGF) receptors 1, 2, and 3 tyrosine kinase also did not improve overall 

survival in advanced pancreatic cancer (Kindler, Ioka et al., 2011). These results add to 

increasing evidence that targeting of EGFR or VEGF signaling is an ineffective strategy in 

pancreatic cancer. Other chemotherapy, including S-1, ixabepilone, nanoparticle albumin-

bound (nab) paclitaxel, FOLFOX (5-FU, leucovorin, oxaliplatin), and XELOX (capecitabine, 

oxaliplatin) may be better partners with targeted agents (Philip 2008a). 

4. Immunotherapy  

T cells with the ┙┚ T-cell receptor (TCR) generally express CD4+ or CD8+ lineage markers 

and mostly fall into helper or cytotoxic subsets, respectively (Boon, Coulie et al., 1997). On 

the other hand, T cells expressing the alternate ┛├ TCR generally do not express lineage 

markers. Although CD8+ naive T cells recognize peptides (usually 8-10 amino acids) 

derived from tumor-associated antigens (TAAs) bound by major histocompatibility complex 

(MHC) class I molecules on tumor cells, it is not sufficient to initiate a productive generation 

of antigen-specific CTLs. Induction of CD8+ CTLs need peptides derived from TAAs to be 

presented on the surface of antigen presenting cells (APCs) in the context of MHC 

molecules. Moreover, CD4+ T cells recognize peptides (usually 10-30 amino acids) in 

association with MHC class II molecules on APCs and mediate their helper functions by 

enhancing the persistence of antigen-specific CD8+ CTLs or through secretion of cytokines 

such as interleukin (IL)-2 and interferon (IFN)-┛ (Steinman and Swanson 1995; Banchereau 

& Steinman 1998). Therefore, the ┙┚ TCR interaction with complex of peptides and MHC 

class I and class II molecules on APCs is a central event in T-cell-mediated antitumor 

immune responses. Antigen-specific CD8+ CTLs can respond to TAAs derived peptides 

presented in the context of MHC class I molecules on tumor cells. Therefore, efforts have 

focused on generating TAAs-specific ┙┚ CD8+ CTLs (Waldmann 2003). 

Dendritic cells (DCs) are powerful APCs that play a pivotal role in the initiation, 

programming, and regulation of tumor-specific immune responses (Steinman 1991). DCs 

can process endogenously synthesized antigens into antigenic peptides, presented to the cell 

surface as MHC class I-peptide complexes, and recognized by the ┙┚ TCR in CD8+ naive T 

cells (Steinman 1991). DCs are also capable of capturing and processing of exogenous 

antigens, and presenting antigenic peptide on MHC class I molecules through an 

endogenous pathway, a process known as antigen cross-presentation (Berard, Blanco et al., 

2000). In the case of cancer, cross-presentation after uptake and processing of soluble or 

particulate matter from apoptotic, necrotic cancer or even live cancer cells is the only 

important natural mode of presentation (Melief 2003). On the other hand, exogenous 

antigens from the extracellular environment are captured and delivered to the 

compartments of the endosome/lysosome, where they are degraded to antigenic peptides 

by proteases and peptidases, which are complexed with MHC class II and recognized by the 

┙┚ TCR in CD4+ naive T cells (Steinman 1991). Although both immature and mature DCs 
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are capable of processing and presenting MHC/peptide complexes to TCR, mature DCs are 

significantly better at CTL induction due to higher expression of MHC class I and class II 

and costimulatory molecules (Banchereau & Steinman 1998). On the other hand, 

presentation of antigens by immature DCs, in the absence of proper costimulation, may lead 

to tolerance induction (Banchereau & Palucka 2005). After antigens uptake and 

inflammatory stimulation, immature DCs in peripheral tissues undergo a maturation 

process characterized by the up-regulation of MHC class I and class II and costimulatory 

molecules, chemokine receptors such as CCR7, and the secretion of cytokines such as IL-12 

(Banchereau & Steinman 1998; Forster, Schubel et al., 1999; Steinman 1991). During the 

process, mature DCs migrate to T-cell areas of secondary lymphoid organs, where they 

present antigens to CD4+ and CD8+ T cells through MHC class I and class II pathways, 

respectively (Steinman 1991; Banchereau & Steinman 1998; Banchereau & Palucka 2005). The 

┙┚ TCR in CD8+ CTL can recognize MHC class I-peptide complexes on cancer cells and 

destroy cancer cells through effector molecules such as granzyme B and perforin (Finn 

2008). On the other hand, ┛├ T cells generally do not require MHC for antigen presentation, 

and recognize nonpeptidic antigens. As effective antitumor responses depend on the 

presence and function of immune cells that are able to recognize and eliminate cancer cells, 

the aim of immunotherapy is to activate both CD8+ CTLs that recognize TAAs-specific 

antigens and CD4+ T helper (Th) cells that mediate helper function.  

4.1 Immune homeostasis 

Now, it is becoming clear that CD4+ Th cells are critical in combating cancer cells and 

maintaining immune homeostasis. Upon TCR-mediated cell activation, naive CD4+ T cells 

can differentiate into at least four major polarization patterns including Th1, Th2, 

regulatory T (Treg), and Th17 cells, all of which participate in different types of immune 

responses (Zhu & Paul 2010) (Fig. 1). Mainly, immune homeostasis is controlled by two 

distinct helper T cell subsets, Th1 and Th2 cells. The Th1 cells secrete type I cytokines such 

as IFN-┛, tumor necrosis factor (TNF)-┙, and TNF-┚, to activate DCs, which can regulate 

the survival and persistence of CD8+ CTLs as memory cells (Bachelet, Mariethoz et al., 

1998). IL-12 secreted from DCs is a potent inducer of Th1 differentiation. Both CD8+ CTLs 

and Th1 cells secrete IFN-┛, which can further sensitize tumor cells to CTLs by 

upregulation of MHC class I molecules on tumor cells and antigen-processing machinery 

of DCs (Steinman 1991). On the other hand, Th2 cells secrete type II cytokines, such as IL-

4 and IL-10 resulted in enhanced generation of a humoral immunity, antibody-based 

antitumor response (Steinman 1991; Bradley, Yoshimoto et al., 1995; Banchereau & 

Steinman 1998; Wiethe, Debus et al., 2008). The newly identified Th17 cells secrete IL-17 

and IL-22, eliciting tissue inflammation implicated in autoimmunity (Dong 2008). 

Importantly, cancer cells-derived soluble factors promote the induction of tolerance 

through the generation of CD4+┙ chain of IL-2R (CD25)+ forkhead box P3 (Foxp3)+ 

natural (n) Treg cell subset (Koido, Homma et al., 2008). Induced (i) Treg cells 

(CD4+CD25+Foxp3-) secrete transforming growth factor-┚ (TGF-┚) and IL-10 and 

suppress effector T cells of either Th1 or Th2 phenotype in a cell contact and antigen-

specific manner (Shevach 2009; Mougiakakos, Choudhury et al., 2010). Treg cells play a 

pivotal role in the tumor progression and the suppression of antitumor immunity.  
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Fig. 1. Immune homeostasis. Upon TCR-mediated cell activation, naive CD4 T cells can 
differentiate into at least four major lineages, Th1, Th2, Treg, and Th17 cells, all of which 
participate in different types of immune responses. The Th1 cells produce signature type I 
cytokines, such as IFN-┛ and IL-2 resulting in induction of CD8+ CTLs. Th2 cells secrete 
type II cytokines, such as IL-4 and IL-10. The Th2 response is associated with the humoral, 
antibody-based antitumor response. Treg cells that secrete TGF-┚ and IL-10 suppress Th1 or 
Th2 cells. Th17 cells secrete IL-17 and IL-22, eliciting tissue inflammation implicated in 
autoimmunity.  

4.2 Immunosuppression in tumor microenvironment 

Pancreatic cancer cells express TAAs such as Wilms' Tumor gene 1 (WT1) (Sugiyama 2005), 
mucin 1(MUC1) (Mukherjee, Ginardi et al., 2000), human telomerase reverse transcriptase 
(hTERT) (Seki, Suda et al., 2001), mutated K-RAS (Gjertsen, Bakka et al., 1995), survivin 
(Wobser, Keikavoussi et al., 2006), carcinoembryonic antigen (CEA) (Nair, Hull et al., 1999), 
HER-2/neu (Larbouret, Robert et al., 2007), or p53 (Hoffmann, Nakano et al., 2000) as 
potential targets for immunotherapy. Therefore, immunotherapy targeted such a TAA may 
be an approach in patients with advanced pancreatic cancer. However, the 
microenvironment in pancreatic cancer is consisted not only cancer cells but also stroma 
cells such as cancer-associated fibroblasts (CAFs), tolerogenic DCs, myeloid-derived 
suppressor cells (MDSCs), immunosuppressive tumor-associated macrophages (TAMs), and 
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Treg cells (Fig. 2). These immune suppressive cells secrete vascular endothelial growth 
factor (VEGF), IL-6, IL-10, TGF-┚, soluble Fas ligand (Fas-L), and indolamine-2,3-
dioxygenase (IDO) (Koido, Homma et al., 2010c). As a result, immunosuppressive cells 
inhibit antitumor immunity by various mechanisms, including depletion of arginine and 
elaboration of reactive oxygen species (ROS) and nitrogen oxide (NO). The tumor 
microenvironment also promotes the accumulation of Treg cells that suppress CD8+ CTL 
function through secretion of IL-10 or TGF-┚ from Treg cells and tumors. Therefore, 
immunotherapies that struggle against pancreatic cancer cells with CTLs as well as 
inhibition of Treg cells may tip the balance in favor of immunostimulation. Currently, the 
field of cancer immunotherapy using peptide- or cell (DC or whole tumor cell)-based 
approaches is in an active state of preclinical and clinical investigations.  

 

Fig. 2. Immunosuppression in tumor microenvironment. Pancreatic cancer cells secrete 
various factors such as VEGF, IL-6, IL-10, TGF-┚, Fas-L, and IDO, all of which promote the 
accumulation of heterogeneous populations of CAFs, TAMs, MDSCs, or tolerogenic DCs. 
These immunosuppressive cells in tumor microenvironment inhibit antitumor immunity by 
various mechanisms, including depletion of arginine and elaboration of ROS and NO. The 
tumor microenvironment also promotes the accumulation of Treg cells that suppress CD8+ 
CTL function. 
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5. Peptide vaccines 

Peptide-based cancer vaccines are preparations made from antigenic protein fragments that 

represent the minimal immunogenic region of TAA (Purcell and McCluskey 2007; Bijker, 

Melief et al., 2007). As peptide vaccines are simple, safe, stable, and economical, multiple 

MHC class I-binding peptides have been identified and vaccination with synthetic peptides 

has been examined for their immunogenicity in clinical trials for pancreatic cancer (Dummer 

2001; Jaffee, Hruban et al., 2001; Yanagimoto, Mine et al., 2007; Miyazawa, Ohsawa et al., 

2010). In early phase clinical trials, vaccination of mutant K-ras (Gjertsen, Bakka et al., 1995; 

Gjertsen, Buanes et al., 2001; Abou-Alfa, Chapman et al., 2011), MUC1 (Yamamoto, Ueno et 

al., 2005b; Ramanathan, Lee et al., 2005), or telomerase (Bernhardt, Gjertsen et al., 2006) 

peptide to patients with advanced pancreatic cancer are significantly associated with 

antitumor responses. As almost all pancreatic cancers involve mutations in the K-ras 

oncogene, it is believed that activating K-ras mutations are critical for initiation of pancreatic 

cancer (Gjertsen, Bakka et al., 1995; Gjertsen, Buanes et al., 2001; Abou-Alfa, Chapman et al., 

2011). In a clinical phase I/II trial involving 48 patients with pancreatic cancer (10 surgically 

resected and 38 with advanced disease), vaccination of synthetic mutant K-ras peptides in 

combination with granulocyte-macrophage colony-stimulating factor (GM-CSF) produced 

immune responses to mutant K-ras and showed prolonged survival from the start of 

treatment compared to non-responders (Gjertsen, Buanes et al., 2001). Abou-Alfa et al. 

(Abou-Alfa, Chapman et al., 2011) also vaccinated 24 patients with resected pancreatic 

cancer with mutant K-ras peptide in combination of GM-CSF and found that the vaccination 

proved to be safe and tolerable with no elicitable immunogenicity and unproven efficacy. 

On the other hand, almost all pancreatic cancer cells also express MUC1 that is high 

molecular weight glycoproteins (Chhieng, Benson et al., 2003). The MUC1 peptide derived 

from tandem repeat core was also recognized by CD8+ T cells in an MHC-restricted and -

unrestricted manner. Therefore, MUC1 peptide vaccine was subsequently used in the 

immunization of patients with pancreatic cancer (Finn, Jerome et al., 1995). Ramanathan et 

al. (Ramanathan, Lee et al., 2005) used 100 mer MUC1 peptide with SB-AS2 adjuvant in 16 

patients with resected or locally advanced pancreatic cancer. They found that 100 mer 

MUC1 peptide with SB-AS2 adjuvant induced low but detectable MUC1-specific humoral 

and T-cell responses in some patients. Yamamoto et al. (Yamamoto, Ueno et al., 2005b) also, 

in a clinical phase I trial involving 6 patients with advanced pancreatic cancer, reported that 

vaccination with 100 mer MUC1 peptide and incomplete Freund's adjuvant resulted in 

increased circulating anti MUC1 IgG antibody in some patients. Moreover, human 

telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase and a 

prototype for a novel class of universal tumor antigens due to its expression in the vast 

majority of human tumors (Beatty & Vonderheide, 2008). Therefore, it is one of widely 

applicable target antigen recognized by CTLs in pancreatic cancer. Bernhardt et al. 

(Bernhardt, Gjertsen et al., 2006) reported the results of a phase I trial of telomerase peptide 

in combination with GM-CSF for non-resectable pancreatic cancer patients (n=48). The 

immunotherapy was safe and induction of an immune response was correlated with 

prolonged survival. Recently, Itoh et al. (Itoh, Yamada et al., 2009) have developed 

personalized peptide vaccines. In this regimen, pre-vaccination peripheral blood 

mononuclear cells (PBMCs) were screened for their reactivity in vitro to each peptide in 
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patients, and only the reactive peptides were used as vaccines to 11 patients with advanced 

pancreatic cancer. In the personalized peptide vaccine, increased cellular and humoral 

immune responses to at least one of peptides used for vaccination were observed in the 

post-vaccination PBMCs (Yamamoto, Mine et al., 2005a). In all of these peptide vaccines, 

only a limited success has occurred in clinical trials. Generally, the drawback of this strategy 

comes from numerous factors: (i) only a limited number of known synthesized antigenic 

peptides can be available (Mocellin, Pilati et al., 2009), (ii) CD8+ CTLs may be ineffective in 

reacting with pancreatic cancer cells due to down regulation of certain antigens and MHC 

class I molecules, (iii) impaired function of DCs in patients with advanced pancreatic cancer 

(Yanagimoto, Takai et al., 2005; Koido, Hara et al., 2010a), and (iv) tumor microenvironment 

where immune suppressive cells such as Treg cells, CAFs, MDSCs, or TAMs exist (Finn 2008). 

The more attractive peptide-based vaccines may be synthetic long peptides. As synthetic long 

peptides are not able to bind directly on MHC class I and class II molecules on DCs, they need 

to be taken up, processed and presented by DCs. Therefore, the long peptide vaccines can be 

presented on MHC class I and class II molecules long time resulted in induction of antigen-

specific polyclonal CD4+ and CD8+ T cells (Melief & van der Burg 2008; Bijker, van den Eeden 

et al., 2008). Peptide vaccines for the treatment of established pancreatic cancer may require 

long-lived presentation of epitopes by MHC class I and class II molecules on appropriately 

activated DCs. Such presentation is essential for induction of robust therapeutic CD4+ and 

CD8+ T-cell responses. Recently, Weden et al. (Weden, Klemp et al., 2011) treated 23 patients 

who were vaccinated after surgical resection for pancreatic cancer with long synthetic mutant 

K-ras peptides designed mainly to elicit T-helper responses. Surprisingly, 10-year survival was 

20% (four patients out of 20 evaluable) versus zero (0/87) in a cohort of nonvaccinated patient 

treated in the same period. The key elements for the development of therapeutic peptide 

vaccines for pancreatic cancer may be the combination with chemotherapy to overcome robust 

cancers. Indeed, Wobser et al. (Wobser, Keikavoussi et al., 2006) reported a case of complete 

remission (CR) of liver metastasis of pancreatic cancer refractory to gemcitabine chemotherapy 

under vaccination with a survivin peptide. Peptide vaccines alone should be tested in cancer 

patients in remission to prevent recurrence and metastasis after surgical resection. 

6. DC-based vaccines 

For T-cell activation, three signals are required: (i) effective presentation of multiple TAAs in 

MHC class I and class II molecules; (ii) costimulation by membrane-bound receptor-ligand 

pairs; and (iii) soluble factors to direct polarization of the ensuing efficient antitumor 

immune responses. DCs derive their potency from constitutive and inducible expression of 

essential costimulatory ligands on the cell surface including B7, ICAM-1, LFA-1, LFA-3, and 

CD40 (Inaba, Witmer-Pack et al., 1994). These proteins function in concert to generate a 

network of secondary signals essential for reinforcing the primary antigen-specific signal in 

T-cell activation (Inaba, Pack et al., 1997). Therefore, now it is clear that DCs have the ability 

to provide all three signals essential for induction of antitumor immunity (Banchereau & 

Palucka 2005). These findings have provided the rationale for ex vivo antigen loading of DC 

as vaccines. More than 200 clinical trials have been performed using DC as cellular 

adjuvants in cancer. Several strategies to deliver TAAs into DCs have been developed to 

generate potent antitumor immune responses (Fig. 3). 
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Fig. 3. Strategies to deliver defined or whole antigens to DCs. DCs used for cancer vaccines 
have been generated from the peripheral blood monocytes of the patients using cytokines 
including GM-CSF and IL-4 etc. To generate antigen-specific CTL responses against tumor 
cells, DCs loaded with synthetic peptide, antigenic cDNA, or mRNA have been used. 
Moreover, whole tumor associated antigens including defined and unidentified have been 
also loaded to DCs.  

DCs have been loaded with tumor antigens in the form of peptides (Nestle, Alijagic et al., 

1998), tumor lysates (Mackensen, Herbst et al., 2000), apoptotic tumor cells (Palucka, Ueno 

et al., 2006), or mRNA (Nair, Boczkowski et al., 1998; Koido, Kashiwaba et al., 2000). 

Alternatively, whole tumor cells have been fused with DCs to facilitate the entry of TAAs, 

including both known and unidentified, into the endogenous antigen-processing pathway 

in the DCs (Fig.4). The strategy for DC/tumor fusion vaccine is based on the fact that DCs 

are the most potent antigen-presenting cells in the body, whereas tumor cells express 

abundant tumor antigens. In animal studies, DC/tumor fusion vaccines have been shown to 

possess the elements essential for processing and presenting tumor antigens to host immune 

cells, for inducing effective immune response, and for breaking T-cell tolerance to TAAs 

(Gong, Chen et al., 1997; Koido, Hara et al., 2007; Gong, Koido et al., 2008; Koido, Hara et al., 

2009; Koido, Hara et al., 2010a; Koido, Homma et al., 2010b). Recently, we have reported 

that fusions of human pancreatic cancer cells and DCs induce CTL responses against 

pancreatic cancer cells in vitro (Koido, Hara et al., 2010a). Although DC/tumor fusion 
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vaccines have proven clinically safe and efficient to induce tumor-specific immune 

responses, only a limited number of objective clinical responses have been reported in 

cancer patients (Avigan, Vasir et al., 2004; Kikuchi, Akasaki et al., 2004; Homma, Kikuchi et 

al., 2005; Homma, Sagawa et al., 2006). 

 

Fig. 4. Fusions of DC and tumor cell. DC/tumor fusions express MHC class I and class II, 
costimulatory molecules (CD80 and CD86), and multiple tumor-associated antigens. The 
DC/tumor fusions are able to process multiple TAAs derived from tumor. They form MHC 
class I-peptide complexes, in the endoplasmic reticulum, which are transported to the cell 
surface of DC/tumor fusions and presented to CD8+ T cells. The DC/tumor fusions can also 
synthesize antigenic peptides in the endoplasmic reticulum, which are transported to the 
cytoplasm, where MHC class II-peptide complexes are assembled with multiple tumor-
derived peptides. These complexes are presented to CD4+ T cells, which are essential for 
induction of efficient antigen-specific polyclonal CTLs.  

Clinical trials of antigen-pulsed DCs have been conducted in patients with various types of 

tumors including pancreatic cancer. In a phase I/II clinical trial of a MUC1 peptide-loaded 

DC vaccines in pancreatic and biliary cancer patients following resection of their primary 

tumors, 4 of the 12 patients followed for over four years were alive, all without evidence of 

recurrence (Lepisto, Moser et al., 2008). Moreover, MUC1 specific immune responses were 

observed even in patients with pretreated and advanced disease, following immunization 

with DC transfected with MUC1 cDNA (Pecher, Haring et al., 2002). Findings from initial 
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clinical trials demonstrate that hTERT-specific immune responses can be safely induced in 

cancer patients. Suso et al. (Suso, Dueland et al., 2011) recently reported that vaccination 

with DC transfected with hTERT mRNA (DC/hTERT mRNA) had the potential to induce 

strong immune responses to multiple hTERT epitopes. In this therapy, a patient who could 

not continue chemotherapy due to sever neutropenia had been treated with DC/hTERT 

mRNA alone for 3 years and resulted in no evidence of active disease. Moreover the CR was 

associated with induction of hTERT-specific immune responses against several hTERT-

derived Th and CTL epitopes. Therefore, DC/hTERT mRNA may be an attractive approach 

to induce potent antitumor immunity. On the other hand, combined injection of unloaded 

DCs and activated lymphocytes resulted in prolonged survival of refractory pancreatic 

cancer patients (Nakamura, Wada et al., 2009). To improve the clinical efficacy of DC-based 

cancer vaccines, we need to design novel and improved strategies that can boost adaptive 

antitumor immunity to break overcome the immunosuppressive tumor microenvironment. 

7. Whole tumor cell-based vaccines 

Although cancer vaccines with defined TAAs are commonly used, the advantage of using 
autologous whole tumor cells is that tumor cells express a whole array of TAAs that are 
both characterized and uncharacterized. Moreover, this rich source of antigens contains 
epitopes of both CD8+CTLs and CD4+ T helper cells (Koido, Hara et al., 2005; Koido, Hara 
et al., 2009; Koido, Homma et al., 2010c). Thus, whole tumor cells could greatly diminish the 
chance of tumor escape compared to using single epitope peptide vaccines. In clinical trials, 
autologous tumor cells have been used as cancer vaccines to induce polyclonal CTL 
induction against colorectal (Harris, Ryan et al., 2000), renal cell cancer (Jocham, Richter et 
al., 2004), or melanoma (Berd, Sato et al., 2004), and several trials have shown clinical 
responses in the initial clinical studies. However, in many cases, even though a tumor-
specific immune response has been observed, none has shown significant efficacy in the 
randomized phase III trials. To improve immunogenicity of vaccines, autologous whole 
tumor cells have been genetically modified to secrete GM-CSF and have shown promising 
results in patients with prostate (Simons, Jaffee et al., 1997) renal cell (Simons, Mikhak et al., 
1999), metastatic non-small-cell lung carcinoma (Salgia, Lynch et al., 2003), and melanoma 
(Soiffer, Hodi et al., 2003). This approach is based on the concept that GM-CSF is required at 
the site of the tumor to prime TAAs-specific immunity effectively (Nemunaitis 2005).  

Autologous cancer cells would be the best source of immunizing proteins, however, only 10-
15% of pancreatic cancer patients diagnosed are eligible for surgical treatment. Therefore, 
autologous tumor cells may not be provided in almost of the patients with pancreatic 
cancer. Moreover, even if the patients are treated by surgical resection, it is difficult to 
prepare sufficient amounts of autologous tumor cells due to the length of culture time and 
potential contamination of bacteria and fungus (Koido, Hara et al., 2005a). To circumvent 
this problem, allogeneic pancreatic tumor cell lines with shared TAAs have been used 
instead of autologous tumor cells to deliver shared TAAs into autologous DCs (Jaffee, 
Hruban et al., 2001; Lutz, Yeo et al., 2011). The whole allogeneic tumor cell line-based 
vaccines have numerous advantages. (i) Allogeneic tumor cell lines that share one or even 
several of the TAAs as autologous tumor cells. (ii) Allogeneic tumor cell lines can be 
propagated in large quantities in cell factories. (iii) It is not necessary to determine HLA 
typing of patients and allogeneic tumor cells, because autologous DCs can process and 
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present multiple TAAs from allogeneic tumor cells owing to cross-presentation in the 
context of autologous MHC class I and class II alleles. (iv) Both antigens-specific polyclonal 
CD4+ and CD8+ T cells can be induced simultaneously. While currently explored allogeneic 
approaches as whole tumor cell-based vaccines represent an improvement in terms of 
standardization over their autologous counterparts, they nevertheless entail the culture of 
large batches of cells under good manufacturing practice (GMP) grade conditions. Further 
optimization of these in vitro culture methodologies may be required. Moreover, the quality 
must be easily assessed and monitored in GMP facilities. One of the challenges that face the 
generation of whole allogeneic tumor-based vaccines for clinical use may be to overcome the 
potential hazards of fetal calf serum (FCS) (Koido, Hara et al., 2010a).  

In a phase I trial, cancer vaccines using irradiated allogeneic pancreatic cancer cells secreting 
GM-CSF were safe and induced systemic antitumor immunity in patients with surgically 
resected pancreatic cancer (Jaffee, Hruban et al. 2001). From the same group, GM-CSF 
secreting allogeneic pancreatic cancer cells alone or in sequence with cyclophosphamide in 
patients with advanced pancreatic cancer showed minimal treatment-related toxicity and 
induction of mesothelin-specific T-cell responses (Laheru, Lutz et al., 2008). In addition, 
cyclophosphamide-modulated immunotherapy resulted in prolonged overall survival in a 
gemcitabine-resistant population. Recently, a single institution phase II study of 60 patients 
with resected pancreatic adenocarcinoma was performed (Lutz, Yeo et al., 2011). This 
approach integrated with chemoradiation was safe and demonstrated prolonged overall 
survival in resected pancreas cancer. While this approach for pancreatic cancer is a safe and 
promising therapy, their clinical efficacy remains to be established. Further clinical 
evaluation of the approach in patients with pancreatic cancer is warranted. 

8. Combined therapy of immunotherapy and chemotherapy 

In established pancreatic cancer patients, the effect of immunotherapy alone is limited by 
the number of CTLs able to penetrate tumor and by the number of tumor cells expressing 
specific antigens. Even if large numbers of CTLs generated ex vivo were injected into the 
patients, CTLs cannot penetrate into tumor site because of tumor stroma. Moreover, in 
tumor site, Treg cells or MDSCs produce immunosuppressive cytokines such as IL-10 and 
TGF-┚ As a result, antitumor clinical responses may not induce in patients with advanced 
pancreatic cancer treated with immunotherapy alone. 

Cytotoxic chemotherapy is well known to blunt immune responses, because of its toxicity 
for dividing cells in peripheral lymphoid tissue as well as the bone marrow. Indeed, several 
of the cancer chemotherapeutics agents such as cyclophosphamide (Weiner and Cohen 
2002) and methotrexate (Weinblatt, Coblyn et al., 1985) are also used as 
immunosuppressants for the treatment of severe systemic autoimmune diseases. Therefore, 
the chemotherapeutic approach was considered to be inappropriate based on a widely held 
belief that the immunosuppressive effects of the chemotherapy would negate the efficacy of 
cancer vaccines (Zitvogel, Apetoh et al., 2008). However, increasing evidences have been 
mounting to suggest that immunotherapy has the possibility of achieving better success 
when used in combination with conventional chemotherapy (Gabrilovich 2007; Smith, 
Kasamon et al., 2010). Gemcitabine that is a standard cytotoxic agent for pancreatic cancer 
has been also generally considered immunosuppressive due to neutropenia and 
lymphopenia being common adverse side effects. There is increasing evidence, however, 
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that gemcitabine plays important roles in the induction of antitumor immune responses. 
Gemcitabine inhibited B cells (Nowak, Robinson et al., 2002) and CD11b+GR1+ MDSCs 
(Suzuki, Kapoor et al., 2005), the phenomenon that may skew antitumor immunity towards 

beneficial T‑cell responses (Qin, Richter et al., 1998). Moreover, gemcitabine treatment in 
patients with pancreatic cancer induced the proliferation of CD14+ monocytes and CD11c+ 
DCs (Soeda, Morita-Hoshi et al., 2009). To induce efficient therapeutic CTL responses, cross-
presentation of TAAs by DCs is essential. Treatment of pancreatic cancer cells and DCs with 
gemcitabine results in enhanced cross-presentation of TAAs by DCs, CTL expansion, and 
infiltration of the tumor, all of which are associated with augmented CTL (Nowak, Lake et 
al., 2003a; Nowak, Robinson et al., 2003b; Dauer, Herten et al., 2005; Correale, Cusi et al., 
2005). A recent report that chemotherapeutic agents caused up-regulation of cation-
independent mannose 6-phosphate receptor (CI-MPR) expression on cancer cells and a 
concurrent increase in the uptake of granzyme B by activated CTLs also strongly suggests 
chemotherapy can function in synergy with induction of CTL responses to cure established 
pancreatic cancer (Ramakrishnan, Assudani et al., 2010).  

These findings open a novel field of investigations for future clinical trial design, taking into 
account the immunostimulatory capacity of chemotherapeutic agents such as gemcitabine, 
and using them in combined chemoimmunotherapy strategies in patients with pancreatic 
cancer (Correale, Aquino et al., 2003; Nowak, Lake et al., 2003a; Correale, Cusi et al., 2005; 
Dauer, Herten et al., 2005; Correale, Del Vecchio et al., 2008). Now the immunostimulatory 
effects of gemcitabine have been confirmed in patients with cancer. In patients with 
pancreatic (Plate, Plate et al., 2005), nonsmall-cell lung (Levitt, Kassem et al., 2004) or colon 
(Galetto, Buttiglieri et al., 2003) cancer, standard cytotoxic agent, gemcitabine combined 
with recombinant cytokines or cancer vaccines could synergistically enhanced the frequency 
of tumor-specific CTL precursors. Therefore, patients with advanced pancreatic cancer have 
been treated by combination therapy of gemcitabine with peptide vaccine. For instance, both 
clinical and immune responses to personalized peptide vaccination combined with 
gemcitabine were evaluated in 21 patients with non-resectable pancreatic cancer 
(Yanagimoto, Mine et al., 2007; Yanagimoto, Shiomi et al., 2010). In this report, the reactive 
personalized peptides (maximum of 4 kinds of peptides) were administered with 
gemcitabine. Median overall survival time of all 21 patients was 9.0 months with a one-year 
survival rate of 38%. Immune boosting in both cellular and humoral responses was well 
correlated with overall survival. Combination therapy of a epitope peptide from vascular 
endothelial growth factor receptor 2 (VEGFR2) with gemcitabine was also conducted in 18 
patients with metastatic and unresectable pancreatic cancer (Miyazawa, Ohsawa et al., 
2010). The median overall survival time of all 18 patients who completed at least one course 
of the treatment was 8.7 months. Moreover, VEGFR2-specific CTL responses could be 
induced by the combination therapy. Similar findings were observed in 5 patients with 
inoperable locally advanced pancreatic cancer using gemcitabine, OK-432 stimulated DCs 
injected into the tumor sites, and intravenous infusion of lymphokine-activated killer (LAK) 
cells stimulated with anti-CD3 monoclonal antibody (Hirooka, Itoh et al., 2009). In this 
regimen, one patient had partial remission (PR) and 2 had long stable disease (SD) more 
than 6 months. Recently, we also reported that combination therapy of DC-based 
immunotherapies with gemcitabine/S-1 was effective in patients with advanced pancreatic 
cancer refractory to standard chemotherapy (Kimura, Imai et al., 2011). As WT1 is one of the 
excellent TAAs for the target of immunotherapy and is frequently expressed in pancreatic 
cancer cells (Oka, Tsuboi et al., 2004; Cheever, Allison et al., 2009), 38 out of 49 patients had 
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received vaccination with WT1 peptide pulsed DCs with or without combination of other 
peptides such as MUC1, CEA and CA125 in this report. Prior to this combination therapy, 46 
out of 49 patients had been treated with chemotherapy, radiotherapy, heavy particle 
radiotherapy, or hyperthermia, but elicited no significant effects. In spite of these handicapped 
conditions, surprisingly, of 49 patients, 2 patients showed CR, 5 PR, and 10 SD, and median 
survival time was 360 days. We recently reported that gemcitabine sensitized the pancreatic 
cancer cells with WT1 specific T cell-mediated antitumor responses in vitro (Takahara, Koido 
et al., 2011), also supporting the significance of the combination therapy (Fig.5). In this study, 
gemcitabine treatment of human pancreatic cancer cells increased WT1 mRNA, and this 
increase was associated with nuclear factor kappa B (NF-B) activation. Gemcitabine treatment 
also shifted WT1 protein from the nucleus to the cytoplasm, which may promote proteasomal 
processing of WT1 protein and generation of antigenic WT1 peptide. Moreover, presentation 
of HLA-A*2402-restricted WT1 peptide increased in gemcitabine-treated pancreatic cancer 
cells. Indeed, we observed clinical response in a phase I clinical trial of combination therapy of 
WT1 peptide vaccine and gemcitabine (manuscript in preparation). Pancreatic cancer cells 
already, which have acquired gemcitabine resistance by the activation of NF-kB might be 
killed by WT1-specific CTLs. Assessment of the clinical response to the combined therapy of 
WT1 peptide vaccine and gemcitabine is presently underway. 

   

Fig. 5. Synergistic therapeutic antitumor effects of gemcitabine and WT1-specific CTLs. 
Gemcitabine enhanced WT1 expression in human pancreatic cancer cells and sensitized 
pancreatic cancer cells with WT1-specific T-cell-mediated antitumor immune responses. 
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Although the concept is still far from being firmly established, these reports may be 
sufficient to provide a platform for the combination of immunotherapy with chemotherapy. 
A combined approach of conventional therapies such as radiation or chemotherapy kill the 
bulk of tumor cells and CTLs that target TAAs may represent a promising approach for the 
treatment of patients with advanced pancreatic cancer. Evaluation is warranted to examine 
the effect of the combined approach on disease-free survival and overall survival. 

9. Immunotherapy targeting cancer stem cells 

It has been well known that the majority of patients with advanced pancreatic cancer that 
respond initially to standard chemotherapies ultimately undergo relapse due to the survival 
of small populations of cells with cancer-initiating/cancer stem cell (CSC) fraction (Wang, Li 
et al., 2011). These CSCs are a subpopulation of the tumor more capable than other cancer 
cells (CC) to self-propagate, initiate new tumors differentiate into bulk tumor, and therefore 
sustain tumor growth. It has been reported that pancreatic cancer cells resistant to 
chemoradiotherapy are rich in CSC fraction (Du, Qin et al., 2011). Moreover, CSCs could be 

 

Fig. 6. Combination therapies of immunotherapy and standard radio- and chemotherapy. 
Currently applied standard therapies such as radio- and chemotherapy target bulk CCs that 
are less resistant than CSCs. This leads to initial regression of the tumor mass but eventually 
regrowth from residual CSCs. Combined therapies of standard therapies and 
immunotherapeutic approach targeting CSCs would cut off the rejuvenating supply of CSCs 
and resulted in tumor eradication. 
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expanded during the acquisition of gemcitabine resistance (Hong, Wen et al., 2009). Thus, 

targeted therapy against CSC fraction that is resistant to chemotherapy could be applied to 

overcome drug resistance in the treatment of pancreatic cancer (Fig. 6). Importantly, the 

tumors that develop chemotherapeutic drug resistance would still be a candidate target for 

immunotherapy. TAAs can be classified into two categories: i) CSC-specific antigens, such 

as SOX2 (Hong, Wen et al., 2009) or ALDH1A1 (Inoda, Hirohashi et al., 2011) and ii) shared 

antigens, such as CEP55 (Hirohashi, Torigoe et al., 2010), MUC1 (Engelmann, Shen et al., 

2008; Weng, Song et al., 2010), or WT1 (Cheever, Allison et al., 2009; Sugiyama 2010) 

between CSCs and more differentiated subpopulations. Therefore, the development of 

strategies that target the CSC population by immunotherapy may be highly desirable. For 

example, DC-based cancer vaccine, ┛├ T cells, or natural killer (NK) cells killed human 

cancer stem cells (Pellegatta, Poliani et al., 2006; Todaro, D'Asaro et al., 2009; Pietra, Manzini 

et al., 2009; Weng, Song et al., 2010), in vitro. Success of these potential therapies will depend 

on how well immunological responses to CSCs can be modulated for example by vaccines 

upregulating antigen-processing and -presentation in DCs. Recently, we used fusions of DC 

and CSC to activate potent CSC-specific CTL responses and resulted in expression CTLs 

with elevated levels of IFN-┛ and enhanced killing of CSCs in vitro (Weng, Song et al., 2010). 

Moreover, the classification of conclusive CSC markers followed by the identification of 

defined T cell-recognized CSC epitopes in the future may also lead to the clinical application 

of anti-CSC vaccination strategies.  

10. Conclusion 

The prognosis of patients with pancreatic cancer remains grim, and current thinking toward 

the development of curative therapy is likely to require eradication of the CSC population. 

A combined approach of conventional therapies such as radiation or chemotherapy kill the 

bulk of pancreatic cancer and CTLs that target CSC and CC fraction may represent a more 

promising approach for the treatment of patients with advanced pancreatic cancer. Clinical 

evaluation is warranted to examine the effect of the combined approach earlier in the 

disease course and in patients with less aggressive disease. 
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