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1. Introduction 

The use of a solid bone graft to restore bone stock and insure implant stability in hip 
revision surgery was introduced by Harris et al. (1). Better results have been obtained on 
the femoral site than on the acetabulum where high failure rate has been reported at ten 
years (2-7). Progressively, a new technique for restoring the acetabulum emerged with the 
concept of bone impaction which was introduced by Slooff et al. and later extended to the 
femur by Ling et al. (8-9). The technique consists in impacting bone chips with a phantom 
into the contained femoral or acetabular defect to produce a layer of tightly impacted 
bone where an implant shall be inserted with the cement being pressurized into the graft 
during cementation. Clinical results of impaction bone grafting techniques were largely 
improved with re-revision rates comparable to those observed after primary arthroplasty 
(10-12). Acetabular reconstructions were described as requiring between one and three 
femoral heads (12) and femoral impactions two or more, based on the preoperative bone 
loss (13-14).  

As bone impaction became a recognised modality for bone reconstruction, the demand for 
bone allograft sharply increased. Consequently, an existing shortfall in the supply of banked 
bone was predicted to increase (15-16). As the impaction technique had been set up with 
frozen material, most bone banks were facing difficulties to provide frozen femoral heads 
(17). The increase in the number of hip arthroplasties did not mirror a concurrent increase in 
banked femoral heads. Indeed, the rate of rejection remained high (16) whereas the formal 6-
month visit to get out the quarantine was difficult to obtained.  

Concerns were raised about the possibility of an occult pathology into a femoral head, 
which could not have been identified through careful history and when different authors 
reported an incidence of 5 to 8% (18-19). Bacterial contamination rate reported with cadaver 
bone harvesting was another concern that limited supply from another source of fresh 
frozen bone (20).  

Bone processing which allows a complete removal of bone marrow and cell debris from the 
bone and the machining of the material represented a potential solution to overcome these 
problems. However, no study had been reported comparing the mechanical stability of a 
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femur and acetabulum restored with either impacted frozen bone morsels or freeze-dried 
ones. The bone marrow content was considered to be important for the graft stickiness 
which influenced the biological and mechanical properties in impaction bone grafting (21). 
Although each separate step of the bone process did not appear to influence the bone 
strength (22-27), surgeons reported that freeze-dried bone was brittle and hence, unsuitable 
for being fixed and trimmed during surgery (28). However, the cumulative effects of every 
applied treatment were known to impact the mechanical properties of the musculo-skeletal 
tissue (29-30). 

This chapter will cover the influences of various parameters (bone processing, freeze-drying, 
irradiation, processing sequence and temperature during irradiation) on the mechanical 
properties of cancellous bone. Mechanical damage due to irradiation will be related to 
damage of the collagen protein. Benefits of defatting, freeze-drying and irradiation in terms 
of osteoconductivity and tissue safety will be further discussed. 

Application of processed freeze-dried irradiated bone to impaction bone grafting technique 
will be considered. The embrittlement theory and the influence of particle sizes will be 
presented to explain how processed bone is suitable to meet the mechanical demand of hip 
revision surgery. Results will be discussed and compared in more realistic surgical 
situations by observing implant stability after frozen or freeze-dried irradiated bone 
impaction. Finally, bone graft remodelling will be discussed. 

2. Influence of various parameters on cancellous bone: Bone processing, 
freeze-drying, irradiation, processing sequence and temperature during 
irradiation 

2.1 Mechanical effects of drying, freeze-drying and defatting 

The effect of drying and rewetting on the mechanical properties of cortical bone was 
thought to be negligible because changes of the mechanical properties were very limited and 
considered as insignificant (31). Prolonged storage of bone in frozen state or in ethanol 
solution did not change the bone stiffness of trabecular bone, and neither did several 
thawing and refreezing sequences (32). Defatting combined with dehydration made the 
bone stiffer and brittle (32). The importance of re-hydration of a bone that has been dried 
was further emphasized by Conrad et al., as non rehydrated dried bones appeared to be 
both stronger and stiffer than their rehydrated counterparts (33). After 24 hours rehydration, 
freeze-dried grafts compared with frozen grafts showed no significant difference in mean 
compressive strength. An average gain of 40 % of the compressive strength and stiffness 
was recovered after one-hour rehydration in vacuo. The same observation was done by 
Bright and Burchardt on cortical bone (23). Complete restorations of the mechanical 
parameters after rehydration were also reported by Pelker et al. and Thoren et al. (24, 27). 
These authors did not find a significant difference in the compressive strength of freeze-
dried rehydrated bone compared with normal bone in a rat vertebral model (24) and did not 
observe difference in the biomechanical properties of rehydrated bone after lipid extraction 
with chloroform methanol (27).  

In our experiments, defatting and freeze-drying caused just a slight reduction in the 
ultimate compressive strength and stiffness but did not affect the work to failure, due to a 
higher ductility (34). In contrast to the observations of Bright and Burstein and Conrad et al. 
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works (33, 35) who noted that 24h were required for regaining the natural mechanical 
properties of the bone, a short 30-minute period of rehydration was enough to make bone 
more resilient. 

Slight influence of physical or chemical defatting of cancellous bone grafts was recently 
confirmed (36-37). Other authors investigated biomechanical properties of the cortical and 
trabecular bone after high pressure lavage. Young's modulus and ultimate strength did not 
decrease after exposure to 300 MPa. After pressure treatment at 600 MPa, Young's modulus 
and ultimate strength respectively remained almost unchanged in trabecular bone and were 
reduced about 15% in cortical bone (38). 

2.2 Mechanical effects of irradiation and sequences of freeze-drying and irradiation 

2.2.1 Irradiation of a frozen bone 

Gamma irradiation at a dose of 25 kGy has no apparent detrimental effect on cancellous 
bone strength. The mean values obtained in our experiments were within the range of 
values commonly observed for human bone that has been exposed to as high as 50 kGy (39). 
Anderson et al. reported earlier a 60% reduction of compressive strength and modulus for 
doses at or above 60 kGy (40). Their data were in agreement with our observations that 
processed frozen irradiated bone under dry ice did not show any detrimental effect after a 
30 kGy irradiation. 

2.2.2 Irradiation at room temperature of a freeze-dried bone 

However at a 25 kGy dose at room temperature, alteration in the mechanical properties of 
cortical bone in compression occurred in the plastic modulus whereas the elastic domain 
remained unchanged. The capacity to absorb work before failure was also decreased in a 
dose-dependent manner (41-42). Similarly torque resistance of the frozen bone was greatly 
impaired with gamma-irradiation at a dose of 25kGy (43).  

Our data for freeze-dried irradiated at room temperature cancellous bone are similar to the 
observation from Currey et al. and Hamer et al. (34, 41-42). The quantification of the post 
yield parameters showed that irradiation of freeze-dried cancellous bone at 25 kGy and at 
room temperature mainly reduced the capacity for energy absorption by shrinking the post-
yield strain. Whether bone brittleness was due to irradiation on freeze-dried bone alone or 
temperature during irradiation or to a synergetic effect of the freeze-drying-irradiation 
process could not be yet assessed. Therefore, an inverted sequence of the freeze-drying-
irradiation process and irradiation under dry ice was also examined.  

2.2.3 Sequence of order and irradiation under dry ice 

Performing freeze-drying either before or after irradiation under dry ice decreased the 
ultimate stress from 30% and the work to failure from 40% and impaired the results 
obtained with irradiation or freeze-drying separately. Stiffness was more preserved when 
freeze-drying preceded irradiation. The plastic domain of the strain-stress curve was more 
adversely affected by the usual freeze-drying-irradiation at room temperature sequence. 
Performing freeze-drying after irradiation allowed strain preservation but work to failure 
was decreased due to the stiffness and stress drops (Figure 1).  
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Irradiation cycle was performed within 3h00 at a 25 kGy dose rate. The curves were drawn 
proportionally to the observed mean values. 

Fig. 1. Comparison of typical stress-strain curves. Strain-stress curves observed after freeze-
drying, irradiation and sequence of both at two different temperatures. 

Negative cumulative effect of freeze-drying and irradiation was already noted by Bright et 
al. and Triantafyllou et al. on cortical bone (25, 44). Preserving freeze-dried graft under dry ice 
during irradiation limited the damage compare to the same sequence at room temperature. 
These observations were consistent with the report of Hamer et al. (45), who found that 
cortical bone irradiated at –78°C was less brittle and had less collagen damage than when 
irradiated at room temperature.  

2.3 Irradiation and collagen 

Bright and Burchardt considered that a bone that has been freeze-dried and irradiated 
resembled to bone from old patient in term of mechanics. They thought that alterations were 
due to changes in the bone collagen cross-linking (23). Significant decrease in 
hydroxypyridinium cross-link density was reported after irradiation of bone tendon bone 
patellar allograft with significant correlation of dose dependant reduction of modulus 
properties (46). It was further suggested that gamma radiation might have less effect on the 
collagen structure in older bone because there were fewer reductible cross-links than in 
younger one (47).  
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Adding glucose, which in theory can initiate cross-link formation in collagen during 
exposure to gamma-irradiation, allowed collagen films containing glucose to have 
significantly greater mechanical properties and resistance to enzymatic degradation 
compared with controls. Nevertheless, gel electrophoresis showed that glucose did not 
prevent peptide fragmentation and therefore, the higher strength and stability in glucose-
incorporated collagen films might be due to glucose-derived cross-links (48). Thiourea has 
been selected as a free radical scavenger and demonstrated a positive effect on the fracture 
energy of thiourea treated-irradiated bones than those of the irradiated bones. Irradiated 
specimens did not exhibit a noteworthy amount of intact alpha-chains whereas those 
irradiated in the presence of thiourea demonstrated intact alpha-chains. The damage 
occurred through the cleavage of the collagen backbone (49).  

Drózdz et al. found a significant decrease in total collagen content resulting from the 
reduction of salt-soluble and acid-soluble collagen fractions (50). He estimated that an 
increased content of insoluble collagen fraction may confirm the opinion about stimulative 
gamma-rays influence upon cross-links formation. His observations were confirmed by 
Nguyen et al. who reported that irradiation caused release of free radicals resulting from 
radiolysis of water molecules and inducing cross-linking reactions in collagen molecules in 
wet specimens and split polypeptide chains (51). This hypothesis of the damaged first-order 
structure of the collagen macromolecule was also supported by Marzec et al. (52).  

Differences in the mechanical behaviour after the different freeze-drying-irradiation-
temperature sequences may be explained by the variation in active oxygen free radicals 
formation due to ionizing radiation. Free radicals are obtained by water radiolyis and their 
ability to move and interact with the material may be impaired when this one is frozen (53). 
The increased damages observed in absence of free water in pre-dried specimen may be due 
to direct damages to the proteins by irradiation, suggesting a higher sensitivity of freeze-
dried proteins to irradiation than hydrated ones. This is supported by the observation of 
better osteoinductive properties of demineralised powder when irradiated in the hydrated 
frozen state (54). Collagen degradation by irradiation may account for the accelerate graft 
remodelling (54-55).  

The good compressive mechanical performance of processed frozen irradiated cancellous 
bone shall be considered cautiously in regard with potential collagen damage. The 
impairment of the mechanical function of gamma radiation sterilized cortical allografts is 
even worse in fatigue and may increase the risk of fracture (47, 49, 56).  

2.4 Osteoconductivity of defatted bone 

Extraction of lipids from cancellous bone before implantation increased the ingrowth of cells 
from the host enhancing the osteoconductivity of the bone (57). In this situation, the graft 
provided the template to guide the repairing tissue. Along with the increased new bone 
formation, there was a concomitant decrease of the grafted bone that led to a net increase of 
new bone when bone was defatted before implantation (27). This means that the grafted 
bone is progressively removed as a result of osteoclastic action and new bone from the host 
is deposited into the graft. This process of bone removal and new bone deposited has been 
called creeping-substitution. The amount of unresorbed graft remnant was higher in the 
unprocessed bone grafts than in the washed ones whether or not subsequently irradiated 
(58). This observation is consistent with an accelerate bone remodelling after irradiation.  
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Another argument for defatting the bone before implantation is that the removal of fat will 
avoid the peroxidation of lipids during radiation sterilisation as reported by Moreau et al 
(59). They further demonstrated that peroxidated lipids had a cytotoxic effect on cultured 
cells. Peroxidation of marrow fat was further incriminated in increasing apoptosis of 
osteoblasts and decreasing activity of osteoclasts when they were cultured onto irradiated 
bone slices (51). Finally, when processing was not performed in an aseptic manner, bacterial 
by-products can persist after irradiation and induce inflammatory bone resorption following 
macrophage activation (51). 

2.5 Tissue safety: Freeze-drying, irradiation and processing 

2.5.1 Freeze-drying 

Lyophilisation of tissues is usually performed without cryoprotective agent and 
consequently there is no cell survival in a freeze-dried tissue. The finding that only 
recipients of frozen bone from an infected seronegative donor contracted human 
immunodeficiency virus has led to speculation that freeze-drying may render a retroviral-
infected tissue non infectious. However, it has been demonstrated in a feline-leukemia-virus 
infected allograft model that freeze-drying did not inactivate retrovirus (60).  

2.5.2 Irradiation 

While Campbell et al. firstly reported retrovirus inactivation with a standard 25 kGy dose in 
a HTLV-IIIB virus infected cortical allograft model (61), he pointed out that the virus was a 
relatively radio-resistant organism, a property common to most viruses. This irradiation 
resistance was recognized by many authors who estimated that irradiation at 25 kGy did not 
appear to be effective enough for HIV virus (62-64). Campbell et al. noted that an irradiation 
dose required to inactivate the HIV bioburden in allograft bone should be 35 kGy and the 
irradiation dose required to achieve a sterility assurance level of 10-6 was 89 kGy (65). If 
irradiation is applied to a frozen hydrated specimen, it may be beneficial from a mechanical 
and biological point of view, but sterilizing effect may be lowered. It has been shown that 
HIV inactivation was decreased when irradiation was performed at low temperature on 
frozen plasma (66).  

The radiosensitivity of hepatitis viruses is higher and clinical data suggest that hepatitis C-
contaminated tissues did not transmit the virus after irradiation (67, 68). While high 
inactivation rate have been achieved with 50 kGy doses in virus infected bone allografts 
model (69, 70), it is actually concluded that gamma irradiation should be disregarded as a 
significant isolated virus inactivation method for bone allografts.  

Prions are strongly resistant to radiation (71- 72) and therefore irradiation is unable to 
inactivate this pathogenic agent.  

A standard 25 kGy irradiation is appropriate for bacterial sterilisation when a bio-burden 
control or a process validation have been performed. We have reported 7 to 9 logarithms 
bacterial reductions after 25 kGy irradiation of highly contaminated cancellous bone blocks 
(73). Analysis of Clostridium sordellii inactivation kinetics indicated that a 16 log10 
reduction was obtained after 50 kGy (70). Contamination during bone preparation shall be 
strongly limited to allow sterility assurance level. 
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2.5.3 Processing 

Processes based on multiple steps of inactivating treatments offer a cumulative effect and a 
striking reduction of the risk of disease transmission. Steps may be chosen on their ability to 
specifically inactivate pathogenic agents. Pulse lavage decontaminates tissue from bacterial 
microorganisms with one decimal reduction (74-75), while virus elimination was also 
reported after mechanical lavage of bone (76). Demineralization process inactivated infectious 
retrovirus in infected cortical bone, thereby preventing disease transmission (76-77). 

Detergents are able to remote or inactivate coated viruses (78), while sodium hydroxide and 
sodium hypochlorite are effective against transmissible spongiform encephalopathy agent 
(79). Hydrogen peroxide produces free radicals and is effective against viruses and bacteria. 
Hydrogen peroxide and prion inactivating steps adopted in our bank (two steps out of 
twelve) have been validated with five representative or inactivating-agent-resistant viruses 
in a cancellous bone blocks model. Cumulative seven logarithm reductions have been 
obtained for all tested viruses. Similar viral inactivation rates were obtained with a multiple 
step process by Fages et al. (80). 

No bacterial growth were observed after each step of the chemical process developed by our 
bank, while largely contaminated bone blocks with pathogenic, sporulated and environment 
resistant microorganisms were processed (73).  

3. Mechanical consideration in impaction bone grafting 

3.1 Changes in stiffness and compactness during impaction 

3.1.1 Embrittlement theory 

Freeze-drying and irradiation at room temperature make cancellous bone brittle. How can a 
softer material give a stiffer reconstruction? In our experiments, freeze-dried irradiated bone 
appeared to get impacted faster than the frozen control whatever the particle size (81-83). 
During an impaction bone grafting procedure, the stress is applied at such high speed that 
the flow of liquids may play an important role (84) and the replacement of bone marrow by 
saline in the processed bone may accelerate the grafts compaction (85). The faster reduction 
in height observed in our second experiments with the processed allografts series (defatted, 
defatted and freeze-dried, defatted and freeze-dried irradiated) might account for a rapid 
expulsion of liquid but stiffness and bone density increased faster and to a higher value in 
the irradiated group (82). The embrittlement due to the freeze-drying-irradiation sequence 
might enhance the compaction rate while the higher ductility of the freeze-dried but non 
irradiated bone reduced brittleness and might account for the lower compaction, stiffness 
and density obtained with this material.  

Freeze-dried irradiated large particles were stiffer after 30 impactions than any other 
morsels. Nevertheless, these series showed a reduction of their stiffness for higher impaction 
rate and tended to the same stiffness as freeze dried small particles. Under significant 
loading, these trabeculae might fail with a fracture that loosened the particle interlock. Such 
loosening explains the stiffness reduction of the large freeze-dried and irradiated particles. 
This was supported by the loss of height and the final density of these series which are 
comparable to those from small freeze-dried particles. Structurally damaged cancellous 
bone is known to have a much lower elastic modulus (86). The preservation of the plastic 
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mechanical properties as well as the presence of bone marrow in the frozen series may 
encounter of the lower compactness (85, 87-89) and the absence of collapsing in our models. 
The theory of bone embrittlement was further supported as compaction was faster when the 
grafts were morselised twice. 

The mechanical properties of cancellous bone have been shown to be related to its apparent 
density, which depends on the porosity (90). Impacting freeze-dried irradiated bone created 
a layer that had a higher density and therefore a higher modulus, throughout the 
relationship between density and material properties cannot be fully applied to morselised 
bone, as the graft no longer has structural continuity (91). 

3.1.2 Particle size influence 

Particles sizing may also influence mechanical strength. For optimum shear strength, 
particles aggregate requires a mix of sizes represented by a logarithmic curve (92). While, 
none of the bone mills will produce an ideal profile, the particle size profile is larger when 
bigger particles are produced. In the clinical setting, an increase in the range size of particles 
has been obtained by putting bone through two different sizes of graters or passing some of 
the large graft morsels through the same mill twice.  

3.1.2.1 The interlocking effect 

Experimentally, we noted that preparation of well graded graft through a 1 mm beater mill 
(Retsch Cross beater mill SK100, Retsch GmbH, Haan, Germany) produced grafting material 
that was almost fluid. In our femoral model, these frozen particles did perform differently 
from those obtained with a rongeur, but not from those obtained with the Noviomagus bone 
mill. In the acetabular model, the particles were mechanically inferior in compaction and 
shear. These millimetric particles obtained from the Retsch mill was comparable to a fine 
powder, and filled a lower volume when placed in the impactor and showed higher density 
after few impactions but stiffness did not increase comparatively and remained lower than 
those from centimetric large particles. As suggested by authors, fresh frozen large particles 
got a higher stiffness than smaller morsels during impaction (92-95). This was due to the 
small size of the bone chips that did not allow an interlocking effect (96). The internal 
porosity of each morsel allowed deformation and causes them to interlock with each other 
during impaction (93).  

This was coherent with our observation of an improved shear resistance of large particles. In 
our hands, acetabular reconstruction with ring reinforcement has been performed without 
significant complication when large particles obtained with a rongeur were used while some 
hardware failures have been observed with smaller morsels obtained with small rasps bone 
mills. These clinical observations found their explanation in the lower shear properties of 
the small particles. 

3.1.2.2 The role of fluids  

From the soil mechanic theory, it is known that the mechanical strength of a mixture is 
reduced when too much fluid is present with no drainage possibility, similarly to quicksand 
(97). The release of excessive fat and marrow that is captured in the closed system may 
prevent the compactive effort (87). The recoil of smaller bone chips was also significantly 
higher and increased after impaction with higher force than those from larger chips (95, 98). 
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This might explain why clinicians recommended larger particles rather than slurry (99). The 
advantage of large morsels on small ones might be tight to the preservation of a trabecular 
structure and to fat and marrow retention in the interstices (96).  

Removing excessive and lubricating fluid of the graft material improved overall graft 
strength (100-101). While reducing the water content alone had some influence on 
properties, reducing the fat content improved both the static and dynamic behaviour (102). 
Processing bone particles with solvents, freeze-drying and irradiation improved the 
compaction properties and the shear strength of the reconstruction. The improvement in 
strength was due to an increase in the friction angle and a tighter graft compaction 
secondary to marrow tissue removal. Washed particles might have little lubrification at the 
contacts with other particles and therefore friction resistance was increased (103). On the 
other hand, graft stickiness was advocated to increase interparticulate cohesion (104). The 
combination of human bone marrow stromal cells with washed allograft to produce a living 
composite, offered a biological and mechanical advantage over the current gold standard of 
allograft alone and provided a higher shear strength when compared with allograft alone 
(105). 

Improved results observed with freeze-dried irradiated bone may also be related to an 
incomplete rehydration. Stickiness between freeze-dried irradiated bone morsels and the 
impactor was observed during our experiments. Conrad et al found that rehydration could 
last for longer than one day (33). Impacted freeze-dried irradiated grafts could increase the 
interlocking effect by increasing their water content. In our study on femoral implant 
stability in a hip simulator, we observed that implant pull-out was extremely difficult in 
reconstruction with freeze-dried material compared with frozen one after 1 million cycles 
and did not result in a shear separation of the graft layers.  

3.2 Implant stability 

When the initial stability of femoral stem is compared in hip simulator models, cemented 
hip prosthesis stability within a normal medullar canal was higher than stability of femoral 
revision with impaction bone grafting (106). More subsidence was found in revision with 
the impaction technique than with a primary prosthesis (107). In our hip simulator model, a 
stable reconstruction was achieved with freeze-dried irradiated bone as filling material for 
impaction bone grafting (108). The stability was even greater than with frozen morsels and 
compared favourably with stability of primary stem cementation in the same model (109). 
Taylor considered that the initial mechanical demand was met when the graft was as strong 
as the endofemoral cancellous bone in a primary prosthesis (110).  

The low subsidence registered in our study was about the same as that reported by 
Karrholm et al. in a clinical study of revisions with impaction technique and non polished 
stem (85). As in our experimental observation, a considerable amount of migration occurred 
during the first week after surgery, giving evidence of graft compaction due to patient 
activity (111). In the clinical cases, the lowest migration registered by radiostereometry was 
reported by a group who used a mechanical defatting method of the bone (85, 112). The 
importance of graft compaction has clearly a strong logical appeal and the lack of sufficient 
compaction is considered as the most likely explanation for substantial migration in clinical 
situation (85, 113-114). 
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If implant stability is the first goal, the impaction procedure must be done with energy until 
the impactors cannot be further driven into the bone (73, 115). This vigorous procedure 
exposes to fracture that remains one of the major complications of the impaction technique 
(72, 116-117). Three to five times fewer hammer shocks were needed to impact the freeze-
dried irradiated bone correctly, and less energy was needed to compact the material due to 
its loss of ductility, reducing the risk of per-operative fracture. In our experiments, femoral 
fracture was associated with a higher subsidence and inducible displacement, which might 
further increase the risk of loosening. Recently, an innovative vibration-assisted bone-graft 
compaction system has been tested to reduce peak loads transmitted to the femoral cortex 
during graft compaction and prevent the risk of intra-operative fracture (118). 

3.3 Impacted graft remodelling 

Ling pointed out that the initial stability ensures later stability during the remodeling (119). 
Slooff et al. considered that morselised and impacted graft should be as resistant as a cortical 
graft and would remodel like a cancellous graft without transient mechanical weakening 
(120). The concept relies on the cancellous impacted grafts maintaining its volume during 
remodeling and not being resorbed.  

The remodeling of cancellous graft includes a direct new bone deposition along the 
trabecula whereas resorption proceeds lately within the inner part of the trabecula with no 
net volume change (21, 23). The morselised and impacted graft is a porous structure and 
ingrowth of vessels was firstly thought not be impaired (121). In humans, biopsies often 
revealed mixed areas of living bone and non vital graft (122-127). Remodeled areas were 
mainly found in load bearing zones (128).  

Tagil and Aspenberg demonstrated that impaction slowed down the remodeling (129). They 
noted that impaction reduced amounts of fat and marrow cells in the compacted graft which 
support the idea that the squeezing out of the bone marrow from bone will limit the 
availability of immunogenic cells and the immunogenicity of the impacted bone (72). This is 
consistent with the benefit of chemical lipid extraction reported in the same model (27). 
Removal of bone marrow from cancellous bone reduced the immunogenicity as bone 
marrow cells carry a wider range of transplantation antigens than osteocytes (91, 130).  

New living bone is always limited in impacted bone and will appear only in revascularised 
area, leaving other areas with either non revascularisation or with only a fibrous 
recolonisation. Tagil and Aspenberg demonstrated that the mechanical properties of an 
impacted graft were enhanced by coexistence of fibrous tissue that embedded the particles 
(131). Nevertheless, Schimmel et al. demonstrated in a goat model that, when remodeling 
was completed and the interface revascularised, a fibrous membrane developed around the 
cement and the implant became loose (132). This implies that remodeling is not always 
beneficial and be hazardous for prosthesis longevity. Therefore, mechanical stability is 
probably more important and essential (133).  
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Bone grafting is the surgical procedure in which new bone (bone graft) or a replacement material (graft

substitute), is placed into bone fractures or bone defects to aid in healing. Bone grafting is in the field of

interest of many surgical specialties, such as: orthopedics, neurosurgery, dentistry, plastic surgery, head and

neck surgery, otolaryngology and others. In common, all these specialties have to handle problems concerning

the lack of bone tissue or impaired fracture healing. There is a myriad of surgical techniques nowadays

involving some kind of bone graft or bone graft substitute. This book gathers authors from different continents,

with different points of view and different experiences with bone grafting. Leading researchers of Asia, America

and Europe have contributed as authors. In this book, the reader can find chapters from the ones on basic

principles, devoted to students, to the ones on research results and description of new techniques, experts will

find very beneficial.
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