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1. Introduction 

In this investigation, the solution of the vibration response of an atomic force microscope 
cantilever is obtained by using the Timoshenko beam theory and the modal superposition 
method. In dynamic mode atomic force microscopy (AFM), information about the sample 
surface is obtained by monitoring the vibration parameters (e.g., amplitude or phase) of an 
oscillating cantilever which interacts with the sample surface. The atomic force microscope 
(AFM) cantilever was developed for producing high-resolution images of surface structures of 
both conductive and insulating samples in both air and liquid environments (Takaharu et al., 
2003 ; Kageshima et al., 2002 ; Kobayashi et al., 2002 ; Yaxin & Bharat, 2007). In addition, the 
AFM cantilever can be applied to nanolithography in micro/nano electromechanical systems 
(MEMS/NEMS) (Fang & Chang, 2003) and as a nanoindentation tester for evaluating 
mechanical properties (Miyahara, et al., 1999). Therefore, it is essential to preciously calculate 
the vibration response of AFM cantilever during the sampling process. In the last few years, 
there has been growing interest in the dynamic responses of the AFM cantilever. Horng 
(Horng, 2009) employed the modal superposition method to analyze the vibration responses 
of AFM cantilevers in tapping mode (TM) operated in a liquid and in air. Lin (Lin, 2005) 
derived the exact frequency shift of an AFM non-uniform probe with an elastically restrained 
root, subjected to van der Waals force, and proposed the analytical method to determine the 
frequency shift of an AFM V-shaped probe scanning the relative inclined surface in non-
contact mode (Lin, et al., 2006). Girard et al. (Girard, et al., 2006) studied dynamic atomic force 
microscopy operation based on high flexure modes vibration of the cantilever. Ilic et al. (Ilic, et 
al., 2007) explored the dynamic AFM cantilever interaction with high frequency 
nanomechanical systems and determined the vibration amplitude of the NEMS cantilever at 
resonance. Chang et al. (Chang & Chu, 2003) found an analytical solution of flexural vibration 
responses on tapped AFM cantilevers, and obtained the resonance frequency at arbitrary 
dimensions and tip radii. Wu et al. (Wu, et al., 2004) demonstrated a closed-form expression 
for the sensitivity of vibration modes using the relationship between the resonant frequency 
and contact stiffness of the cantilever and the sample. Horng (Horng, 2009) developed an 
analytical solution to deal with the flexural vibration problem of AFM cantilever during a 
nanomachining process by using the modal superposition method. 

The above studies considered the AFM cantilever as a Bernoulli-Euler beam model. The 
effects of transverse shear deformation and rotary inertia were assumed to be negligible in 
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the analysis. However, for AFM-based cantilever direct mechanical nanomachining, the 
indentation and sampling of solid materials (e.g. polymer silicon and some metal surfaces) 
are performed. The effects of transverse shear deformation and rotary inertia in the 
vibration analysis should be taken into account for cantilevers whose cross-sectional 
dimensions are comparable to the lengths. Neglecting the effects of transverse shear 
deformation and rotary inertia in the vibration analysis may result in less accurate results. 
Hsu et al. (Hsu, et al., 2007) studied the modal frequencies of flexural vibration for an AFM 
cantilever using the Timoshenko beam theory and obtained a closed-form expression for the 
frequencies of vibration modes. However, the solution of the vibration response obtained 
using the modal superposition method for AFM cantilever modeled as a Timoshenko beam, 
and the response of flexural vibration of a rectangular AFM cantilever which has large shear 
deformation effects, are absent from the literature. 

In this chapter, the response of flexural vibration of a rectangular AFM cantilever 
subjected to a sampling force is studied analytically by using the Timoshenko beam 
theory and the modal superposition method. Firstly, the governing equations of the 
Timoshenko beam model with coupled differential equations expressed in terms of the 
flexural displacement and the bending angle are uncoupled to produce the fourth order 
equation. Then, the sampling forces which are applied to the end region of the AFM 
cantilever by means of the tip, are transformed into an axial force, distributed transversal 
stress and bending stress. Finally, the response of the flexural vibration of a rectangular 
AFM cantilever subjected to a sampling force is solved using the modal superposition 
method. Moreover, a validity comparison for AFM cantilever modeling between the 
Timoshenko beam model and the Bernoulli-Euler beam model was conducted using the 
ratios of the Young’s modulus to the shear modulus. From the results, the Bernoulli-Euler 
beam model is not suitable for AFM cantilever modeling, except when the ratios of the 
Young’s modulus to the shear modulus are less than 1000. The Timoshenko beam model 
is a better choice for simulatimg the flexural vibration responses of AFM cantilever, 
especially for very small shear modulus.  

2. Analysis 

In contact mode, the AFM cantilever moves down by a small amplitude (1-5 nm) when the 

cantilever tip processes a sample surface. Therefore, the linear model can be used to describe 

the tip-sample interaction. The atomic force microscope cantilever, shown in Fig.1, is a small 

elastic beam with a length L , thickness H , width b , and a tip with a width of w and 

length h . x is the coordinate along the cantilever and ( , )v x t is the vertical deflection in the x-

direction, as shown in Fig.2. One end of the cantilever, at 0x  , is clamped, while the other 

end, from L w  to L , has a tip. 

When the sampling is in progress, the tip makes contact with the specimen, resulting in a 

vertical reaction force, ( )yF t and a horizontal reaction force, ( )xF t , both of which functions of 

time t . Assuming that the reaction forces act on the tip end, the product of the horizontal 

force and the tip length can form a bending stress on the bottom surface of the cantilever. 

The sampling system can be modeled as a flexural vibration motion of the cantilever. The 

motion is a function of mode shape and natural frequency, and its transverse displacement 

depends on time and the spatial coordinate x  [7 and 8]. When the sampling forces are  
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Fig. 1. Schematic diagram of an AFM tip-cantilever assembly processing a sample surface. 

applied, the loads transmitted from the tip holder act on the end of the AFM cantilever, and 

can be modeled as the three parts shown in Fig.2, termed axial force ( )N t , transverse 

excitation ( , )lp x t , and bending excitation ( , )bp x t . 

Assuming that the transverse excitation is uniformly distributed on the bottom surface of 
the AFM cantilever, then it can be written as: 

 ( , ) ( ) ( ) / ,l yp x t F t u x L w w     (1) 

where ( )u x L w  is the unit step function. 

 The relationship between ( )xF t  and ( )yF t  can be expressed as 
2 cos

x yF F



  for a cone 

shape cantilever tip, where   is the half-conic angle. The bending excitations, which result 
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Fig. 2. Schematic diagram of excitations acting on the AFM cantilever 

from the horizontal sampling force ( )xF t , act on the bottom surface of the AFM cantilever 

within the region from L w to L . They can be written as: 

 3( , ) 12 (2 2 )cos / ( )b yp x t h L w x w F u x L w          (2) 

By summing the above two excitations, the total transverse excitation ( , )tp x t can be 

expressed as (Horng, 2009): 

 ( , ) ( ) ( ) ( )t yp x t C x F t u x L w     (3) 

 where 
2

3

1 12 (2 )cos / 24 cos
( )

h L w w h
C x x

w w

  


 
   (4) 

Vibration behaviors of an AFM cantilever are examined using the Timoshenko beam theory. 

The effects of the rotary inertia and shear deformation are taken into account during contact 

with the sample. The governing equations of the Timoshenko beam model are two coupled 

differential equations expressed in terms of the flexural displacement and the angle of 

rotation due to bending. When the beam support is constrained to be fixed and all other 

external influences are set to zero, we obtain the classical coupled Timoshenko-beam partial 

differential equations (Hsu, et al., 2007): 

 
2 2

2 2
( ) 0

v v
A KAG

xt x

   
  

 
  (5) 

 
2 2

2 2
( ) 0

v
EI KAG I

xx t

    
   

 
  (6) 
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( , )lp x t
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z
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, ( , )y v x t

( )N t  
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where x  is the distance along the center of the cantilever, ( , )v x t  is the transverse 

displacement, t is time, ( , )x t  is the rotation of the neutral axis during bending, E is 

Young’s modulus, G  is shear modulus, I is the area moment of inertia,  is the volume 

density, K is the shear factor ( K = 5/6 for rectangular cross-section), and A is the rectangular 

cross-sectional area of the cantilever.  

Equations (5) and (6) may be uncoupled to produce a fourth order equation in ( , )v x t . 

Considering the axial force effect, the classical uncoupled Timoshenko-beam partial 

differential equations can be written as (White, et al., 1995): 

    4 2

4 2

,( , ) ( , ) v x tv x t v x t
EI A N t

x xx t


    
       

  

 
4 4

4 2 2

( , ) ( , )
( , )t

v x t EI v x t
I I p x t

KG KGt x t

           
  (7) 

where ( ) ( )xN t F t is the axial force. 

The mode-superposition analysis of a distributed-parameter system is equivalent to that 

of a discrete-coordinate system once the mode shapes and frequencies have been 

determined because in both cases, the amplitudes of the modal-response components are 

used as generalized coordinates in defining the response of the structure. In principle, an 

infinite number of these coordinates are available for a distributed-parameter system, 

since it has an infinite number of modes of vibration. Practically, however, only those 

modal components which provide significant contributions to the response need be 

considered (Ray & Joseph, 1993 ; William, 1998). The essential operation of the mode-

superposition analysis is the transformation from the geometric displacement coordinates 

to the modal-amplitude or normal coordinates. For a one-dimensional system, this 

transformation is expressed as: 

 
1 1

( , ) ( ) ( ) ( , )n n n
n n

v x t x Y t q x t
 

 
    (8) 

where ( , )nq x t  is the response contribution of the n-th mode, ( )nY t is the normal coordinate, 

and ( )n x is the n -th mode shape of the AFM cantilever. In order to find the natural 

frequencies and mode shapes, the following non-dimensional variables are defined: 

 
4

2 2 2 2
2 2

, , , .
x AL I EI

b r s
L EI AL KAGL

      (9) 

Here   is the non-dimensional length along the beam, and   is the radian frequency. Then, 

( )n x can be given by (White, et al., 1995): 

 1 3 1 3

2 4 2 4

( ) ( )
( ) cosh sinh cos sin

( ) ( )
n n n n n

R R R R R
C b b b b

R RR R RR
     

  
      

  (10) 
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where  1 21 22 2 2 2 2 2(1 2 ) ( ) [( ) 4 ]nr s r s b


 

     
 

  (11) 

 
2 2

2 2

( )

( )

s
R

s

 
 





  (12)  

 1 ( / )sinhn nR b b    (13)  

 2 ( / )coshn nR b b    (14) 

 3 ( / )sinn nR b b   (15) 

 4 ( / )cosn nR b b     (16) 

and nb  are the non-dimensional natural frequencies, which can be obtained using the 

characteristic equation 

 
2 2 2 2

3 4 3 4 4 1 1 4 2 3 2 3 1 2 2 1( ) ( ) 0
s s

R R R R R R R R R R R R R R R R
 

 
                        
   

  (17) 

 

where 2 2
1 [( ) / ] coshn nR s b b       (18)  

 2 2
2 [( ) / ] sinn nR s b b       (19) 

 2 2
3 [( ) / ] cosn nR s b b         (20) 

 2 2
4 [( ) / ] sinn nR S b b         (21) 

Equation (8) simply states that any physically permissible displacement pattern can be 
modeled by superposing appropriate amplitudes of the vibration mode shapes for the 
structure. Substituting Eq. (8) into Eq. (7) and using orthogonally conditions gives 

 
4 2

2
4 2

( ) ( )
( ) [ ( ) ] ( ) ( )n n

n n n n x n n n n

d Y t d Y t
S M T G F t M Y t P t

dt dt
        (22) 

where n  is the n -th mode natural frequency of the AFM cantilever obtained using:  

 
4n n

EI
b

AL



   (23)  

nS , nM , nT and np are the generalized constants of the n -th mode, given by 

 2

0
( ) ( )

L

n nS I x dx
KG

     (24) 
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 2

0
( ) ( )

L

n nM A x dx    (25) 

 
2

20

( )
( ) ( )

L n
n n

d xEI
T I x dx

KG dx

      (26) 

 
2

2
0

( )
( ) ( )

L
n

n n

d x
G t x dx

dx


 

  
  
     (27) 

 
0

( ) ( ) ( , )
L

n n tP t x p x t dx     (28) 

Using Eq. (3) and Eq. (4), Eq. (28) can be rewritten as  

 ( ) ( )n n yP t c F t  (29) 

where 

 
2

30

1 12 (2 )cos / 24 cos
( ) ( )

L

n n

h L w w h
c x x u x L w dx

w w

  


  
     

 
   (30) 

Then, the Normal-Coordinate Response Equation, which is exactly the same equation 
considered for the discrete-parameter case, can be solved. 

 
4 2 2

4 2

( ) ( ) [ ( ) ]
( ) / ( ) ( ) /n n n x n n

n n n n n y n
n

d Y t d Y t G F t M
M T S Y t c F t S

Sdt dt

 
     (31) 

Assuming a zero initial condition, with ( ,0) 0v x  , ( ,0) 0v x  , ( ,0) 0v x   and ( ,0) 0v x  , and 

providing that the sampling force ( )yF t is a series of harmonics, ( )yF t can be written as: 

 
1

( ) sin( )
m

y i i
i

F t F t


   (32) 

When the j-th excitation frequency j is equal to the n-th natural frequency n , the Runge-

Kutta method is introduced to solve the above fourth-order system.  

3. Results and discussion 

The main goal of this study is to analyze the flexural vibration responses in nanoscale 
processing using atomic force microscopy modeled as a Timoshenko beam. To demonstrate 
the validity of the analytical solution, numerical computations were performed. The 
geometric and material parameters considered were as follows: 

170E Gpa , 0.2898 /m km m , 32300 /km m  , 125L m , 30b m , 4.2H m , 5h m
, 2 30   and 3m  , 91000 /(2 1) 10iF i    . 

The modulus-ratio REG , defined as the ratio of E to G (i.e. /REG E G ), is introduced to 

define the values of shear modulus G and to describe the effects of shear deformation. In this 
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study, the flexural vibration responses at the end of the AFM cantilever were obtained using 

the contribution of the first five vibration modes. A non-dimensional response was used to 

normalize the static response as given in 3
1 /(3 )F L EI , and (2 1)i ni r    , and set as the 

simulated values of the excitation frequency of the vertical sampling force. Thus, ( )yF t  is 

taken as: 

  1 1
( ) 1000 sin sin 3 sin 5

3 5
y n n nF t r t r t r t nN        

 
   (33) 

where r is the frequency ratio that can used to describe the deviation between the excitation 

frequency and modal frequencies. The modal frequency n and modal shapes ( )x of the 

first five vibration modes for an AFM cantilever are shown in Fig.3 and Fig.4, respectively.  
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Fig. 3. Natural frequencies of the first five vibration modes for an AFM cantilever. 

In order to investigate the effects of transverse shear deformation, the response histories at 

the end point of the AFM cantilever between different small and large modulus-ratios, with 

respect to excitation frequencies far away from( 0.1)r   and close to ( 0.9)r  the first natural 

frequency, are shown in Fig.5 to Fig.8. Figure 5 and Fig.6 indicate that the responses are 
similar for the various modulus-ratios when they are less than 1000. This means that if the 
effects of transverse shear deformation are small enough to be negligible, the Timoshenko 
beam model can be reduced to the Bernoulli-Euler beam model. Figure 6 also reveals that 
the resonance effect occurs when the AFM cantilever has small modulus-ratios and the 
excitation frequencies are close to the modal frequencies.  

Figure 7 and Fig.8 show the response histories at the end point of the AFM cantilever 

between different large modulus-ratios for excitation frequencies far away from ( 0.1)r   

and close to ( 0.9)r  the first modal frequency, respectively. The results are quite different 
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Fig. 4. The shape of the first five vibration modes for an AFM cantilever. 

 

Fig. 5. The effect of various small modulus-ratios ( REG ) on the response of the end point 

for the excitation frequency far away from the first natural frequency, i.e. 10.1 . 
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from those of Fig.5 and Fig.6. Figure 7 indicates that the magnitude of the transversal 

response increases and its oscillating frequency decreases when the modulus-ratio increases. 

This is because that large shear deformation increases the transversal response, which slows 

down the oscillating frequency when the excitation frequency is far away from the natural 

frequency. However, Fig. 8 tells us that the magnitude of the transversal response decreases 

and its oscillating frequency becomes small when the modulus-ratio increases. The reason 

for this is that the effects of resonance were counteracted by the transverse shear 

deformation, resulting in the small transversal response when the AFM cantilever has the 

sufficiently large modulus-ratios and the excitation frequencies of AFM cantilever are close 

to the modal frequencies. Consequently, Fig.7 and Fig.8 imply that when a sufficiently small 

shear modulus is used in AFM cantilever, the effect of transverse shear deformation has a 

significant effect on the transversal response and the Timoshenko beam model is the proper 

choice for simulating AFM cantilever dynamic behavior.  

Figures 9 shows the effects of various tip holder widths, w , on the response of the end point. 

The widths are normalized by the length of the AFM cantilever. Fig.9 shows that the 

response at the free end decreases as the width of the tip increases. Therefore, an AFM 

cantilever with a large tip width is suggested to reduce the response at the end of the AFM 

cantilever. Figure 10 shows the response histories at the end point of the AFM tip for 

various tip lengths h . From the simulation results shown in Fig.10, the responses are 

relatively small when the tip length is large. This is due to a large tip length producing large 

bending effects. Therefore, an AFM tip with large tip length is suggested to reduce the 

response at the end of the AFM cantilever.   
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Fig. 6. The effect of various small modulus-ratios ( REG ) on the response of the end point 

for the excitation frequency close to the first natural frequency, i.e. 10.9 . 
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Fig. 7. The effect of various large modulus-ratio ( REG ) on the response of the end point for 

the excitation frequency far away from the first natural frequency, i.e. 10.1   
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Fig. 8. The effect of various large modulus-ratio ( REG ) on the response of the end point for 
the excitation frequency which is close to the first natural frequency, i.e. 10.9 . 

www.intechopen.com



 
Atomic Force Microscopy – Imaging, Measuring and Manipulating Surfaces at the Atomic Scale 

 

68

 

Fig. 9. Response histories at the end point for various tip widths with 10000REG  . 
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Fig. 10. Response histories at the end point for various tip lengths with 10000REG  . 

www.intechopen.com



 
Vibration Responses of Atomic Force Microscope Cantilevers 

 

69 

4. Conclusions 

The modal superposition method and the Timoshenko beam theory were applied to 
determine the flexural vibration responses at the end of the AFM cantilever during AFM-
based nanoprocessing process. As expected, the Bernoulli-Euler beam model for AFM 
cantilever applies to the small effects of transverse shear deformation, but not for modulus-
ratios greater than 1000. When modulus-ratios are greater than 1000, the Timoshenko beam 
model is the proper choice for simulating the flexural vibration responses of AFM cantilever. 
Moreover, the oscillating frequency of transversal response decreases due to the transverse 
shear deformation and the magnitudes of the transversal response depend on the deviation 
between the excitation frequencies and the modal frequencies. In conclusion, one can reduce 
the response at the end of AFM cantilever by decreasing the shear modulus when the 
frequencies of processing are far away from the modal frequencies, and by increasing the 
shear modulus when the frequencies of processing are close to the modal frequencies. 
Furthermore, an AFM cantilever with a large tip width and length is suitable for reducing 
the response at the end of the AFM cantilever.  
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