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1. Introduction  

Nowadays, modern operation control centers have managed electrical power systems, 
accomplishing functions such as automatic generation control, state estimation, topology 
analysis, etc. In these centers, operators handle the system using several computational 
programs to help them in the problem solving. 

Usually, these programs are based on traditional numerical computation. However, 
recently, some applications based on intelligent systems have started to be used in control 
center. This chapter will present three new developments/applications of these programs 
based on genetic algorithms: power flow calculation, system restoration process and 
economic dispatch/unit commitment. 

The chapter starts with an introduction about the structure of modern control centers, their 
relations with the power system, their management structure, and the computational 
programs available. And then, an overview about the new intelligent computational 
program applications is presented with focus in genetic algorithm techniques. 

After this introductory part, the three applications, power flow, system restoration and unit 
commitment, will be presented in details. It means, how to use genetic algorithm techniques 
to solve these problems is presented with illustrative examples and with the possibility to 
readers reproduce the results. 

2. Overview of the modern power control centers 

Electric power systems are the structures that have the purpose of generating, transporting 
and distributing electricity. These structures are composed of energy generating plants, 
transmission lines, distribution systems and elevating and distribution substations. The 
biggest challenge of this type of system is that the electrical energy is not a material that can 
be stored. That is, so it is required by the load (which can be a driver in an industry or the 
mere light of a lamp in a residence) this energy must be generated, transported and 
delivered to the user instantly. 
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Another problem is regarding to a systematic increase of demand and consumption of 
electric energy, observed mostly in large urban centers and regions where focus greater 
industrial activity. This also conducts to the growth of complexity to the management, 
supervision and control in meeting these demands. 

There are several ways to design a control system to an electrical system. The hierarchical form 
is the form most widely used. It holds a system operation center that is responsible for 
controlling generation of large blocks of energy in the power plants and by monitoring of 
interconnection transmission lines between the areas. The electrical system is then operated by 
areas of operation, where each area has its own center for the operation, named area operation 
center or regional operation center. These area operation centers are responsible for the 
operation of power plants in their area of control, by the operation of transmission lines and 
substations into their control areas. They are also responsible for the energy supply of large 
consumers of electricity in their area. Operation centers receive information from distribution 
operation centers, coordinate this information and deliver to the system operation centers. 

Within an area, there is another division of the electrical system in power distribution 
centers, which are controlled by distribution operation centers. These centers are responsible 
for the operation of the lines of sub-transmission, distribution networks and distribution 
substations. These centers are also responsible for the supply of energy for industrial 
consumers and small and medium industries and residential consumers of electrical energy 
existing in your distribution sub-area. Figure 1 shows a possible structure of a power system 
control with a system operation center (SOC), three area operation centers (AOC), and many 
distribution operation centers (DOC). 

 

DOC DOC

AOC/ROC 

DOC

DOC

AOC/ROC 

SOC

AOC/ROC 

DOC

DOC 

DOC DOC DOC DOC

DOC 

 

Fig. 1. Hypothetical power system control structure with system operation center (SOC), 
three area operation centers (AOC), and many distribution operation centers (DOC) 

The operation centers, regardless of their type, have structures that are very similar. They 
are equipped with computers that have two main functions. The first one is to receive the 
information from the electric system. The size of flow of this information depends on the 
type of the monitored equipment and the type of measurement that is being monitored. For 
example, the power flow in a transmission line can have a read performed every second, 

www.intechopen.com



 
Applications of Genetic Algorithm in Power System Control Centers 

 

203 

while the status of operation of a circuit breaker can be read and sent to the operation center 
each minute. However, with increasingly reduced cost of measurement and 
telecommunication systems, more measuring points are created and the number of data 
read has increased a lot. Currently, a mid-size operation center receives something around 
3000 to 5000 values per minute. 

The second function of computers is to save a set of computer programs for analysis and 

assistance to the operation of the system. Several existing programs are in operation center 

computers. For example, one of them is responsible for the reception, validation and 

delivery of this large volume of data received per minute by control centers, namely SCADA 

(Supervisory Control and Data Acquisition). Figure 2 shows the structure of an Operating 

Centre. The path of operation in a control center is the following. The center receives the 

measurements from the system. These measurements are validated and presented to the 

operator. He/she runs computational programs in order to obtain the status of the system, 

and then, if necessary, he/she sends action control commands to the system also by some 

computational programs. In order to support the power system management, operation and 

control, the SCADA systems can be integrated with computational tools composing what is 

usually named EMS (Energy Management System). These systems comprise functions such 

as state estimator, power flow, optimal power flow, fault calculation, network sensitivity, 

security analysis, economic dispatch, etc (Wood & Wollenberg, 1996). Some of these 

applications can be implemented in real-time, and some of them are performed in study 

modes. 

 

~ 

Database

Computational 

Programs 

Power system 

Measurement Flow 

Action Control Flow

 

Fig. 2. Structure of a control center with the measurement flow and action control flow  
(Lambert-Torres et al., 1999) 

3. Problem statement 

The present section provides an overview on three common activities performed in power 

system control centers, the power flow studies, the power system restoration after 

contingencies, and economic dispatch of generator units and their commitment. These 

mentioned activities will be approached in coming sections through genetic algorithm based 

methodologies. 
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3.1 Power flow analysis in electrical power systems 

The achievement of many power flow studies is required by most functions performed in 
power system control centers. Power flow is an electrical engineering known problem which 
determines the power system operation point in the steady-state. The power flow – or load 
flow – problem consists in the obtainment of the buses voltages and then in the calculation 
of the amount of power in the system generation buses as well as the power flow in the 
system branches. A set of non-linear equations is applied to model this kind of problem, 
which is commonly solved by numerical computational methods (Stott & Alsac, 1974). 
Among the traditional numerical methods, the usually applied method in the power flow 
computation is the Newton-Raphson method, as well as its variations, because it presents a 
better and a faster convergence. However, such method implies some difficulties because of 
the complex Jacobian matrix calculation and inversion, and also the dependence on good 
initial estimated values to guarantee the convergence.  

In fact, a power bus in the system has 4 variables, where two of them can be controlled and 
the other two are related to be system conditions. These variables are: P expresses the values 
of active power in the bus; Q expresses the values of reactive power in the bus; |V| 
represents the magnitude of the bus voltage; and, δ represents the phase angle of the bus 
voltage. The values of P and Q are positive if the active power is injected in the bus – it 
means, for generation buses, and negative if the active power is taken from the bus – it 
means, for load buses. 

The power system buses are classified according to the variables previously known, in three 
types:  

a. Type 1 or Type PQ: Pi and Qi are specified and |Vi| and δi are calculated – usually, this 
type represents the load buses of the system. 

b. Type 2 or Type PV Bus: Pi and |Vi| are specified and Qi and δi are calculated – usually, 
this type is used to represent generation buses. 

c. Type 3 or Type Vδ (namely “Slack Bus”): |Vi| and δi are specified and Pi and Qi are 
calculated – this type is a representation of the strongest generation bus of the system. 

The buses type 1 usually represents the load buses because the values of P and Q are known 
by the load. An example is the power required to a motor runs. The user knows these values 
and can control it. If he/she put more motors in a bus, it is quite simple to know the power. 
However, it is impossible to the user control the voltage values (|V| and δ). It also occurs in 
our homes, we know the power required but we don’t have any kind of control about the 
voltage levels. 

The buses type 2 usually represents the generation buses because in a power plant the 

values of P and |V| can be controlled by the operator. If the operator increases the primary 

source of energy, the value of P increases together, and, vice-versa, it means, if the operator 

decreases the primary source of energy, the value of P decreases. The same occurs with the 

value of |V| but in this case the operator changes the excitation system of the generator. 

However, for this type of bus, the operator can not have any kind of control of the Q and δ 
values. 

Finally, the bus type 3 is generally only one in the power flow calculation. Usually, this bus 
is the strongest power generation in the system. This bus gives a reference for the system 
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(the values of |Vi| and δ) and receives all balance power required from the system, it 
means, this generator needs supply all power not given by the other generators to the 
system.  

The power flow study provides the system status in the steady-state; it consists in the 
determination of the possible power system operational states through the previous 
knowledge of some variables of the system buses. This study aims to obtain the system 
buses voltages in order to determine later the power adjustments in the generation buses 
and the power flow in the system branches. After the system steady-state is calculated, it is 
possible to obtain the amount of power generation necessary to supply the power demand 
plus the power losses in the system branches. Besides, the voltage levels must remain within 
the boundaries and overloaded operations added to those in the stability limit must be 
prevented (Anderson & Fouad, 2003).  

The main idea behind the power flow computation, which is made by iterative form, is to 
find equilibrium of the known values (controlled values) and the calculated values. For 
instance, let’s a system with 2 buses with voltages V1 and V2 and supplying a load with 
values P and Q, the power flow computation between two buses is given by the following 
equation: 

 1 2 * 0P jQ yV V− − =  (1) 

Or, in general form of the static power flow equations is given by (2): 

 1 1 2 2* * ... * 0i i i i i i in n iP jQ y V V y V V y V V− − − − − =  (2) 

Where: i = 1,..., n, and it represents the bus number; Pi is the active power generated or 
injected in the bus i; Qi is the reactive power generated or injected in the bus i; |Vi| 
represents the voltage magnitude of the bus i; δi is the voltage phase angle of the bus i. 

And more, Vi = |Vi|ejδi, i. e., the voltage in the polar form; Vi* = |Vi|e-jδi, i. e., the conjugate 
voltage; yik = element of the nodal admittance matrix Ybus. 

The nodal admittance matrix can be computed as follows: if i = k, yik is the sum of the 
admittances that come out from the bus i; else yik is the admittance between the buses i and 
k, multiplied by -1. 

A complex and non-linear equations system is represented by (1), so its solution is obtained 

through approximations using numeric methods. These methods make the assumption of 

the initial estimate values to the bus voltages and in the application of the static power flow 

equations in successive iterations, looking for better approximations. The required accuracy 

determines the stop criterion. 

3.2 Restoration of electrical energy distribution systems 

Modern society depends increasingly on power supply, which conducts to the growth in 

demand and consumption of electrical energy. Therefore, in order to supply this amount of 

power, electrical power systems have been presenting a natural expansion. The described 

phenomenon is more evident in large urban centers and in regions of greater industrial 

concentration. As consequence of the development of the system, the complexity of its 
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supervision, control, and energy demand supply management have been increasing. These 

mentioned factors highlight the importance of high quality power supply as well as its 

continuity, low cost and reliability. 

At the same time we point out the power system current scenario, the possibility of faults 
along the line is inherent to the system or even greater due to the rise in electrical system 
complexity and natural factors. Thus, after system contingencies, it is extremely important 
that the electric power system restoration be quick to guarantee the power demand 
supply and the customer’s satisfaction. The longer it takes, the greater the loss for the 
company as well as for the customer. This situation becomes worse when the fault reaches 
an industrial area (Chiang, et al. 2001). The reconfiguration is a switch shifting 
(open/closed), loss reduction, load balancing, and restoration process (Lambert-Torres et 
al., 1997). 

Electrical energy transmission systems usually adopt structured procedures to restore a 

faulted system, following pre-defined rules established by standardization agencies. So the 

operator has a limited decision power and its main function is to proceed according to the 

operation steps sequence pre-determined for the system given contingency. Moreover, it is 

usual the employment of the “N-1” criterion, in which, the whole power system, must be 

restored after a single contingency occurrence. In some particular cases, more rigorous 

restoration criteria can also be applied (Esmin et al., 2005). 

Introducing this problem to electrical energy distribution systems, which usually have less 

regulation to perform these processes, we will face some peculiarities. The system operator 

has more decision power in a network reconfiguration process, because of the mentioned 

difference regarding to less standardization or even lack of network procedures. Each 

distribution company can adopt a different philosophy to perform a restoration process and 

the computer programs which support the system operator can play an important role. 

These computer programs can assist in the choice for a better solution and even reduce time 

required by the operator for its decision-making (Lambert-Torres et al., 2009). 

Moreover, there are differences regarding to the system structure and topology. Electrical 

energy distribution systems generally present a radial topological structure. In other words, 

in this kind of system is not usual the presence of meshes. These systems often comprise 

switches that can be classified in general as NO – Normally Open switches and NC – 

Normally Closed switches. In the case of all the present switches are closed, so there will be 

formation of meshes. Then, in order to preserve the radial structure of the topology, for a 

system composed by k meshes, k switches must to be open. That is, there must be at least 

one normally open switch in each mesh (Salomon et al., 2011). 

Resuming the system restoration process issue, the restoration is defined as the process of 

changing the open/closed status of switches, loss reduction, load balancing and restoration 

(Lambert-Torres et al, 1997). This is a decision-making problem of combinatory nature, 

subject to optimization and system building characteristics constraints. The reconfiguration 

of the system is performed by closing NO switches in order to restore the system in an 

optimized way, however retaining the radial topology inherent of electrical distribution 

systems. Moreover, NC switches may also be opened, providing a network reconfiguration 

without overloaded branches. 
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Generally electrical distribution systems comprise lines with NO switches, lines with NC 

switches and lines without switches. For an optimized reconfiguration, the decision-making 

involving switching is done so as to maximize the power supply, minimize the switching 

maneuvers and avoid overloaded branches. This process must happen fast and dynamically. 

It should provide a simple, objective, and efficient solution to the operator (Lambert-Torres 

et al., 1997). Considering a single contingency in the distribution system, meeting the 

characteristics mentioned above, the closing of a single NO switch is enough to restore the 

system. To avoid overloaded branches, one or more NC switches may also be opened, 

depending on the contingency consequences for the given system. And, in this case, other 

NO switches can be closed. This fact generates a new path for energy transmission, to 

supply the greatest possible power supply after the system contingency. 

3.3 Economic dispatch and unit commitment 

One of the principal operators’ activities in system operation centers is to dispatch the 

demand and generated energy. However, to accomplish this task the operators need to 

know different type of information from the system, such as: location of the load demand, 

situation of the energy generation among the power plant, power flows in the transmission 

system, and so on. Also they receive some studies previously prepared about the available 

capacity of each power plant, and the better situation of power dispatch, this study is named 

economic dispatch and unit commitment. 

The economic dispatch study has the aim to establish the better division among the power 

plants to supply the load demand for a period of time tj. This study takes into account the 

cost of primary energy for electric power generation, the cost of transmission system (to take 

the energy between the power plant and the place where the load is required), and other 

possible costs related to the dispatch of a generation unit. The main idea behind this study is 

to minimize all these costs. It can be expressed by (3) 

 1 2
1

( )
N

T N i iF F F F F P= + + + =  (3) 

Where Fi represents all the generation costs to produce and transport until the load a power 

Pi by the power unit i, and FT is the total generation cost the supply a required load in a 

period t. 

The problem is to minimize the value of FT, subject to the constraint that the sum of each 

power unit must equal to the required load, expressed in (4). 

 
1

0
N

Load iP Pφ = = −  (4) 

PLoad represents the total required load during the period tj. The most traditional method of 

optimization to solve this problem involves Lagrange function, and it can be expressed by 

(5), where the Lagrange multiplier λ appears. 

 TL F λφ= +  (5) 
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And to minimize the Lagrange function must be derivative with respect to the power 
produced, as expressed in (6). 

 
( )

0i i

i i

dF PL

P dP
λ

∂
= − =

∂
 (6) 

So, the conditions and inequalities are completed by the capacity of each power unit 
expressed by (7). At this time, for N generation units, there are N equations (eq. (6)), 2 N 
inequalities (eq. (7)), and one constraint (eq. (4)). 

 min, max,i i iP P P≤ ≤  (7) 

Where Pmin,i and Pmax,i express the minimum and maximum capacity of generation of unit i. 

Different gradient methods have been applied to solve this problem, in special, Newton’s 
method (Wismer, 1971). Also, dynamic programming has been used to solve this problem. 
In all cases the problem is the computational cost for real-life problems, and some non-
convex regions appear in the feasible region. 

If the economic dispatch is a “snapshot” of the power generation, the unit commitment can 

be considered by a “movie”, because unit commitment study makes many economic 

dispatch studies for a period of time t (it involves many periods tj). Figure 3 shows a 

hypothetical unit commitment study to supply the required load for three generation units. 

The largest line represents the required load during the period of study t, and each block 

represents the generation power P1, P2, and P3 necessary to supply the load. 

 

Fig. 3. Hypothetical unit commitment study result for three power units 

Of course, unit commitment studies have other elements to take into account to process the 

economic dispatch. For example, in thermal units, new constraints must be care such as: 

minimum operational time, minimum time to restart the machine, and so on. And more, 

aspects such as spinning reserves and fuel reserves are also presented in these studies. 

Usually, dynamic-programming methods are used to solve this problem (Larson, 1978). The 

major problems found here are the same of the economic dispatch: computational cost for 

real-life problems and some non-convex feasible region. 

www.intechopen.com



 
Applications of Genetic Algorithm in Power System Control Centers 

 

209 

4. Types of genetic algorithm applications in power system problem-solution 

The application of modern meta-heuristic methods, in special genetic algorithms, in power 
system problem-solution can be divided in three types, namely: stand-alone systems, 
integrated systems, or fused systems.  

The first type, stand-alone systems, is where the genetic algorithms run completely alone. It 
is possible in three ways. The first one is to get the input data, run the genetic algorithm, and 
give a final answer for the problem. The second way to build stand-alone systems is to help 
other methodologies to get a final answer. It occurs in two paths: the first one is to run the 
methodology and then to get the answer of this methodology and to run the genetic 
algorithm in order to have the final answer. The second paths is to run the genetic algorithm 
from the initial input data and to have a partial answer and then the methodology runs from 
these data in order to have the final answer. Figure 4 shows these two types of stand-alone 
integration system. To be classified as stand-alone system it is important that there is any 
type of integration between the helped methodology and the genetic algorithm. Example of 
this type of application is presented below in the chapter for restoration system. 

 In p u t  

d at a 
M et h o d o lo g y  

Ge n et ic 

A lg o rit h m s  

P art ial 

A n sw er 

Fin a l 

A n sw er  

 
(a) 

 In p u t  

d at a 
M e th o d o lo g y  

G en et ic 

A lg o r ith m s  

P art ial 

A n sw er 

Fin a l 

A n sw er  

 
(b) 

Fig. 4. Two types of stand-alone integration system 

Another type of stand-alone systems is a concurrent strategy where helped methodology 
and genetic algorithm run in parallel, getting the same input data, run each system alone 
(methodology and genetic algorithm) and each one give their own answer independently. 
Figure 5 shows this type of stand-alone system. This type of system is applied when 
sometimes the helped methodology fails to get an answer or gives an incorrect answer for 
the input data. Example of this type of application is presented below in the chapter for 
load-flow problem. 
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Fig. 5. Two types of stand-alone integration system 

The second type is namely integrated systems. In this type, the helped methodology and the 

genetic algorithms run together, one after other, in cycles. For example, genetic algorithms 

get some data, run the crossovers and mutations for some generations and give more 
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refined data to the helped methodology. Then, this methodology gets these data, runs its 

algorithm, and provides an answer. And then, the genetic algorithms get these data, and the 

process restarts. It occurs many times until to achieve a final answer. An example of this 

type of integration is when genetic algorithm training a neural network. A good example of 

this application in power system control is presented in (Farag et al., 1998, Farag et al., 1999). 

In this example, a genetic algorithm training system is used in a fuzzy-neural model shown 

in Figure 6. The fuzzy memberships of the fuzzy-neural model are setting by a genetic 

algorithm strategy to control synchronous generators in power plant. The proposed control 

can be used for multi-machines and to control the flows in the transmission lines between 

the areas of the system. 

 

Fig. 6. Example of fuzzy-neural model training by genetic algorithms (Farag et al., 1998) 

The third type is named fused systems. In this type, the helped methodology and the genetic 

algorithms run completely together. It means, it is impossible to have a separation where 

one methodology finishes and the other methodology starts. It is exactly the difference 

between fused systems and integrated systems. In the second one, it is possible to change 

the genetic algorithms for other methodology, meta-heuristic or not, without any kind of 

compromise of the entire system. For example, in the case presented in Figure 6, the training 

process could be performed by other meta-heuristic technique, as such, particle swarm 

optimization (Eberhart & Kennedy, 2001) or ant colonies (Dorigo & Stützle, 2004). In fused 

systems, this change is impossible without lost of identity of the system. An example of this 

third type of integration is, for instead, a genetic algorithm with fuzzy parameters, it means 

where the chromosomes have a fuzzy means and the genetic evaluation has also made by 

fuzzy arithmetic. An example of this procedure is presented in (de Carvalho et al., 2011). 

This application for power system operation center has been developed to evaluate the 

current status of the operational point. This approach reads the operation center database 

and establishes a set of rules for operation status classification. Then the current 
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measurements from the system are evaluated by this set of rules. The genetic algorithms are 

used to provide a previous classification of the attributes. Figure 7 shows the chromosomes 

a1, a2, a3, and a4, with the ranges of fuzzy memberships and how the crossover is made. 

 

Fig. 7. Example of genetic-fuzzy chromosomes and crossover (de Carvalho et al., 2011) 

Another type of classification can be expressed by the kind of the current possible solution 
for a problem. There are three possible types of classifications: (a) problems with traditional 
methodologies to solve it but these methodologies have a high computational cost; (b) 
problems with traditional methodologies to solve it but with some constraints in their 
application; and (c) problems without any traditional methodologies to solve it. In the first 
type of classification, a problem has been solved with traditional techniques; however, these 
techniques have a high computational cost in time or in memory space. Usually, these 
techniques are not very well scalable, it means, when the size of the problem increases the 
cost for the solution increases much more. An example of this type of problem is the load-
flow. Newton full, Newton-Raphson, and Gauss-Seidel are some traditional methods used 
to solve load-flow problems. In the second type of classification, we can find problems 
solving by traditional methodologies; however, these methodologies present some problems 
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to be applied in all possible situations or they don’t have an expected performance in all 
situations. 

In the second type of this classification, certain solutions are very-well applied if certain 

conditions and constraints available. For example, some of them work in convex feasible 

regions such as the solution of unit commitment problem by dynamic programming. 

However, when this condition is not satisfied some areas can leave to be explored. The third 

type of classification occurs when a problem doesn’t have any type of traditional numerical 

solution. The power restoration system is an example of this kind of problem. Usually, only 

intelligent methods, in special meta-heuristic methods, have been applied to solve this 

problem. 

5. Power flow computation using genetic algorithms 

This section presents a methodology using genetic algorithm for accomplishing power 

flow studies of electrical power systems. The intent of this chapter is to present a novel 

approach for power flow calculation, providing an easier and more flexible 

implementation comparing with the traditional methods, and also being potential to 

overcome some limitations found when executing power flow studies using current 

computational routines. 

The presented genetic methodology is based on the minimization of the power mismatches 

in the power system buses. The principle of the proposed algorithm consists in adopting the 

chromosomes as the power system buses voltages, phase angles and magnitudes. The 

computational routine starts with estimated initial values for the chromosomes parameters, 

and these values are updated in each iteration process through the genetic operators, and 

the rule function, which comprises the problem modeling. The chromosome structure model 

is given as: 

 2 3 2 3{ , ,..., ,..., ,| |,| |,...,| |,...,| |}i k n k nx V V V Vδ δ δ δ=  (8) 

Where i represents the chromosome index, related to the population size; n is the number of 
buses of the system; k is the system bus index, δk is the voltage angle at the bus k; and, |Vk| 
is the voltage magnitude at the bus k. The bus with k = 1 is taken as swing bus and it does 
not compose the chromosome structure.  

Let’s the test IEEE power system shows in Figure 8. This system contains 14 buses, 15 
transmission lines, and 3 transformer branches. The IEEE 14-Bus Test System represents a 
part of the Midwestern US Electric Power System as of February, 1962. The Bus #1 is chosen 
as swing bus. The Buses #2, #3, #6, and #8 are buses with generation, and they are the type 
2, where P and |V| are known and the values of Q and δ are calculated. The Buses #4, #5, 
#7, #9, #10, #11, #12, #13 and #14 are load buses and they are type 1, where P and Q are 
known and the values of |V| and δ are calculated. 

In this case the chromosome for the system shown in Figure 8 has the following form: 

 2 3 4 5 6 7 8 9 10 11 12 13 14

4 5 7 9 10 11 12 13 14

{ , , , , , , , , , , , , ,

| |,| |,| |,| |,| |,| |,| |,| |,| |}
ix

V V V V V V V V V

δ δ δ δ δ δ δ δ δ δ δ δ δ=
 (9) 
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Fig. 8. IEEE 14-bus test system, with all system buses, branches and elements 

The definition of the population parameters is made according the power flow problem 

particular features. The chromosomes are defined as the system buses voltages, so they 

assume continuing values within the boundaries specified in the system input data. The rule 

function parameters to be minimized during the genetic algorithm procedure are defined as 

scores. The scores are computed as the arithmetic mean of the buses apparent power. Each 

chromosome has a personal score, and it uses during the creation of individuals in the mating 

pool. 

The algorithm begins with the generation of the initial estimated values for each 

chromosome. The voltage angle begins with a random initial value within the specified 

boundary. The voltage magnitude initial value depends on the nature of the bus that the 

parameter is associated with. In the case of a PQ bus, the voltage magnitude begins with a 

random value within the specified boundary. On the other hand, in the case of a PV bus, the 

voltage magnitude receives the related value specified in the input data and this value 

remains the same during the process iterations, it means, this is a fixed value. 

Once all the parameters of the population have the initial estimated values, the iterations are 

initiated. The procedure detailed as follows is performed for all iterations and for each 

chromosome.  

1. The system buses voltages are assigned with the chromosome values. 
2. The reactive power of the PV buses is computed applying the equation (2). 
3. The active and reactive power of the Vδ bus is computed applying equation (2). 
4. The power flow in the system branches is calculated using the equation (10): 
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 ,( * *) * *ij ij ij i i j ij i i sh iS P jQ V V V Y VV Y= + = − +   (10) 

Where Sij represents the complex apparent power between the buses i and j; Pij is the 
active power between the buses i and j; Qij is the reactive power between the buses i 
and j; Vi is the bus i voltage; Vj is the bus j voltage; Vi* = |Vi|ejδi, i. e., the conjugate 
voltage; Vj* = |Vj|e-jδi, i. e., the conjugate voltage; Yij is the admittance between the 
buses i and j; Ysh,i is the shunt admittance of the bus i. 

5. The active and reactive power mismatches of each bus are calculated as the sum of the 
injected power.in the approached bus. The apparent power mismatches are calculated 
using the equation (11): 

 2 2( ) ( )k k kS P Q∆ = ∆ + ∆   (11) 

Where k is the system bus index; ΔPk is the active power mismatch at bus k, ΔQk is the 
reactive power mismatch at bus k; ΔSk is the apparent power mismatch at bus k. 

6. The buses apparent power mismatches arithmetic mean is calculated. 

7. The performance index is computed for each chromosome. The performance index is 

related to the power mismatch obtained by the chromosome. All mismatches produced 

by each chromosome are summed producing a total mismatch value. Then each 

mismatch is divided by this total mismatch value producing the individual mismatch 

degree. After that, all degrees are multiplied by the number of individuals resulting in 

the final degree of each chromosome. 

8. It is obtained the chromosome which has the worst – the bigger – power mismatch until 

now. This chromosome index is kept and it is used in the mutation operation. 

Once all chromosomes have passed through the described routine, it proceeds through the 

steps described as follows. 

9. The elements of the mating pool are composed according the degree of each 

chromosome. Initially, the entire part of each chromosome contains the number of 

individuals in the mating pool. For example, if a degree of a chromosome is 4.27, this 

chromosome has 4 copies in the mating pool. The other chromosomes are chosen by the 

roulette wheel rules according the not entire value. In the case of the previous 

chromosome, it has 0.27 to be chosen. 

10. The mutation operation is then applied. This operation aims to coverage better the 

problem domain and to obtain a new chromosome, avoiding a premature convergence 

to a local best point. The mutation is applied to the worst chromosome of the current 

iteration, i. e., the chromosome which has the bigger power mismatch value, and 

because of this philosophy it is called Biased Mutation. The procedure consists in 

changing random values to the chromosome voltage module and angle, according the 

minimum and maximum value of the attribute. 

Finally, in the end of the iterations, it is obtained the best solution, which is adopted as the 
power flow study solution. It is important to notice that the genetic algorithm methodology 
can achieve several acceptable results for the same power flow study, depending on the 
simulation. It occurs because each chromosome has a random initial estimated value and the 
genetic operators also make use of random values, so several solutions that are very similar 
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can be achieved for the same initial estimative. However, numeric traditional methods start 
with the same initial estimative values and achieve the same final results, regardless of the 
program simulation. 

6. Power system restoration computation using genetic algorithms 

This section presents a genetic algorithm based decision support tool applied to electrical 
power system restoration after an incident. The power system restoration is based on the 
system reconfiguration, which is accomplished by changing switches statuses. This is a NP-
hard problem, involving operational optimization constraints and decision-making of 
combinatory nature. The purpose of the proposed methodology is to support the power 
system operator providing an optimal solution for system restoration after the occurrence of 
a single contingency, similar to an N-1 criterion applied to electrical energy distribution 
systems.  

As mentioned previously, electric distribution systems present a radial topological structure 

that must remain after the system restoration process. The present approach supposes that 

for each line there must be one switch, and if in the initial configuration it is not on, then, its 

normal operation status is open. For an optimized reconfiguration, the decision-making 

involving the switches, which must be closed, is done so as to maximize the power supply 

and minimize the number of closed switches. Moreover, network configurations with 

overloaded branches are prevented. Considering fault occurrence on a single line of the 

distribution system, with the characteristics described above, the closing of a single switch is 

enough to restore the system. There are contingencies which result in a single possibility for 

the system restoration, and contingencies which result in several possibilities for the system 

restoration. Besides, a peculiarity occurs in case the faulted line is of the kind which has 

normally open switches, because fault occurrence on the line does not compromise the 

distribution of the system, therefore, the loads supply. In this case the only solution is 

repairing it, providing necessary technical support. 

In the solution provided by genetic algorithm methodology for this problem, each gene of 

chromosomes presents the information of a switch that composes just one transmission line 

of system. This switch is normally opened (NO) in the original configuration. The normally 

closed (NC) switches don´t compose the chromosome. If the original configuration of 

system presents N lines NO then each chromosome will have N genes. The gene is a binary 

number, 0 or 1. The value 0 means that the switch state is open or without energy. The value 

1 means that the switch state is closed or with energy. Now it is necessary to structure the 

information of power system. Each line of the system is represented by two consecutive 

nodes, according to Figure 9. In this scheme, the full lines are switches NC, the hatched lines 

are switches NO, and there are three circuits. 

The chromosomes require an evaluation procedure for their feasibility. Several functions are 
presented in order to indentify the chromosomes potentially and its validation. 

a. Unsupplied Loads Function - This function identifies the amount of loads without energy 
along the system after a contingency. 

b. Loop Function - A radial topological structure can’t present meshes or loops. Then the 
Loop Function identifies the number of loops formed during the restoration process. 
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c. Overload Factor Function - Each system line possesses a transmission capacity, that is, a 
maximum power. The Overload Factor Function deals with maximum and current 
power. 

 

Fig. 9. Distribution test system (Ramírez-Rosado & Bernal-Agustín, 1998) 

The maximum power parameter is in the data base but the current power parameter must 
be calculated from Power Flow Program, which is adapted for distribution network analysis. 
The Overload Factor is determined by (12): 

 1
( )
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m mm

i

MP CP
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N
=

−
=


 (12) 

Where i represents the ith chromosome; N is the number of transmission lines closed; OFi is 

the Overload Factor for the chromosome i; MPm is the maximum power of transmission line 

m; and, CPm is the current power of transmission line m. 

d. Overload Lines Function - This function is a sub-product of Overload Factor Function. It 
determines the number of overload transmission lines. If the current power value is 
great than maximum power value then this transmission line is overload line. 

The proposed genetic algorithm is composed of the following steps: 

1. Fitness Function Computation - In this stage each individual receive a value. Therefore, 
how much bigger is the individual value it is better. In other words, how much bigger is 
the individual value it has more possibility of being the potential solution of restoration. 
The individual value is determined by (13): 

 1 2 3 4Value(individual)=0.5 f (x)+0.1 f (x)+0.3 f (x)+0.1 f (x)× × × ×  (13) 

Where: 
f1(x) = Total of supplied loads/ Total of unsupplied loads 
f2(x) = 1/(amount of loops + 1) 
f3(x) = 1/(overload factor) 
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f4(x) = 1/(total of overload lines) 
According to (13), the weights can be chosen empirically. For this approach, the 
criterion of judgment is based on unsupplied loads with the weight of 0.5, followed by 
overload factor of system with the weight of 0.3, overload transmission line number 
with the weight of 0.1, and number of created loops with weight of 0.1. 

2. Composition of the Mating Pool - In this stage the better individuals are chosen for 
constitute the mating pool. To determinate the individuals that will compose the mating 
pool is necessary to calculate the weight of each one in the group. Therefore, the value 
of each individual is already applied the fitness function then it is divided by the 
average of the group value.  
If the individual value gets a weight bigger than 1 then it goes directly to the mating 
pool, and its weight is deducted by 1, and this operation is repeated until that its weight 
becomes less than 1. If still exist vacant in the mating pool, it is necessary to use the 
roulette wheel to decide which individual will compose the mating pool randomly. The 
roulette wheel needs a straight line composed by the weights of each individual. 
Therefore, if the random number is between 0 and the first individual weight, then the 
first individual gets the vacant, else: if the random number is bigger than the first 
individual weight and smaller or equal than the first individual weight added by the 
second individual weight, the second individual goes to the mating pool.  

3. Crossover Operator - The crossover operator combines the features of two parent 

structures to form two similar offspring. Two good chromosomes share their good 

quality; therefore it is possible to produce better chromosomes than before. An arbitrary 

crossover position along two individuals is selected, beyond which the crossover takes 

place. They exchange their parts.  

The resulting crossover yields two new individuals where the chromosomes have parts 

of parent’s genetic information. This crossover operation occurs if the random 

parameter is inferior to crossover rate (probability of crossover). 

4. Mutation Operator - In the same way, this mutation operation occurs if the random 

parameter is inferior to mutation rate (probability of mutation). Mutation is an 

alteration of a value at a particular position in the individual. This particular position is 

selected randomly and the gene value is changed. For example, if the gene value is 1 

then it is changed to 0. 

5. Determination of the New Population - After all this steps, a new population is created. 

Therefore, the best individuals from previous generations appear in the new 

population. All steps are executed for the new population again, creating another 

genetic iteration. The process stops when a pre-defined stopping rule is satisfied. 

The restoration system solution provides a switch (or a set of switches) that must have the 
status changed. Besides, the proposed methodology applies the maximization of power 
demand supplied, minimization of switching operations, and avoids the overload lines.  

7. Economic dispatch and unit commitment studies using genetic algorithms 

Initially, this section presents a strategy to use genetic algorithms in economic dispatch 
studies. The main problem of this study is to get the best composition of generations 
according some criteria. Usually, these criteria are generation cost and transmission cost. 
However, in nowadays, another criterion is also taking into account: the environment cost. 
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This criterion is hard to be express in numbers, and traditional techniques have problems to 
include this factor in the equation solution. 

The economic dispatch problem is a classical optimization problem; it means some elements 
must to be optimized according some criteria (here expressed by the fitness function). The 
chromosome for this study is composed by all generated power of each unit, represented by 
Pi, minus the generation of the swing bus (in our case index = 1). The chromosome is shown 
in (14) for n generator. 

 2 3{ , ,..., }i nx P P P=  (14) 

The generation of the swing bus is not in the chromosome because it promotes the balance 

between the required load and the power produced by the other generations, in (15). 

 1
2

n

Load j
j

P P P
=

= −  (15) 

The fitness function could be expressed by also traditional cost involved (generation and 

transmission) but also environment cost, political cost, and others aspects required by the 

system or by the companies, such as: security operation point, maintenance program, fuel 

constraints. Many of these costs are not necessarily expressed only by equations, but they 

can be used algorithms or some heuristics. 

 , , ,( )i g i t i o ivalue P F F F= + +  (16) 

Where Fg,i, Ft,i, and Fo,i represent the cost of generation, transmission and others for the unit i 
to produce the power Pi. 

The proposed genetic algorithm is composed of the following steps: 

1. Fitness Function Computation - In this stage each individual receive a value, computing 

by (16). However, the economic dispatch is a minimization problem. Therefore, how 

much bigger is the individual value it is worst. In other words, how much bigger the 

individual value is, less possibility of being the potential solution of economic dispatch 

has. Then, the fitness function is computed by (17): 

 ( ) 1 / ( )fitness if i value P=  (17) 

The only exception of this fitness function computation process is when the constraints 

of the swing bus are extrapolated. In this case, the generation of the swing bus can’t 

support generate the required power, and the value of the fitness function is zero.  

2. Composition of the Mating Pool - The best individuals are chosen for constitute the 

mating pool. The strategy describes in the power flow mating pool composition is used 

here. Use all fitness function to calculate the weight of each individual. The individuals 

with entire values are represented in the mating pool. The decimal part goes to the 

roulette wheels. 

3. Crossover Operator – By a random process two individuals are chosen to be combined, 
and another random process decides where they will change their material. And then, 
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they exchange their parts. This crossover operation occurs if the random parameter is 
inferior to crossover rate (probability of crossover). 

4. Mutation Operator - The mutation operation occurs if the random parameter is inferior 
to mutation rate (probability of mutation). When one power generator is selected 
randomly and the gene value is changed for a new value inside of its generation limits, 
expressed by (7). 

This process is repeated until a predefined number of iterations. The best solution found (it 
means the minimum value) until in moment is the solution of the problem. 

The unit commitment process uses the economic dispatch shown above. The idea is to start the 
economic dispatch for the first period of time, t1. The three best solution are selected, denoted 
by S1,A, S1,B, and S1,C. Each solution has its own total cost, denoted by C1,A, C1,B, and C1,C.  

For the second period of time, t2, another economic dispatch is run. The three possible best 
solutions are selected for each best solution selected in the previous period of time. It is 
important to note that the three possible best solution in the second period for the solution 
S1,A could not be the same, for example, for the solution S1,B. It occurs because there are some 
constraints to be analyzed such as start-up generator time or minimum time to restart the 
generator. In Figure 10, the three best solutions for S1,A, have been denoted by S2,AA, S2,AB, 
and S2,AC. For S1,B, the selected best solutions are S2,BA, S2,BB, and S2,BC. And, for the solution 
S1,C, the selected solutions are S2,CA, S2,CB, and S2,CC. In this example, the solutions S2,AB and 
S2,BA are the same solution. The same occurs to S2,AC - S2,BB - S2,CA, and S2,BC - S2,CB. 

 

S1,A S1,B S1,C

S2,AA S2,AB

S2,BA 

S2,AC

S2,BB 

S2,CA 

S2,BC

S2,CB 
S2,CC

time t1 

time t2 

 

Fig. 10. First and second iteration of the unit commitment process 

Each solution of time t2 also has its own total cost, denoted by C2,AA, C2,AB, and so on. Of 

course, the cost of the solutions S2,AB and S2,BA are the same. 

For the third period of time t3, another economic dispatch is run. The three possible best 
solutions are selected for each best solution selected in the previous period of time, in this 
case t2. And the process continues until the last period of time. In this procedure, a search 
tree is created. There are two possibilities to break one of the possible paths in the search. 
One possibility is when there is no solution available in the next step of the economic 
dispatch study for a previous selected state. The other possibility is when the total cost 
exceeds a predefined value. The total cost is the sum of all previous cost in the path. Figure 
11 shows a possible search tree with 6 periods of times (t1, t2,…, t6). Two special remarks 
have been made in this figure. The first one is the case where there is no solution available in 
the next period, and then the path is cut. The second one shows a situation where there are 
only two possible solutions in the next period of time. The search continues for these two 
solutions. 
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t1 

t2 

t3 

t4 

t5 

t6 

Remark 1 
Remark 2 

 

Fig. 11. Complete search tree for unit commitment problem-solving 

When the search tree is complete each path has its own total cost which is composed by the 

sum of each individual solution existed along the path. Figure 12 shows in highlight one 

possible path (possible solution) for the unit commitment problem. The total cost of this 

solution is computed by the sum of each individual costs of each solution (C1B, C2C, C3D, C4D, 

C5E, and C6F) and denoted by Cpath,k, shown in (18). The best solution is that with lowest total 

cost.  

 Cpath,k = C1B + C2C + C3D + C4D + C5E + C6F (18) 

 

C1B t1 

t2 

t3 

t4 

t5 

t6 

C2C 

C3D 

C4D 

C5E 

C6F 

 

Fig. 12. One possible solution of unit commitment problem with individual costs 

Finally, a hint. If the problem requires many periods of time the number of possible paths 

can be enormous. In this case, intermediary evaluations can occur and a predefined 

maximum number of paths can continue the search tree. 
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8. Conclusion 

This chapter presented the genetic algorithm application to three functions commonly 
executed in power control centers – power flow, system restoration and unit commitment. 
The genetic algorithm based techniques are potential to solve problems whose traditional 
methodologies to solve them have a high computational cost, problems whose traditional 
methodologies to solve them hold some constraints in their application, and problems 
without any traditional methodologies to solve them. This has been well represented by 
these typical power system control centers applications, and the explanation on how to 
perform genetic algorithms to compute them. 

It is expected that this chapter provided the reader with a comprehensive view of the use of 
genetic algorithms to solve control center problems and supports them in developing new 
genetic algorithms based methods for applications of their interest. 
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