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1. Introduction

Recently, a distributed estimation, a type of parameter estimation problem, has been
widely studied from the viewpoint of wireless sensor network (WSN) applications (1) (2).
In particular, distributed estimation has been well-studied for certain WSN applications,
such as environmental monitoring and precision agriculture (3)-(8). In such applications,
measurements are acquired by the combination of a large number of deployed sensors
which are equipped with a radio communication transceiver and a fusion center (FC), which
collects measurement information from sensors to obtain a final estimate. Such measurement
systems require some multiple access systems such as time division multiple access (TDMA),
frequency division multiple access (FDMA) (9), frequency and time division multiple access
(FTDMA) (10). However, most of related works ignore the effect of multiple access techniques
on distributed estimation in WSNs.

This chapter describes a distributed estimation technique that uses genetic algorithm (GA) (11)
to optimize the FTDMA which offers high reliability and spectral efficiency and is employed
in several WSN systems (12) (13) and RFID systems as a multiple access technique (14). Mobile
fusion center based WSN systems that enables ubiquitous physical data collection anywhere
have been presented (15). However, because the devices involved in such systems do not
typically employ an expensive or considerable hardware, their communication requirements
are strictly limited. For instance, a high performance digital signal processor is required
to cancel in-band channel interference at baseband in a low-IF receiver (16)-(23). First, the
optimization problem based on a mean-squared error (MSE) function to obtain the final
estimate is defined. Next, the effects of FTDMA-based measurement environment with WSN
on the energy constrained distributed estimation are described, and we show that time slots
and frequency bands should be allocated appropriately to avoid the effect of a large power
interference (24). We define this problem as a combination optimization, and employ GA to
solve this problem. Also, from these, we develop an algorithm to obtain the suboptimal time
slot, frequency band and transmit power allocation for each sensor.

2. Preliminary notion

2.1 Frequency and time division multiple access

Fig.1 shows FTDMA models as the multiple access tecnique. In this model, the time is
divided into NT time slots with the same length and the available frequency is divided into NF
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2 Will-be-set-by-IN-TECH

Fig. 1. FTDMA system

frequency bands with the same bandwidth. Also, NF time slots are transmitted at the same
time for all available frequencies. Time slots are allocated to sensors to transmit observed
quantities to the FC.

2.2 Multisensor measurement system with best linear unbiased estimator

In this subsection, we describe the distributed estimation model in FTDMA-based WSNs as

shown in Fig.2. In this model, N spatially deployed senosrs observe unknown phenomena
θ with zero mean and variance σ2

θ . A local measurement at the ith node is corrupted by an
additive noise as

xi = θ + ni, 1 ≤ i ≤ N (1)

where ni is spatially independent zero-mean additive measurement noise with variance σ2
ni

.

We assume that all σ2
ni

are known at the FC. Due to the bandwidth limitation, each sensor
quantizes xi with a quantization function Q(·) into b-bit messages as

mi = Q(xi), 1 ≤ i ≤ N. (2)

In this chapter, we adopt an uniform quantization scheme as Q(·). The quantization message
mi can be written with a quantization error as

mi = xi + qi, 1 ≤ i ≤ N (3)

where qi is the quantization error uniformly distributed with zero mean and variance σ2
qi

=

W2/(3 · 22bi ), where [−W, W] is the available signal amplitude range and bi is the allocated
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Multiple Access System Designs via Genetic Algorithm in Wireless Sensor Networks 3

Fig. 2. System model

bit to ith sensor. The FC is gathered quantization message mi and combined to generate final
estimate of θ̂. θ̂ can be obtained by the best linear unbiased estimator (BLUE) (25) as

θ̂ =

(

N

∑
i=1

1

σ2
ni
+ σ2

qi

)−1 ( N

∑
i=1

mi

σ2
ni
+ σ2

qi

)

. (4)

The MSE D is given as

D =

(

N

∑
i=1

1

σ2
ni
+ σ2

qi

)−1

. (5)

3. Communication systems

3.1 Modulation scheme

In this subsection, we describe communication systems in the distributed estimation model.
In this chapter, we consider multilevel quadrature amplitude modulation (QAM) which is a
popular digital modulation schemes. To characterize QAM modulated signals, we employ the
transmission energy model (26) as

P̄i(bi) = ci · dα
i

(

ln
2

pi

)

· (2bi − 1), ∀i (6)

where ci, di, α and pi is a system constant related with an analog circuit, a transmission
distance between ith sensor and the FC, the pathloss exponent, and a probability of bit error,
respectively. In this chapter, we assume that the electrical and communication requirement for
all sensor nodes are the same, i.e., ci = c and pi = p, and we define a normalized transmission
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energy model as

Pi(bi) = dα
i · (2bi − 1), ∀i. (7)

Here, we consider the effect of a decision error of a bit in quantized messages mi on D. It
can be seen that error free communication systems are considered in previous subsection.
However, modulated signals are distorted from the additive white Gaussian noise, and
received messages m̂i may be not equal to mi. As a result, an obtained MSE D̂ may be larger
than D. From these, it can be considered that D represents a lower bounds of the obtained
MSE. Although D can be interpreted as mentioned above, we assume that D is the MSE which
is defined in eq.(5) to simplify description and explanation.

3.2 Adjacent and in-band channel interferences

Heterodyne receivers may be most widely used architecture in narrowband communication
systems. In the architecture, a low intermediate frequency (IF) receiver can be implemented
with high degree of integration, and it is suited to the wireless communication terminal
which is required the transceiver miniaturization. The low-IF architecture is equipped an
analog-to-digital converter (ADC) at the processing stage of an IF signal, and the fact provides
a good performance for an in-band and adjacent channel interference cancellation because of

digital signal processing techniques, e.x., filtering (16)-(23). However, a digital filter for such
processing is required a steep characteristic, and it causes the computational complexity.

In this subsection, we describe the narrowband wireless communication systems with N̄

communication channels. The receiver model discussed in this chapter is shown in Figs.3 and
4. In the architecture, a radio frequency (RF) signal is received by an antenna and passed
through a band pass filter (BPF) such as a surface acoustic wave (SAW) filter and a low
noise amplifier (LNA). The receiver has Hartley image canceller in analog circuits to cancel
image band interferences. Under the assumption that there are no an I/Q imbalance (16) in
these analog circuits, IF signals, which is the desired signal and in-band channel interference
including the adjacent channel interference, are sampled and quantized at the ADC. A filtered
and an amplified RF signal rRF(t) is down converted into the IF signal rIF(t) at a quadrature
mixer with the frequency fLO, where fLO is the local oscillator frequency and fLO = fRF − fIF, fRF

and fIF are the RF and IF frequency, respectively. rIF(t) can be written by

rIF(t) = dIF,i(t) +
NIF−2

∑
j=0,j �=i

zIF,j(t) + vIF(t), 0 ≤ i ≤ NIF − 1 (8)

where dIF,i(t), zIF,j(t), vIF(t), and NIF is the desired IF signal at ith communication channel, the
in-band channel interferences IF signal at jth communication channel, the additive gaussian
noise and the number of communication channels at IF band, respectively. The value of NIF

depends on the bandwidth of the IF filter and the channel index i, therefore, N̄ ≤ NIF. Also,
illustrations of rIF(t) on a frequency domain are shown in Fig.5. Then, the desired signal
has a center frequency fIF. After passing through the ADC, rIF(n) is down-converted into the
baseband signal rB(n) at a digital quadrature mixer with the frequency fIF as shown in Fig.4.
Since the center frequency of the desired signal is fIF, rB(n) can be written in the following

172 Genetic Algorithms in Applications

www.intechopen.com



Multiple Access System Designs via Genetic Algorithm in Wireless Sensor Networks 5
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Fig. 3. Low-IF architecture
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Fig. 4. General digital signal processing part in low-IF receiver

equation,

rB(n) = dB(n) +
NB−1

∑
j=1

zB,j(n) + vB(n) (9)

where vB(n) is the additive gaussian noise, and vB(n) ∼ N (0, σ2
v ), dB(n) and zB,i(n) are

desired signal and interference at ith communication channel respectively. NB is the number
of communication channels at baseband and NIF ≥ NB. Also, zB,1(n) is called as the adjacent
channel interference. Fig.6 shows baseband signals including the desired signal, adjacent and

in-band channel interference in a frequency region. Note that the desired baseband signal
is moved to the frequency range around the DC. Let fB,max denotes the maximum frequency
of all baseband signal component including desired signal, adjacent and in-band channel
interferences. Although the minimum sampling frequency of the baseband signal fs,min equals
to 2 fB,max, the sampling frequency of the low-IF receiver is more higher than fs,min because IF
signal with higher frequency than the baseband signal are sampled in the low-IF receiver.
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Fig. 5. IF signals in low-IF receiver

Baseband

Desired signal

In-band channel interference

�

Adjacent channel interference

�
�
���

�
�
���

�
�������

�
���� ��������

�
��� �������

Fig. 6. Baseband signals in low-IF receiver

4. Distributed estimation techniques in FTDMA-based WSN

In this section, we discuss the distributed estimation technique in FTDMA-based WSN. At
first, we define an optimization problem to obtain a solution for the distributed estimation.
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Next, we derive the equation of the power allocation based on the defined optimization
problem. Also, we show that the solution of the problem can not be obtained without
optimization of a combination of sensors in tth time slot, and develop the algorithm to obtain
suboptimal solution.

4.1 Problem setup

At first, we define an all sensor set S̄0 as

i ∈ S̄0, 1 ≤ i ≤ N. (10)

Also, the set S̄0 can be partitioned into NT sensor subsets St as

S̄0 =
⋃

1≤t≤NT

St. (11)

The St means the subset of sensors which transmit message in tth time slot.

Next, we define the problem while keeping a total power constraint which is the sum of
transmit powers of individual sensor at the same time. As shown in previous section, received
signals in narrowband communication systems are corrupted by the adjacent and in-band
channel interferences. Interferences having a large power cannot be canceled without the LPF
which has steep characteristics, ans such the LPF is incurred the large number of multiplyer
and register because the length of the impluse response of the LPF is very long. Therefore,
maximum total power of these interferences at the same time slots is strictly limited. From
these, we define the optimization problem as (24)

arg min
bi∈Z+

(

N

∑
i=1

1

σ2
ni
+ σ2

qi

)−1

subject to Ptot ≥ ∑
i∈St

ai · (2bi − 1)

σ2
qi
= W2/(3 · 22bi )

(12)

where ai = dα
i , Z+ denotes the set of all nonnegative integers, and Ptot is the normalized total

power constraint at the same time slots.

However, the solution of eq.(12) can not be obtained via a convex optimization. In this chapter,
to facilitate analysis of eq.(12), since bi ∈ Z+, it follows ∑i∈St

ai(2
bi − 1) ≤ ∑i∈St

ai(2
bi −

1)(2bi + 1) and (2bmin + 1) ≤ (2bi + 1) where bmin represents the number of the smallest
allocatable bits. From these, we introduce the constraint defined as follows (24),

(2bmin + 1)Ptot ≥ ∑
i∈St

ai(2
2bi − 1). (13)

Eq.(13) is the equation based on the constraint in eq.(12), and we can replace the power
constraint in eq.(12) by eq.(13) without violating the total power requirement. A similar
replacement technique, which represents Ptot ≥ ∑i∈St

ai(2
2bi − 1), has been reported (4).

As shown in the comparison of two equations, our technique can use the available transmit
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power effectively. In fact, bmin is equal to zero, in which the case corresponds that there is no
allocatable bit to ith sensor.

From these, by performing a change of variable with βi = 22bi and some modification, the
optimization problem is redefined as

arg max
βi∈R+

N

∑
i=1

Qβi

σ2
ni

Qβi + 1

subject to 2 · Ptot ≥ ∑
i∈St

ai · (βi − 1)

βi ≥ 0

(14)

where R
+ denotes the set of all nonnegative real number and Q = 3/W2. βi is relaxed to a

nonnegative real number so as to render the problem tractable. In eq.(14), once the optimal βi

is obtained, bi is determined through upper integer rounding, as (3)-(5).

4.2 Power allocation and sensor selection in FTDMA-based WSN

In eq.(14), when NT = 1, which is similar to conventional method as (3)-(5), the solution of
the optimization problem can be obtained by Lagrangian multiplier (27) associated with the
equality the total power constraint and inequality constraint. In the case of 1 < NT < N,
which requires using several frequency bands, the solution of eq.(14) can not be obtained with
the solving method for NT = 1. In this subsection, we discuss how to obtain the solution of
eq.(14), when 1 < NT < N. In this case, the solution of eq.(14) can be obtained by following
Lagrangian J

J = −
N

∑
i=1

Qβi

σ2
ni

Qβi + 1
−

NT

∑
t=1

λt

{

2 · Ptot − ∑
i∈St

ai · (βi − 1)

}

−
N

∑
i=1

νiβi (15)

where λt and νi is equality and inequality constraints as Lagrange multiplier, respectively.
Eq.(15) leads to the following Karush-Kuhn-Tucker (KKT) conditions (25)

− Q
(

σ2
ni

Qβi + 1
)2

+ λtai − νi = 0, ∀t, i ∈ St

2 · Ptot − ∑
i∈St

ai · (βi − 1) = 0, ∀t

νi βi = 0, ∀i

νi ≥ 0, ∀i

βi ≥ 0, ∀i.

(16)

From the first equation in eq.(16), βi can be obtained as

βi =
Q

σ2
ni

(

1√
Qλtai − νi

− 1

)

, ∀t, i ∈ St. (17)
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Also, we can see from the third equation that for those sensors with βi ≥ 0, νi holds. Therefore

βi =
Q

σ2
ni

(

1√
Qλtai

− 1

)+

, ∀t, i ∈ St (18)

where (X )+ equals to 0 when X < 0, and is otherwise equals to X . The Lagrange multiplier
λt can be obtained by substituting βi into the second equation in eq.(16) as

λt =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

Q
N

(t)
F

∑
i∈St

√
ai

σ2
ni

2 · Ptot +
N

(t)
F

∑
i∈St

ai

{

Q

σ2
ni

+ 1

}

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

2

, ∀t. (19)

where N
(t)
F is the number of active sensors in tth time slot, and 1 ≤ N

(t)
F ≤ NF . N

(t)
F is

determined such that f
(

N
(t)
F

)

≥ 1 and f
(

N
(t)
F − 1

)

< 1, where f (·) is the function which is

defined as

f
(

N
(t)
F

)

=
1

√

Qλt

(

N
(t)
F

)

ai

(20)

where λt (·) is the rewritten version of λt and represents the function of the number of active
sensor. We assume that sensors are ranked according to ai such as a1 ≥ · · · ≥ a

N
(t)
F

, and the

optimal bit load b
opt
i can be obtained as

b
opt
i =

⎧

⎨

⎩

1
2 log2

{

Q
σ2

ni

( f (N)− 1)

}

for1 ≤ N ≤ N
(t)
F

0 forN
(t)
F < N ≤ NF

(21)

4.3 Selection for combination of sensors in subset St

The solving method derived in previous subsection is not yet enough to solve the power
(or information bit) allocation problem in FTDMA-based WSN, since the subset St which

represents the combination of sensors transmit at tth time slot is not determined. From the
solving method, it can be seen that βi is determined from the distance parameter ai and
measurement noise variance of sensors in St. Obtained βi may be different when combinations
of sensors in St are different. Moreover, the MSE D is a nonlinear function for βi as shown in
the following equation which is rewritten version of eq.(5) with βi,

D =

(

N

∑
i=1

1

σ2
ni
+ W2/(3 · βi)

)−1

. (22)
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Hence, it can be considered that obtaining the MSE depends on combinations of sensors in
each St, and when 1 < NT < N, the combination of sensors in subset St must be determined
appropriately, i.e., St optimization. Here, we rewrite the MSE function representation D to
D(S̄0) as a function of sensors set S̄0, and this problem can be written as a combination
optimization problem as

[

Ŝ1, · · · , ŜNT

]

= arg max
S1,··· ,SNT

{

D
(

S̄0

)−1
}

(23)

2 · Ptot ≥ ∑
i∈St

ai · (βi − 1) (24)

βi ≥ 0, 1 ≤ t ≤ NT (25)

where Ŝt is a suboptimal sensors subset. To solve this problem, we employ GA which is
utilized to efficiently solve the combination optimization.

From these, we develop an algorithm to obtain a suboptimal combination of sensors in subset
Ŝt. The flowchart of the developed algorithm is shown in Fig.7. In Fig.7, at first, M individuals
are initialized, where M is population size. The mth individual can be represented by 1 × N

vector k(j,m) as

k(j,m) =
[

κ
(j,m)
1 , · · · , κ

(j,m)
N

]

, 1 ≤ m ≤ M (26)

where the gene κ
(j,m)
i represents the time slot index to be ith sensor transmitted and the

value of κ
(j,m)
i can take the integer value as κ

(j,m)
i = 0, 1, · · · , NT , and when the number of

available time slot is smaller than the number of sensor, κ
(j,m)
i may be equal to 0. Also, the

total number of κ
(j,m)
i with same value is limited by the available frequency band NF . Several

GA operations, i.e., selection, crossover and so on, are carried out to k(j,m).

In our developed algorithm, a subset Ŝ
(j,m)
t which represents the subset of sensors obtained

from mth individuals at jth generation can be obtained at every generation. Ŝ
(j,m)
t is

determined by k(j,m) as

Ŝ
(j,m)
t ∋

{

i

∣

∣

∣

∣

κ
(j,m)
i = t

}

, ∀i. (27)

Ŝ
(j,m)
t determines the MSE D(j,m)

(

S̄0

)

to rank mth individuals at jth generation. Also, the

number of κ
(j,m)
i with the same value is counted after the initialization and GA operation for

k(j,m). If the total number of κ
(j,m)
i with same value exceeds NF , it is allocated to other time

slot other than NF sensors.

After finishing the developed algorithm, the k(j,k) provides a suboptimal combination of

sensors in subset Ŝt, ∀t, namely, the time slot and frequency band allocation for all sensors.
The allocated power for all sensors can be obtained from eq.(18).
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Fig. 7. Flowchart of the algorithm combined power allocation and combination optimization
to solve the optimization problem.

5. Numerical examples

In this section, to evaluate the performance of the algorithm shown in Fig.7, numerical

simulations are carried out. At first, we show GA operations and parameter employed in
this chapter. We employ an elite selection scheme and one point crossover, also, only one
gene is mutated at a mutation step in GA. In our numerical simulations, for GA, the number
of elite, population and mutation ratios are selected as 5, 50 and 1, respectively. Individual
vectors k(j,m) are initialized uniformly distributed for all time slots in the initialization step.
Also, results shown in this section are obtained by averaging over 500 independent trials.

In order to evaluate the algorithm, we compare two curves which were obtained by i)
the algorithm shown in previous section, and ii) averaged result in initialized individuals
in population. In these, i) corresponds to the results obtained from algorithm with Rt

optimization, and ii) corresponds to the result obtained from conventional sensor selection,

179Multiple Access System Designs via Genetic Algorithm in Wireless Sensor Networks
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i.e., without Rt optimization. In the following results, σ2
θ equals 1, and pathloss coefficients

ai = dα
i are generated by a uniformly distributed di ∈ [1, 10], and we use α = 2 which is

the almost same value in literatures (3)-(8) assuming same environments to this chapter. In
this chapter, to evaluate the heterogeneous sensor environment, we adopt the normalized
deviation of random variables ψ(·) as

ψ(R) =

√
varR

E[R]
. (28)

Also, to describe statistical information of sensor noise variance, we adopt the commonly used
following equation (3)-(8)

σ2
ni
= 0.1 + γχ2

1,i, 1 ≤ i ≤ N. (29)

where χ2
1,i is the Chi-square distribution of degree 1, γ controls the underlying variation from

the nominal minimum.

Fig.8 shows the MSE performance versus measurement noise variance for several number
of time slots when NF = 10, N = 300 and Ptot = N. For all curves in Fig.8, MSE

0 0.2 0.4 0.6 0.8 1 1.2 1.4
10

−3

10
−2

Normalized deviation of sensor noise variance

M
S

E

 

 

N
T
 = N / N

F

N
T
 = 2N / N

F

N
T
 = 5N / N

F

with opt.

w/o opt.

Fig. 8. MSE performance versus normalized deviation of sensor noise variance for the
number of different time slot
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Fig. 9. MSE performance versus the number of sensors with NF = 10, NT = N/NF ,
ψ(ni) = 0.47 and Ptot = 300.

performances are improved as the number of time slot increases, and it can be considered

available transmit power per one active sensor increases as the number of NT increases. The
algorithm outperforms the algorithm without Rt optimization. Also, it can be seen that MSE
performances are improved effectively as the number of NT decreases, i.e., the density of
sensors in FTDMA-based WSN increases.

Fig.9 shows that MSE performances versus the number of sensors when NF = 10, NT =
N/NT , Ptot = 300 and φ(ni) = 0.47, and these conditions represent the number of available
frequency band is fixed. From Fig.9, it can be seen that MSE performances are improved
as N increases for two curves and our algorithm outperforms the algorithm without Rt

optimization for all plots. In the contrast, the results for the fixed NT case are shown in Fig.10.
In Fig.10, MSE performances versus the number of sensors when NT = 10, NF = N/NT ,
Ptot = 30 · NF and ψ(ni) = 0.47, respectively. It can be seen that the fixed NF case and the
fixed NT case have similar characteristics. Therefore, for an arbitrary N, NF < NT is desirable
to achieve measurement systems in FTDMA-based WSN with high spectral efficiency.
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Fig. 10. MSE performance versus the number of sensors with NF = N/NF , NT = 10,
ψ(ni) = 0.47 and Ptot = 30NT .

6. Conclusion

This chapter described the energy constrained distributed estimation in FTDMA-based WSN.
The distributed estimation problem in FTDMA-based WSN has been formulated. Several

equations for the bit allocation and the replacement technique of total power constraint in the
problem have been derived. Also, the effect of FTDMA employed WSN on the distributed
estimation has been investigated. We show that the time slot and frequency band to be
allocated to each sensor must be optimized for the MSE minimization since the MMSE
function is nonlinear for the number of allocated bit to each sensor. The problem of the
combination of sensor determination in tth time slot has been defined as the combination
optimization, we have employed GA to solve this problem. The algorithm to determine
the time slot, frequency band, and the number of allocated bit to each sensor has been
developed. Numerical examples have been presented. Our developed algorithm outperforms
conventional sensor selection without optimization for the combination of sensors in terms of
mean-squared error.
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