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1. Introduction 

Finite-thrust propulsion is now widely used in space missions, such as lunar or mars 
descent, interplanetary transfer, spacecraft rendezvous, etc.. The finite-thrust optimal 
control problem is qualitatively different from the impulsive case as there are now no 
integrable arcs and the control itself, must be modeled and determined. Optimizing finite-
thrust trajectory is a challenging problem due to the existence of long powered arcs. 
Therefore, obtaining optimal trajectory is sometimes tedious and time consuming.  

Finite-thrust trajectory optimization has been studied by many researchers. Traditional 
optimization method for this problem is indirect optimization method, which rely on 
solving the necessary conditions derived from the Pontryagin et al. minimum principle. For 
example, the Pontryagin maximum principle is applied to the problem of optimal thrust 
programming for the least fuel consumption of the lunar soft landing in Ref. [1]. But with the 
increasing of the applicable extension, the model complicate, the various uncertainties and 
the strict requirement to the system, the indirect optimization method is faced with the more 
and more challenge. In recent years, direct solution methods have been used extensively in a 
variety of trajectory optimization problems, such as shooting methods and collocation 
methods. Cho [2] applied shooting method to the lunar soft-landing problem; Huang [3] 
proposed a hybrid strategy combining genetic algorithms (GA) and SQP to optimize the 
lunar landing trajectory; Pourtakdoust [4] used direct collocation method to solve the three-
dimensional optimal orbital transfer for thrust-limited spacecraft. Luo [5] proposed a hybrid 
strategy to optimize the rendezvous phasing trajectory, and the discrete variables are solved 
by integer-coded GA. 

To solve the problem, an optimization method combined a collocation method-Gauss 
Pseudospectral Method (GPM) and Genetic Algorithm (GA) is proposed in this chapter. 
Firstly, both the control and state variables are discretized at the nodes of discretization. 
Different from the traditional collocation schemes, piecewise-continuous polynomials such as 
linear or cubic splines are used as the interpolating polynomials over each time segment, the 
Lagrange interpolating polynomials are used to approximate the state and control in GPM. By 
using GPM, the continuous time optimal control problem is converted into a nonlinear 
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programming problem (NLP). Then GA is employed to solve this NLP. The results of a 
numerical simulation verified the validity of the proposed optimization method. Results also 
indicate that the method has good performance on accuracy and fast convergence.  

2. Problem statement for finite-thrust trajectory optimization 

A general problem statement for finite-thrust trajectory optimization can be stated as 

follows [6]: determine the optimal transfer time ft  and optimal control variable ( )tu , 

0 ft t< < , that minimize the performance index 

 ( )
0

0 0( ), , ( ), ( ( ), ( ), )
ft

f f t
J t t t t L t t t dtΦ= + x x x u  (1) 

subject to the dynamic equations 

 0( ) ( ( ), ( ), ) [ , ]ft t t t t t t= ∈x f x u  (2) 

where ( )tx  is the state variables, ( ) nt ∈x  , 0t  and ft  are the initial and terminal time. 

The boundary conditions 

 0 0( ( ), , ( ), ) 0f ft t t tφ =x x  (3) 

and the path constraints 

 ( ( ), ( ), ) 0t t t ≤C x u  (4) 

3. Optimization method 

To solve the complex finite-thrust optimization problem with strict constraints, an 
optimization method is proposed in this section. It is a combination of a collocation method-
GPM and GA. Here the GPM is used to transforming the optimal control problem to a NLP, 
and then GA is employed to solving the resulting NLP. The detailed optimization method is 
given as follows [7]. 

3.1 NLP construction by GPM 

We will give the detailed method how to transforming the finite-thrust optimal control 
problem to a NLP. The problem formulation will be presented in this section. 

The Gauss pseudospectral method, like Legendre and Chebyshev methods, is based on 

approximating the state and control trajectories using interpolating polynomials. In the case 

of the GPM, the Lagrange interpolating polynomials are used to approximate the state and 

control. By using GPM, the continuous-time optimal control problem is converted into a 

NLP. The GPM for the powered descent control problem is summarized as follows [8][9]. 

First, the original time interval 0 , ft t t ∈    is transformed in the time interval [ ]1,1t ∈ −  via 

the affine transformation: 
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0 0

2 2

f ft t t t
t τ

− +
= +    (5) 

The cost function, constraints, and boundary conditions can be given in terms of τ . Then 

the state is approximated using a basis of N+1 Lagrange interpolating polynomials L, 

 
0

( ) ( ) ( ) ( )
N

i i
i

Lτ τ τ τ
=

≈ =x X X    (6) 

where ( ) ( 0, , )iL i Nτ =   are defined as 

 
0,

( )
N

j
i

i jj j i

L
τ τ

τ
τ τ= ≠

−
=

−
∏    (7) 

Additionally, the control is approximated using a basis of N Lagrange interpolating 

polynomials ( ) ( ), 1, ,iL i Nτ =   as 

 ( ) ( ) ( ) ( )
1

N

i i
i

Lτ τ τ τ
=

≈ =u U U    (8) 

where 

 
1,

( )
N

j
i

i jj j i

L
τ τ

τ
τ τ= ≠

−
=

−
∏    (9) 

Differentiating Eq. (6), we obtain 

 
0 0

( ) ( ) ( ) ( ) ( ) ( )
N N

k k i k i ki k i
i i

L Dτ τ τ τ τ τ
= =

≈ = = x X X X       (10) 

where kiD  ( ( 1)N ND × +∈  ) is known as differentiation matrix. In the GPM, the dynamics are 

collocated at the N Legendre-Gauss (LG) points ( 1, , )k k Nτ =  . The derivative of each 

Lagrange polynomial at the LG points can be represented in a differential approximation 

matrix ( 1)N ND × +∈  . The elements of the differential approximation matrix are determined 

offline as follows: 

 ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

1
,

1

1 2
,

2 1

k N k N k

k i i N i N i

ki i k
i N i N i

i N i N i

P P
i k

P P
D L

P P
i k

P P

τ τ τ

τ τ τ τ τ
τ

τ τ τ

τ τ τ

 + +
≠

 − + +  
= = 

+ + =  + + 





 



   (11) 

where 1, ,k N=   and 0, ,i N=  . The dynamic constraint equation 

( ) ( ) ( )( )0, ; , ft tτ τ τ=X f X U  is transcribed into an algebraic constraint using the differential 

approximation matrix as follows: 
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 ( ) ( ) ( )( )0
0

0

, , ; , 0
2

N
f

ki i k k k f
i

t t
D t tτ τ τ τ

=

−
− = X f X U   (12) 

In addition, 0 ( 1)X X≡ −  and fX  is defined using the Gauss quadrature given by 

 ,
0

0 0
1

( ) ( ) ( ( ), ( ) , , )
2

N
f

f k k k f
k

t t
w t tτ τ τ τ τ

=

−
≡ + X X f X U   (13) 

where kw  are the Gauss weights.  

The continuous cost function ( ) ( )
0

0 0, , , ,
ft

f f t
J t t g dtΦ= + X X X U  is approximated as 

 ( ) ( )0
0 0 0

1

, , , , , ; ,
2

N
f

f f k k k k f
k

t t
J t t w g t tΦ τ

=

−
= + X X X U    (14) 

The boundary constraints are also discretized at the LG points as 

 ( )0 0, , , 0f ft tφ =X X    (15) 

Furthermore, the path constraints are evaluated at the LG points as 

 ( ) ( )0, , ; , 0 1, ,k k k fC t t k Nτ ≤ =X U    (16) 

The cost function in Eq. (14) and the algebraic constraints in Eqs. (12), (13), (15) and (16) 
define an NLP whose solution is an approximate solution to the continuous Mayer problem. 
Finally, it is noted that discontinuities in the state or control can be handled efficiently by 
dividing the trajectory into phases, where the dynamics are transcribed within each phase 
and then connected together by additional phase interface constraints.  

3.2 NLP solution by GA 

Many methods can be used to solve the NLP, such as the steepest descent algorithm, hill-
climbing algorithm, evolution algorithm and so on. Here genetic algorithm is employed to 
solve the optimization problem due to its excellent performance on global searching and the 
convenience to realize by computer.  

Genetic algorithms are search procedures based on the mechanics of natural genetics. All 
natural species survive by adapting themselves to the environment. Genetic algorithm 
search combines a Darwinian survival-of-the-fittest concept to eliminate unfit characteristics 
and utilizes random information exchange, with exploitation of knowledge contained in old 
solutions, to effect a search mechanism with power and speed. In using genetic algorithms, 
the usual goal is to find solutions that are closer to the globally optimal point. This 
technique has gained popularity in the recent years as a robust optimization tool for variety 
of problems in engineering, science, economics, finance, etc. 

A simple genetic algorithm is composed of three operators: (1) selection, (2) crossover, and (3) 
mutation. Selection is a process where an old string is carried through into a new population J 
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depending on the performance index values. Due to this move, strings with better fitness 
values get larger numbers of copies in the next generation. Selecting good strings for this 
operation can be implemented in many different ways. In conjunction with the selection 
procedures, the good strings can either be allowed to change (pure selection) or retained in to 
the next evolution (elite selection). A simple crossover follows selection in three steps. First, the 
newly selected strings are paired together at random. Second, an integer position "n" along 
every pair of strings is selected uniformly at random. Finally, based on a probability of 
crossover, the paired strings undergo crossing over at the integer position "n" along the string. 
This results in new pairs of strings that are created by swapping all the characters between 
characters 1 and "n" inclusively. Although the crossover operation is a randomized event, 
when combined with selection it becomes an effective means of exchanging information and 
combining portions of good quality solutions. Selection and crossover give GA most of their 
search power. The third operator, mutation, is simply an occasional random alteration of a 
string position (based on probability of mutation). In a binary code, this involves changing a 1 
to a 0 and vice versa. The mutation operator helps in avoiding the possibility of mistaking a 
local minimum for a global minimum. When mutation is used sparingly (about one mutation 
per thousand bit transfers) with selection and crossover, it improves the global nature of the 
genetic algorithm search. [10] 

By using GPM, the optimal control problem was transcribed to a NLP by parameterizing the 
state and control using global polynomials and collocating the differential-algebraic 
equations using nodes obtained from a Gaussian quadrature. The dispersed state and 
control variables at LG points should be optimized using a parameter optimization 
technique. Here GA can be easily used as a parameter optimization technique for solving 
the problem.  

4. Numerical examples: Lunar powered descent trajectory optimization 

In this section, a trajectory optimization problem for lunar powered descent is presented to 
verify the validity of the proposed optimization method.  

To make the optimization problem easier to solve, the dynamical system considered in most 
of previous studies on lunar powered descent is a two dimensional dynamics [7][11]. The 
descent trajectory of the lunar lander is assumed to remain in a vertical plane without any 
provision for possible lateral movements. However, for standard trajectory design or 
simulation before launching the rocket, the error can not be ignored. To obtain more 
accurate results and demonstrate the validity of this method to solve complex optimization 
problem, a three dimensional descent dynamics with high precision is established in this 
paper, and many strict constraints is given. 

Here, we give the simple formulation of the optimization. 

4.1 Problem formulation 

4.1.1 Dynamics equations 

The lunar lander is in a circular orbit with an initial altitude 0H . A Hohmann transfer orbit 

is used to decrease the altitude from 0H  to the pericynthion (altitude 15km). From here the 

powered descent begins. The powered-descent phase of the lunar-landing mission is 
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initiated at or near the pericynthion of the free descent orbit and finishes near the lunar 

surface (about altitude 2km). It is a continuous thrust maneuver of the duration of several 

minutes. The largest part of fuel is consumed during this phase [12].  

The following frame of reference is established to describe the powered descent maneuver. 

1. Moon Centred Inertial (MCI) coordinate system 1 1 1O X Y Z−  

The Origin is at the center of the moon; 1OX  axis is along the direction of the Moon’s 

revolution, and 1OY  axis is pointing at the ascending node of the Moon’s orbit relative 

to the equator. 

2. Moon Centred Fixed (MCF) coordinate system O XYZ−  

The Origin is at the center of the moon; OX  axis is along the direction of the Moon’s 

revolution, and OY  axis is in the Moon’s equator plane, pointing at the Sinus-Medii. 

3. Orbit coordinate system o xyz−  

The Origin is at the center of gravity of the lunar lander; ox  axis is along the radial 

direction, oy  axis is along the direction of the horizontal velocity at initial state of 

powered-descent. 

It is assumed that the moon has a homogeneous gravity field and a constant rotation 
angular velocity. The coordinate systems and defined parameters are shown in Fig. 1. 
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Fig. 1. Coordinate systems 

The dynamics equations for lunar powered descent can be denoted as follow. 
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

 (17) 

where thrust size T and thrust direction angle ,α β  are control variables for the dynamics. 

Other parameters nomenclature is given in appendix. 

4.1.2 Objectives 

The aim of optimal trajectory design is to minimize the amount of fuel required to perform a 
free end-time descent from the given initial state to the given terminal state. The objective 
function is: 

 
0 00 0

f ft t

f
sp sp

T T
J mdt dt t

I g I g
= = =        (18) 

The magnitude of thrust T  is defined as a constant here, so the objective is to minimize the 
total powered descent time. The objective function can therefore be expressed as 

 fJ t=   (19) 

4.1.3 Constraints 

Firstly the boundary conditions including position and velocity constraints of lunar lander 
at initial time 0t  and final time ft  are considered.  

The constraints at the initial time are 

 ( ) ( ) ( )0 0 0 0 0 0, , Lr R hθ τ θ φ τ φ τ= = = +    (20) 

 ( ) ( ) ( )0 0 0 0 0 0( ) cos sin , ( ) cos cos , 0L Lu V R h v R h wτ ω φ γ τ ω φ γ τ= − + = + =   (21) 
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The constraints at the final time are 

 ( ) ( ) ( ), ,f f f f f L fr R hθ τ θ φ τ φ τ= = = +    (22) 

 ( ) ( ) ( )0 , 0 , 0f f fu v wτ τ τ= = =     (23) 

Then constrained by the propulsion system, the thrust direction angle should be subject to  

 min max[ , ]α α α∈ , min max[ , ]β β β∈    (24) 

where minα , maxα , minβ  and maxβ  are the boundary of thrust direction angle. 

4.2 Simulation example 

Here a test case scenario is given to validate the optimization method. 

The initial and final conditions - treated as boundary conditions by the optimization 
algorithm - are given by Equation (25) 

 

0

0

0

0

0

0

2
15

50

7690

1.6943 / 0

0 0

0 0

f

f

f

f

f

f

h km
h km

u km s u

v v

w w

θθ

φφ

==  ==   = =
 

= = 
 = = 
 = =




   (25) 

The constraints of thrust direction angle are set as follows: 

 [ 50 ,50 ]α ∈ −   , [150 ,220 ]β ∈     (26) 

The values of the other parameters used in this scenario are summarized here: 

 

0

0

6

45 , 15

1738 , 90

365 , 2.6617 10 /

L

sp

T kN m t

R km i

I s rad sω −

= =

= =

= = ×

    (27) 

Here taking the LG points N=50, and GPM-GA is employed to solve the optimization 

problem. The results show that the optimal flight time for lunar landing is 472.74s, and 

require a fuel mass of 5947.2kg. The trajectory of lunar lander is shown in Fig. 2, where the 

result of methodology outlined in this paper, are compared to the indirect method 

(Pontryagin’s maximum principle). As can be see, the two methods yield practically the 

same results. 

The velocity of lunar lander in the orbit coordinate system o xyz−  is shown in Fig. 3, while 

the time history of thrust direction angle during landing is shown in Fig. 4. 
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Fig. 2. The descent trajectory of lunar lander 
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Fig. 3. Time history of velocity 

www.intechopen.com



 
Genetic Algorithms in Applications 

 

68

0 100 200 300 400 500
-10

0

10

20

30

t(s)

α
(d

e
g
)

0 100 200 300 400 500
160

165

170

175

180

185

190

t(s)
β

(d
e
g
)

 

Fig. 4. Time history of thrust direction angle 

The simulation results indicate that the GPM-GA optimization algorithm has high accuracy, 
and the error with results solved by indirect method is very small. What’s more, the 
calculation will converge rapidly even when the initial values for GPM are chosen at 
random in the bound. Less than 2 minutes are needed for a result to be obtained on a PC 
with a 3.0GHz/Pentium 4 CPU. However, if using the traditional method such as direct 
shooting method to solve the optimal descent trajectory, the program can only be converged 
when the initial guess is closed to optimal values, and the calculation time is longer. For 
example, more than 20 minutes are needed for calculation with the method in reference [3]. 

4.3 Results analysis 

4.3.1 Demonstration of computational feasibility 

The feasibility of the computational solution can be validated by comparing the results to 
the propagated states via a separate ODE Runge-Kutta propagator. By interpolating the 

values of the control function, ( )itu , at the discretization time points and then integrating 

the differential dynamical equations 17, via MATLAB’s ode45 solver, a comparison of error 
norms can be made with the results of methodology outlined in this paper. Results showed 
that powered descent trajectory dose satisfy the end-point conditions within an input 
constraint. 

4.3.2 Demonstration of computational optimality 

To demonstrate the necessary conditions needed for optimality the first step requires the 
formulation of the Hamiltonian [13] 

 ( ) ( ) ( ), , , , , , ,TH x u t L x u t f x u tλ λ= +    (28) 

where ( )L ⋅  is the Lagrange cost, and ( )f ⋅  is the vector field for the right hand side of the 

differential dynamical equations.  

The objective function is defined as 

 ( ) ( ), , fJ x u t m t= −   (29) 
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therefore 

 ( ) 0L ⋅ =  (30) 

and 

 ( ) ( ),TH f x uλ⋅ =    (31) 

It can be shown that ( )H ⋅  is constant with respect to time, with boundary conditions 

  ( )
( ),f f

f
f

x t
H t

t

∂Φ
= −

∂
   (32) 

To determine the final value of the Hamiltonian, the Endpoint Lagrangian, given as,  

 

( ) ( ) ( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

1 2

3 4

5 6

,f f f f f f f

f f f f

f f f f

x t m t r r t t

t u u t

v v t w w t

µ µ θ θ

µ φ φ µ

µ µ

Φ = − + − + −

+ − + −

+ − + −

   (33) 

is substituted into the Hamiltonian Value Condition: 

 ( ) 0fH t =  (34) 

where, , 1, 6i iµ =   is Lagrange multipliers. 

This indicates that the Hamiltonian should be 0 for all the time in this problem. The 
Hamiltonian from the optimization solution in this paper is almost 0 with respect to time, 
and it can be used to verify that the numerical results satisfy the necessary Karush-Kuhn-
Tuhker (KKT) conditions for optimality. 

5. Conclusion 

An optimization algorithm GPM-GA method is presented to solve the optimal finite-thrust 
trajectory with an input constraint in the paper. The results of a numerical simulation 
verified the validity of the proposed optimization method. The results indicate that the 
method can provide good performance on accuracy and fast convergence. It is expected that 
this novel optimization algorithm can be used to solve the similar optimization problems. 

6. Appendix 

Nomenclature 

 m mass of lunar lander r  position vector of lunar lander 

0m  initial mass of lunar lander  t flight time 

spI  propulsion system’s specific impulse u , v , w velocity of lunar lander in the orbit 
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0g  gravitational acceleration on the γ  angle between axis oy  and north 

 Earth surface ( 29.81 /m s )  direction of the moon 

Lµ  gravity constant of the moon θ , φ  longitude and latitude 

ω  rotation angular velocity of the moon T  thrust 

 h altitude from lunar surface of lunar  
lander 

α , β  thrust direction angle 
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