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1. Introduction  

At present state, almost the industrial robot tasks are performed by the teaching playback 
method, in which the robot repeats positioning its joint angles, which are taught manually 
in advance using a teaching pendant, etc. This method is based on comparatively high 
repeatability of a robot arm. The problem here is that the laborious and time-consuming 
online manual teaching is inevitable whenever the specification of the product is changed. It 
is desirable to teach the task easily and quickly to the robot manipulator when the 
production line and the production goods are changed. 

Considering these circumstances, the offline teaching based on the high positioning 

accuracy of the robot arm is desired to take the place of the online manual teaching 

(Mooring et al., 1991). In the offline teaching, the joint angles to achieve the given Cartesian 

position of the arm’s tip are calculated using a kinematic model of the robot arm. However, 

a nominal geometrically model according to a specification sheet does not include the errors 

arising in manufacturing or assembly. Moreover, it also does not include the non-geometric 

errors, such as gear transmission errors, gear backlashes, arm compliance, etc., which are 

difficult to geometrically consider in the kinematic model. Under this situation, the joint 

angles obtained based on the non-accurate nominal kinematic model cannot realize the 

desired arm’s tip position satisfactorily, making the offline teaching unfeasible. 

Therefore, some method of calibrating precisely the geometric and non-geometric 
parameters in a kinematic model is required, in which the three dimensional (3-D) absolute 
position referring to a world coordinate system should be measured (Mooring & Padavala, 
1989; Whitney et al., 1986; Judd & Knasinski, 1990; Stone, 1987; Komai & Aoyagi, 2007). The 
parameters are obtained so as that the errors between the measured positions and the 
predicted positions based on the kinematic model are minimized by a computer calculation 
using a nonlinear least square method.  

In this study, a laser tracking system was employed for measuring the 3-D position. This 

system can measure the 3-D position with high accuracy of several tens micrometer order 

(Koseki et al., 1998; Fujioka et al., 2001a; Fujioka et al., 2001b). As an arm to calibrate, an 

articulated robot with seven degrees of freedom (DOF) was employed. After the geometric 
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parameters were calibrated, the residual errors caused by non-geometric parameters were 

further reduced by using neural networks (abbreviated to NN hereinafter), which is one of 

the originalities of this study. 

Several researches have used NN for robot calibration. For example, it was used for 
interpolating the relationship between joint angles and their errors due to joint compliance 
(Jang et al., 2001). Two joints liable to suffer from gravitational torques were dealt with, and 
the interpolated relationships were finally incorporated into the forward kinematic model. 
So the role of NN was supplemental for modeling non-geometric errors. It is reported that 
the relationship between Cartesian coordinates and positioning errors arising there was 
interpolated using NN (Maekawa, 1995). Joint angles themselves in forward kinematic 
model, however, were not compensated, and experimental result was limited to a relative 
(not absolute) measurement using a calibration block in a rather narrow space. Compared 
with these researches, in the method proposed in this study, the joint angles in the forward 
kinematic model are precisely compensated using NN so that the robot accuracy would be 
fairly improved in a comparatively wide area in the robot work space. As instrumentation 
for non-contact absolute coordinate measurement in 3-D wide space, which is inevitable for 
calibration of the robot model and estimation of the robot accuracy, a laser tracking system 
is employed in this study. 

To speed up the calibration process, the smaller number of measuring points is preferable, 
while maintaining the satisfactory accuracy. As for a parallel mechanism, methods of 
reducing the measurement cost were reported (Tanaka et al., 2005; Imoto et al., 2008; Daney 
et al., 2005). As one of the methods of selecting optimal measurement poses, the possibility 
of using genetic algorithm (GA) was introduced (Daney et al., 2005): however, it was still on 
the idea stage, i.e., it was not experimentally applied to a practical parallel mechanism. As 
for a serial type articulated robot, it was reported that the sensitivities of parameters 
affecting on the accuracy are desired to be averaged, i.e., not varied widely, for achieving 
the good accuracy (Borm & Menq, 1991; Ishii et al., 1988). As the index of showing the extent 
how the sensitivities are averaged, observability index (OI) was introduced in (Borm & 
Menq, 1991), and the relationship between OI and realized accuracy was experimentally 
investigated: however, a method of selecting optimal measurement points to maximize OI 
under the limitation of point number has not been investigated in detail, especially for an 
articulated type robot having more than 6-DOF. In this paper, optimal spatial selection of 
measuring points realizing the largest OI was investigated using GA, and it was practically 
applied to a 7-DOF robot, which is also the originality of this study. 

2. Measurement apparatus featuring laser tracking system 

2.1 Robot arm and position measurement system 

An articulated robot with 7-DOF (Mitsubishi Heavy Industries, PA10) was employed as a 
calibration object. A laser tracking system (Leica Co. Ltd., SMART310) was used as a 
position measuring instrument. The outline of experimental setup using these apparatuses 
is shown in Fig. 1 

The basic measuring principle of laser tracking system is based on that proposed by Lau 
(Lau, 1986). A laser beam is emitted and reflected by a tracking mirror, which is installed in 
the reference point and is rotated around two axes. Then, this beam is projected to a retro-
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reflector called Cat’s-eye, which is fixed at the robot arm’s tip as a target (see Figs. 2 and 3). 
The Cat's-eye consists of two hemispheres of glasses, which have the same center and have 
different radiuses. A laser beam is reflected by the Cat’s-eye and returns to the tracking 
mirror, following the same path as the incidence. 

 

Fig. 1. Experimental setup for measuring position of robot arm’s tip 

 

Fig. 2. Cat’s-eye 
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Fig. 3. Principle of measurement of SMART310 

The horizontal and azimuth angle information of laser direction is obtained by optical 

encoders, which are attached to the two axes of the tracking mirror. The distance 

information of laser path is obtained by an interferometer. Using the measured angles and 

distance, the position of the center of Cat’s-eye, i.e., the position of robot arm’s tip, can be 

PA10 

Cat’s-eye 
Laser tracking system 

φ75 mm 

Hemispheres of glasses 
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calculated with considerably high accuracy (the detail is explained in the following 

subsection). 

2.2 Estimation of measuring performance 

According to the specification sheet, the laser tracking system can measure 3-D coordinates 

with repeatability of ±5 ppm (µm/m) and accuracy of ±10 ppm (µm/m). In this subsection, 

these performances are experimentally checked. 

First, Cat’s-eye was fixed, and static position measurement was carried out to verify the 

repeatability of the laser tracking system. Figures 4, 5, and 6 show the results of transition of 

measured x, y, and z coordinate, respectively. Looking at these figures, it is proven that the 

repeatability is within ±4µm, which does not contradict the above-mentioned specification 

which the manufacturer claims. 

Second, the known distance between two points was measured to verify the accuracy of the 

laser tracking system. Strictly speaking, the performance estimated here is not the accuracy, 

but is to be the equivalence. The scale bar, to both ends of which the Cat’s-eye be fixed, was 

used as shown in Fig. 7. The distance between two ends is precisely guaranteed to be 800.20 

mm. The positions of Cat’s-eye fixed at both ends were measured by the laser tracking 

system, and the distance between two ends was calculated by using the measured data. The 

results are shown in Fig. 8. Concretely, the measurement was done for each end, and the 

difference between corresponding data in these ends was calculated off-line after the 

measurement. Looking at this figure, it is proven that the data are within the range of ±10 

µm; however, the maximal absolute error from 800.2 mm is 25 µm, which is somewhat 

degraded compared with the specification. The error is supposedly due to some 

uncalibrated mechanical errors of the laser tracking system itself. 

In the following sections, although the robot accuracy is improved by calibration process, 

the positioning error still be in sub-millimeter order, i.e., several hundreds micrometer 

order, at the least. Therefore, the used laser tracking system, whose error is several tens 

micrometer order at the most, is much effective for the application of robot calibration. 

 

Fig. 4. Result of transition of x coordinate 
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Fig. 5. Result of transition of y coordinate 

 

Fig. 6. Result of transition of z coordinate 

 

Fig. 7. Scale bar 

 

Fig. 8. Result of measurement of scale bar 
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3. Calibration of kinematic parameters 

3.1 Kinematic model using DH parameter 

In this research, the kinematic model of the robot is constructed by using Denabit-

Hartenberg (DH) parameters (Denavit & Hartenberg, 1955). The schematic outline of the DH 

notation is shown in Fig. 9. In this modeling method, each axis is defined as Z  axis and two 

common perpendiculars are drawn from 1iZ   to iZ  and from iZ  to 1iZ  , respectively. The 

distance and the angle between these two perpendiculars are defined as id  and i , 

respectively. The torsional angle between iZ  and 1iZ   around 1iX   is defined as i . The 

length of the perpendicular between iZ  and 1iZ   is defined as ia . Using these four 

parameters, the rotational and translational relationship between adjacent two links is 

defined. The relationship between two adjacent links can be expressed by a homogeneous 

coordinate transformation matrix, the components of which include above-mentioned four 

parameters. 

 

Fig. 9. DH notation 

The nominal values of DH parameters of PA10 robot on the basis of its specification sheet 
are shown in Table I. The deviations between the calibrated values (see the next subsection) 
and the nominal ones are also shown in this table. 

The kinematic model of the relationship between the measurement coordinate system (i.e., 

SMART310 coordinate system) and the 1st axis coordinate system of the robot is expressed 

by a homogeneous transformation matrix using 6 parameters (not 4 parameters of DH 

notation), which are 3 parameters of , ,r p y    for expressing the rotation, and 3 parameters 

of 0 0 0, ,x y z  for expressing the translation. 

The kinematic model from the robot base coordinate system to the 7th joint coordinate 
system is calculated by the product of homogeneous coordinate transformation matrices, 
which includes 4×7 = 28 DH parameters. 

As for the relationship between the 7th joint coordinate system and the center position of 

Cat’s-eye, it can be expressed by using translational 3 parameters 8 8 8, ,x y z . 

Thus, as the result, the kinematic model of the robot is expressed by using 6+28+3 = 37 
parameters in total, which is as follows: 

 

Joint +1i  

+1i
i

i
id

i
iX

ia

iZ
+1i 1iX 

1iZ 

i
 Link i  

Joint i
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 0 0 0 1 1 1 1 7 7 7 7 8 8 8( , , , , , , , , , , , , , , , , , )T
r p yx y z a d a d x y z      P    (1) 

 

Joint  [deg] d  [mm] a [mm]  [deg] 

 Nominal 
value 

Deviation Nominal
value 

Deviation Nominal 
value 

Deviation Nominal 
value 

Deviation 

1 0.0 -0.44 315.0 1.24 0.0 -0.56 -90.0 0.10 

2 0.0 0.04 0.0 0.39 0.0 0.34 90.0 -0.16 

3 0.0 0.57 450.0 0.96 0.0 0.32 -90.0 0.01 

4 0.0 -0.15 0.0 0.35 0.0 -0.14 90.0 -0.32 

5 0.0 2.12 500.0 -0.33 0.0 -0.17 -90.0 -0.52 

6 0.0 0.21 0.0 0.32 0.0 0.61 90.0 -0.17 

7 0.0 -1.29 80.0 -0.82 0.0 1.02 0.0 -1.25 

Table 1. DH Parameters of PA10 Robot 

3.2 Nonlinear least square method for calibrating geometric parameters 

The Cat's-eye is attached to the tip of PA10 robot, and it is positioned to various points by 
the robot, then the 3-D position of the robot arm’s tip is measured by the laser tracking 
system. The parameters are obtained so that the errors between the measured positions and 
the predicted positions based on the kinematic model are minimized by a computer 
calculation. 

The concrete procedure of calibration is described as follows (also see Fig. 10): Let the joint 

angles be 1 2 7( , , , )  Θ  , designated Cartesian 3-D position of robot arm’s tip be 

( , , )r r r rX Y ZX , measured that be ( , , )X Y ZX , nominal kinematic parameters based on 

DH notation be nP  (see (1)). Then, the nominal forward kinematic model based on the 

specification sheet is expressed as ( , )nX f Θ P . 
 

 

Fig. 10. Calibration procedure using nonlinear least square method 

By using the nominal kinematic model, the joint angle rΘ  to realize rX  are calculated, i.e., 

the inverse kinematic is solved, which is expressed in the mathematical form as 
1( , )r r n
Θ f X P .  

1
( , )

r r nΘ f X P  PA10 robot

ˆ ˆ( , )rX f Θ P  

r
X rΘ min

X̂  

X    


:nP nominal parameter 

ˆ :P calibrated parameter 

1 2 7( , , , )   Θ  

2

1

ˆ min


 
m

i

X X  
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The joint angles are positioned to rΘ , then, the 3-D position of robot arm’s tip is measured 

as X . Let the calibrated parameters be P̂ , and the predicted position based on the 

calibrated model be X̂ , then the forward kinematic model using them is expressed as 
ˆ ˆ( , )rX f Θ P . The P̂  is obtained so that the sum of errors between the measured positions 

X  and the predicted positions X̂  is minimized by using a nonlinear least square method. 

3.3 Modeling of non-geometric errors (Method 1) 

Referring to other researches (Whitney et al., 1986; Judd et al., 1990), the typical non-
geometric errors of gear transmission errors and joint compliances are modeled herein, for 
the comparison with the method using NN proposed in this study, the detail of which is 
explained in the next subsection 3.4.  

It is considered that the gear transmission error of gt  arises from the eccentricity of each 

reduction gear. This error is expressed by summation of sinusoidal curve with one period 
and that with n periods as follows:  

  1 1 2 2sin( ) sin( )gt gt gt
i i i i i i i iP P n         , (2) 

where i is joint number ( 1 7i  ), i is the joint angle detected by a rotary encoder sensor, 

in  is the reduction ratio of the gear, 1 2 1 2, , ,gt gt
i i i iP P    are parameters to be calibrated. 

As for the joint no. 2 and no. 4, which largely suffer from torques caused by arm weights, the 

joint angle errors of 2
com  and 4

com  due to joint compliances are expressed as follows: 

  2 1 2 2 2 4sin sincom com comP P       ,   (3) 

  4 3 2 4sincom comP     ,  (4) 

where 1 2 3, ,com com comP P P  are parameters to be calibrated. 

In the forward kinematic model, i  is dealt with as: gt
i i i      ( 1, 3, 5, 6, 7)i  , 

gt com
i i i i         ( 2, 4)i  . As the parameters, 1 2 1 2, , ,gt gt

i i i iP P    (1 7)i  , 

1 2 3, ,com com comP P P  are added to P   in (1), forming 68 parameters in total. 

3.4 Using neural networks for compensating non-geometric errors (Method 2) 

Non-geometric errors have severely nonlinear characteristics as shown in (2)-(4). Therefore, 
a method is proposed herein as follows: after the geometric parameters were calibrated, the 
residual errors caused by non-geometric parameters were further reduced by using NN, 
considering that NN gives an appropriate solution for a nonlinear problem.  

The concrete procedure using NN is described as follows (also see Fig. 11): Typical three 

layered forward type NN was applied. The input layer is composed of 3 units, which 

correspond to Cartesian coordinates of X, Y, and Z. The hidden layer is composed of 100 

units. The output layer is composed of 7 units, which correspond to compensation values of 

7 joint angles, which are expressed as 1 2 7
ˆ ˆ ˆ ˆ( , , , )p      ΔΘ   and is added to the Θ  

parameter in DH model. 

www.intechopen.com
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In the learning of NN, measured data of robot arm’s tip ( , , )X Y ZX  is adopted as the 

input data to NN. Then, the parameter ˆ
PΘ  to satisfy ˆ ˆˆ( , )r P  X f Θ P Θ  is calculated 

numerically by a nonlinear least square method, where 1ˆ ˆ( , )r r
Θ f X P  are the joint angles 

to realize rX  based on the kinematic model using the calibrated parameters P̂  (see the 

previous subsection 3.2). 

Then, the obtained many of pairs of ˆ( , )pX ΔΘ  are used as the teaching data for NN 

learning, in which the connecting weights between units, i.e., neurons, are calculated. For 

this numerical calculation, RPROP algorithm (Riedmiller & Braun, 1993), which modifies the 

conventional back-propagation method, is employed. 

 

Fig. 11. Learning procedure of NN 

3.5 Implementation of neural networks for practical robot positioning 

Figure 12 shows the implementation of NN for practical robot positioning. When rX  is 

given, the compensation parameter ˆ
PΘ  is obtained by using the NN, then, the accurate 

kinematic model including ˆ
PΘ  is constructed. Using this model, the joint angle 

1ˆ̂ ˆˆ( , )r r P
  Θ f X P Θ  is calculated numerically, and it is positioned by a robot controller. 

Then, rX  is ideally realized. 
 

 

Fig. 12. Implementation of NN 

4. Experimental results of calibration 

4.1 Measurement points for teaching and verification 

Measurement area of 400×400×300 mm was set, as shown in Fig. 13. This area was divided 

at intervals of 100 mm for x, y, and z coordinates, respectively. As the result, 5×5×4 = 100 

grid points were generated. The group of the grid points was used for teaching set for 

calibration. 

1ˆ ˆ( , )r r
Θ f X P  

ˆ ˆ ˆˆ ˆ( , )  r pX f Θ P Θ

NN 

min 




X

ˆ̂
X

ˆ
pΘ  

ˆ
rΘ  rX

PA10 robot

ˆ
pΘ  

1ˆ̂ ˆˆ( , )
  r r PΘ f X P Θ  

NN 

rX
ˆ̂

rΘ  X
PA10 robot
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On the other hand, the group of 100 points was taken as shown in Fig. 14. Points were 
located at regular intervals on a circular path, of which radius is 100 mm and center is (500, 
100, 600) mm. They were used for verification set for the calibration result. 

 

Fig. 13. Measurement points for teaching data 

 
Fig. 14. Measurement points for verification data 

4.2 Estimation of effect of calibrated model 

The joint angles to realize the verification set were calculated based on the calibrated model, 

and they were positioned by a robot controller. Note that, this calculation of inverse 

kinematics is not solved analytically, so it should be numerically solved, since the adjacent 

joint axes in the calibrated model are no longer accurately parallel or perpendicular to each 

other. 

Then, the Cartesian 3-D positions of the robot arm’s tip, i.e., the verification set, were 

measured by the laser tracking system. By comparing the measured data with the 

designated data, the validity of the calibrated kinematic model was estimated. 

Figure 15 and Table 2 show the results in the first trial (called Trial 1). In this figure, error 

means the norm of 2 2 2( ) ( ) ( )r r rX X Y Y Z Z     . This definition is used for the 

following of this article. 

4.3 Discussion 

It was proven that the error was drastically reduced from 5.2 mm to 0.29 mm by calibrating 

geometric parameters using a nonlinear least square method. It was proven that the error 

was further reduced to 0.19 mm by compensating non-geometric parameters using NN, 

indicating effectiveness of Method 2. 
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Fig. 15. Result at verification points 

 

 Trial 1 Trial 2 Trial 3 

Before calibration 5.23 8.37 7.86 

Nonlinear least square method 0.29 0.35 0.33 

Modeling of non-geometric errors (Method 1) 0.24 0.26 0.27 

Applying NN (Method 2) 0.19 0.17 0.15 

Table 2. Average of errors in points for verification (unit; mm) 

The error was reduced by calibrating both geometric and non-geometric parameters using a 

nonlinear least square method, i.e., by applying Method 1. The improvement from 

calibrating only the geometric parameters (not non-geometric parameters) using a nonlinear 

least square method, however, was subtle and incremental, which was from 0.29 to 0.24 

mm. 

To verify that the experimental result is repeatable, the calibration process was carried out 
again for the same verification data set on the same circular path, called Trial 2. And it was 
carried out for a data set on another circular path, of which z coordinate is shifted from 
original 600 to 700 mm, called Trial 3. The results are added and shown in Table 2. 
Compared Trial 2 and 3 with Trial 1, it is proven that the experimental trend of average 
errors is repeatable. 

 

0

2

4

6

8

0 20 40 60 80 100

● Before calibration 

■ Nonlinear least square method 

◆ Modeling of non-geometric errors (Method I)

▲ Applying NN (Method II) 

E
rr

o
r 

 m
m

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

E
rr

o
r 

 m
m

 

Grid point number 

Enlargement 

www.intechopen.com



 
Genetic Algorithms in Applications 

 

14

Eventually, it was proven that Method 2 of first calibrating the geometric parameters and 
next further compensating the non-geometric parameters using NN is the best among these 
procedures. The reason of superiority of Method 2 is thought to be as follows: there are 
many unexpected non-geometric errors besides the gear transmission errors and joint 
compliances. Therefore, Method 1 of only considering these two type non-geometric errors 
did not work so well. On the other hand, NN can compensate all types of non-geometric 
errors by imposing the resultant errors in its learning process appropriately to the variety of 
connecting-weights of neurons. 

Even in case of using NN, there remain still positioning errors of approximately 0.2 mm. 

They supposedly arise from the limitation of generalization ability of NN, since the points 

for verification are considerably apart from those for teaching. 

5. Selection of optimal measuring points using Genetic Algorithm (GA) 

5.1 Meaning of reducing number of measuring points  

For shortening the time required for the calibration process, reducing the number of 

measuring points while maintaining the accuracy is effective. For increasing the 

calibration accuracy, it is important that the sensitivity of (tip position 

displacement)/(parameter fluctuation) is uniform for all the parameters in the kinematic 

model. As the index of showing the extent how the sensitivity is uniform among the 

parameters, observability index (OI) was reported (Borm & Menq, 1991). The larger OI 

means the higher uniformity. In this section, under the limitation of point number, 

optimal spatial selection of measuring points achieving the largest OI is investigated 

using genetic algorithm (GA).  

The procedure of obtaining OI is described hereinafter. Let the forward kinematic model be 

( , )X f Θ P , as already explained in subsection 3.2. Then, the error of robot arm’s tip ΔX  

with respect to the error of geometric parameters ΔP  is expressed as follows: 

 


 

XΔX ΔP JΔP
P

,   (5) 

where (3 )nJ  is the Jacobian matrix, n is the number of geometric parameters. Assuming 

the number of measuring points be m, equation (5) is extended as follows:  

 ΔY BΔP ,   (6) 

where …1 2, , , (3 1)
TT T T

m m   ΔY ΔX ΔX ΔX , and …1 2, , , (3 )
TT T T

m m n   B J J J . By 

applying singular value decomposition to the extended Jacobian matrix B, singular values 

1 n   are obtained, which are equivalent to the sensitivities of geometric parameters 

1 np p , respectively. By using 1 n  , OI is defined as follows: 

 
…

21
OI

n
n

m

  
 .   (7) 
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5.2 Selection of measuring points using GA 

It is impossible to analytically define the optimal measuring points that maximize OI. 
Therefore, GA is applied in this study, which is known as an effective method for searching 
an optimal (or nearly optimal) solution of a severely nonlinear problem. 

The procedure of pursuing the optimal spatial selection of measuring points is described 
hereinafter. Let us assume that the number of measuring points is limited to 8, for example. 
Then, a chromosome is provided, which consists of X, Y, and Z coordinates of 8 points. As 8 
bit is assigned to each coordinate, the chromosome consists of totally 8 points×3 
coordinates×8 bit = 192 bit, as shown in Fig. 16. 

 

Fig. 16. Chromosome of GA 

Since 14 singular values were almost zero, the effective number of singular values is 37-

14=23 (Ishii et al., 1988). Three equations are obtained for X, Y, and Z coordinates at each 

point measurement, so the practical minimum number of measurement points is 8, since 

23/3=7.67. Note that these 14 parameters are independent in a strict meaning; therefore they 

are uniquely obtained in the previous section. By contrast, in this section, the practical small 

measurement number is focused on; so they are regarded as approximately redundant 

(dependent) and omitted. 

Six chromosomes are randomly employed at first. By repeating crossover and mutation at 

each generation with referring to the fitness function of OI, they are finally converged to 

such a chromosome that realizes the largest OI. 

5.3 Experimental results of GA search 

At several numbers of generations, GA search was stopped, and the resultant 8 measuring 

points and corresponding OI were checked. At these 8 points, the robot arm’s tip was 

measured by the laser tracking system. Using the measured data, the kinematic model was 

calibrated by a nonlinear least square method. Then, based on the calibrated kinematic 

model, the robot arm’s tip was positioned to 100 points for verification, where the absolute 

error was estimated again by the laser tracking system. These procedures were repeated 

during the progress of GA search. 

The resultant relationship between OI and the positioning error is shown in Fig. 17. At first, 
the 8 points were selected at random, then, the GA search progresses, finally it is truncated 
when the number of generation reaches 1,000. From this figure, it is proven that OI is 
increased and the resultant error is reduced as the GA search progresses.  

No. 1 

  



No. 8 

192 bit in total

8X  8Z  8Y  1Y  1Z  1X  

8 bit 8 bit 8 bit 8 bit 8 bit 8 bit 

www.intechopen.com



 
Genetic Algorithms in Applications 

 

16

 

Fig. 17. Relationship between OI and positioning error 

The data in cases that the number of measuring points is 12 and 15 are also shown in this 
figure. Looking at the figure, in these cases, the resultant error is less dependent on OI value. 
It is supposedly because the number of measuring points is enough compared with 
minimum 8 points. For reference, OI of 100 points in teaching points shown in Fig. 13, and 
the resultant error using these points, are also depicted in this figure of Fig.17. It indicates 
that 100 points are not necessary. As the result, even 8 minimal measuring points are 
enough for achieving good accuracy better than 0.5 mm in this example case, provided that 
they are optimally selected in advance using GA computational search. 

Figure 18 shows an example of 8 measuring points, which were selected by the GA search. 
The resultant OI for these 8 points was 1.75. For the reference, randomly selected 8 points at 
the beginning of the GA search are also shown in this figure, the OI for which is 0.3. Looking 
at this figure, measuring points with larger OI are distributed widely in the 3-D space, 
whereas those with smaller OI are gathered in a comparatively small area. 

6. Conclusions 

We employed a laser tracking system for measuring robot arm’s tip with high accuracy. By 
using the measured data, the kinematic model of a 7-DOF articulated robot arm was 
calibrated. Using the calibrated model, high positioning accuracy within 0.3 mm was 
realized. 

To briefly summarize the achievements of this article, 1) the geometric parameters were 
calibrated by minimizing errors between the measured positions and the predicted ones 
based on the kinematic model. 2) The residual errors mainly caused by non-geometric 
parameters were further reduced using neural networks. 3) Optimal measuring points, 
which realize high positioning accuracy with small point number, were selected using 
genetic algorithm (GA). 

If the orientation of robot arm’s tip could be precisely measured using some sensor such as a 
gyroscope (Fujioka et al., 2011b), the robot kinematic model of realizing both position and 
orientation can be calibrated, which is planned to do in a future projected work. 
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Fig. 18. Distribution of selected measuring points 
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