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1. Introduction 

It has been observed that similar medication is subject to a considerable efficacy 

heterogeneity and toxicity across the human population and numerous studies, over the last 

30 years, have indicated that individual genetic make-up might well be the major 

determinants of this variability in drug action (Nebert et al., 2008). 

The intellectual foundation of the hypothesis that variation among individuals in drug 

response might be due to subtle genetic differences with little or no obvious phenotypes, 

except in response to the relevant drug, was first articulated by Arno Motulsky (Motulsky, 

1957). Although the notion that certain individuals inherited a predisposition, such as to 

alcaptonuria or other conditions, may most likely be attributed to the British physician 

Archibald Garrod (Garrod, 1975). Garrod observed that parental consanguinity was more 

common than usual among parents of children with alcaptonuria and, with particular 

foresight, he developed the concept of “Chemical Individuality in Man”. He proposed that 

drugs undergo biotransformation by specific pathways similarly to endogenous substrates 

and defects in such pathways, that occur with inborn metabolic errors, that could alter drug 

concentrations and, therefore, their effects (Meyer, 2004). It was then William Bateson 

(Meyer, 2004), a biologist ahead of his time, who interpreted Garrod’s reports as a recessive 

inheritance when he popularized Mendelian genetics in Britain. Bateson discovered genetic 

linkage and introduced the term “genetics” at some time between 1902 and 1913.  

The concept of familial clustering of unusual xenobiotic responses was reinforced during the 

1940s, when a high incidence of haemolysis was observed among individuals with glucose-

6-phosphate dehydrogenase deficiency when exposed to antimalarial drugs (Beutler et al., 

1955a, 1955b). In the 50s, Evans et al. identified N-acetylation as a major route of isoniazid 

elimination (Evans et al., 1960). Although individuals varied substantially in terms of the 

extent to which a single dose of the drug was acetylated, less variability was observed 

between monozygotic twins than dizygotic twins (Roden & George Jr, 2002). This 

observation led to further studies that defined the clinical consequences and genetic basis 

underlying the fast and slow acetylator phenotypes. Shortly thereafter, Friedrich Vogel first 

coined the term “Pharmacogenetics”, defining it as the “study of the role of genetics in drug 

response” (Nebert et al., 2008). More generally, the late 20th century witnessed developments 

in the understanding of the molecular basis of drug disposition, action and the mechanisms 

that determine the observed variability in drug action.  
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Along with the increased understanding of the molecular, cellular and genetic determinants 
of drug action, has come the appreciation that variants in many genes might contribute to 
variability in drug action.  

Single Nucleotide Polymorphisms (SNPs) have been long recognized as the main source of 
genetic and phenotypic human variation and numerous recent studies have tried to 
demonstrate that SNPs make a major genetic contribution to the variability in drug effects 
(Evans & McLeod, 2003; Gardiner & Begg, 2006). However, the complete mapping of all 
human genes, arrived through the Human Genome Project, along with the advent of more 
powerful molecular technologies and other studies showing a poor correlation between 
SNPs in candidate genes and phenotypes, modifying this perception (Nebert & Vesell, 2004). 
Therefore, this chapter focuses on the development of Pharmacogenetics from SNPs to the 
new area of Genomics, or Pharmacogenomics, in an attempt to better understand and 
predict variations in drug response phenotypes. 

2. From pharmacogenetics to pharmacogenomics 

An SNP is a DNA sequence variation which occurs when a single nucleotide (A, T, C, or G) 
in the genome, or other shared sequences, differs between members of a biological species, 
or paired chromosomes in an individual. For example, a SNP might change the DNA 
sequence AAGGCTAA to ATGGCTAA (Fig.1).  

 

Fig. 1. Single Nucleotide Polymorphism 

For a variation to be considered a SNP, it must occur in at least 1% of the population. Single 
Nucleotide Polymorphisms, representing about 90% of all human genetic variations, occur 
every 100 to 300 bases along the 3-billion-base human genome. Consequently, it has been 
estimated that there are at least 10 million SNPs within the human population (Kruglyak & 
Nickerson, 2001). They can be in coding regions (where they may be either synonymous, or 
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non-synonymous) or, more commonly, in non-coding regions and frequently vary 
according to ethnicity (Sachidanandam et al., 2001). It is in these heritable variations among 
individuals that the principles of Pharmacogenetics are found. However, other types of 
genetic variations, such as small insertions (usually <1 kb), deletions, inversions, variable 
numbers of tandem repeats (minisatellite), short tandem repeats (microsatellite), copy 
number variations (Nakamura, 2009) and combinations of these changes, can also contribute 
to variability in drug response, even if to a less extent than do SNPs. Therefore, the selection 
of a non-synonymous SNPs, or other genetic variations in coding regions, in hypothesis 
driven pharmacogenetic association studies, is based on their functionality, where the 
genetic variant leads to, or is predicted to lead to, alterations in protein function and hence 
drug response variability. 

There are at least four examples where this approach has been correlated with significant 
changes in drug effects (Evans & McLeod, 2003; Gardiner & Begg, 2006). One of the best 
examples of SNPs relating to the outcome of therapy is the polymorphism of the gene 
thiopurine S-methyltransferase (TPMT) (Yates et al., 1997). Thiopurine S-methyltransferase 
is a cytosolic drug-metabolizing enzyme that catalyzes the S-methylation of 6-
mercaptopurine (6-MP) and azathioprine. Weinshilboum et al. demonstrated a very clear tri-
modal frequency of TPMT activity in red blood cells from 298 unrelated control adults 
(Weinshilboum & Sladek, 1980). One in 300 subjects lacked TPMT activity and 11% had 
intermediate levels. Family studies have demonstrated that the frequency distribution is due 
to inheritance (Weinshilboum & Sladek, 1980). While phenotypic studies have shown a clear 
tri-modal distribution, the genetic basis of phenotypic variation is a more complex question 
(Evans & Krynetsky, 2003). 

To date, about seventeen variant TPMT alleles have been identified, although 3 variant 
alleles account for the majority (>95%) of persons with intermediate (1 variant allele), or low 
(2 variant alleles) TPMT activity (Krynetski et al., 1995; Yates et al., 1997). Subsequent 
clinical studies demonstrated that TPMT polymorphism is able to predict 6-MP toxicity and 
consequences of therapy (Lennard et al., 1990; Relling et al., 1999).  

Another good example of SNPs influencing therapeutic efficacy is the polymorphism of 
genes belonging to the superfamily of cytochrome P450 enzymes (CYP450) (Wilkinson, 
2005). CYP2D6 polymorphism is clinically important mainly due to the greater likelihood of 
adverse reactions (ADRs) amongst individuals, because they can be associated with poor 
metabolism of certain drugs, resulting in high plasma concentrations and increased 
likelihood of ADRs. For example, patients carrying some of the CYP2D6 variants identified 
(http://www.imm.ki.se/cypalleles), have a greater risk of adverse effects from metoprolol, 
venlafaxine and tricyclic antidepressants, or have impaired ability to metabolically activate 
prodrugs like codeine and the selective oestrogen receptor modulator (SERM), tamoxifen, to 
form active drug metabolites (Bertilsson et al., 2002; Jin et al., 2005; Lessard et al., 1999; 
Mortimer et al., 1990; Sindrup & Brøsen, 1995; Stearns et al., 2003; Wuttke et al., 2002). 

CYP2C19 is important in the metabolism of proton-pump inhibitors (omeprazole, 
lansoprazole, rabeprazole and pantoprazole), fluoxetine, sertaline and nelfinavir. Although 
there are several inactive genetic variants, two (CYP2C19*2 and CYP2C19*3) account for 
more than 95% of cases of poor metabolism of these drugs (Wedlund, 2000). Marked 
differences in the plasma levels of protein-pump inhibitors occur between genotypes and 
phenotypes and are reflected in drug-induced changes in gastric pH (Furuta et al., 1999). 

www.intechopen.com



 
Clinical Applications of Pharmacogenetics 270 

CYP2C9 is an enzyme involved in the hydroxylation of the S form of the anti-epileptic agent 
phenytoin and the anticoagulant warfarin. Many CYP2C9 variant alleles have now been 
reported (http://www.imm.ki.se/cypalleles) and decreased activity has been confirmed in 
cases with CYP2C9*3, by an expression system using COS cells and yeast and an in vivo test 
on healthy volunteers and patients with a known genetic polymorphism (Takahashi et al., 
1998b, 2000).  

Indeed, there was a 50% decrease in oral clearance capacity of (S)-warfarin in individuals 
with heterozygous polymorphism for CYP2C9*3 (CYP2C9*1/*3), dropping to less than 10% 
in homozygous individuals for CYP2C9*3 (Takahashi et al., 1998a).  

These successful pharmacogenetic studies, together with the glucuronidation of an 
anticancer drug, irinotecan, by a member of the UDP-glucuronosyltransferase (UGT) 
enzyme family (Gagné et al., 2002), showing gene-drug interactions, represented a 
predominantly monogenic, high-penetrance trait where the functional consequence of a 
major gene was recognized. However, these associations were not replicated by other 
investigators (Hu & Ziv, 2008) and might lead to false-positive findings (Serpe et al., 2009). 
Indeed, even with the very strong single-gene high-penetrance disorder TPMT, a study 
correlating thiopurine related ADRs with TPMT genotype, noted that 78% of ADRs were not 
associated with TPMT gene polymorphism and were attributable to factors other than this 
drug-metabolizing enzyme (van Aken et al., 2003).  

Although the presence of non-synonymous SNPs in a candidate gene may be suspected to 
cause variance in drug response, this cannot account for all SNPs able to cause drug 
response variance or susceptibility in drug response variance. Other functional SNPs 
implicated in variance in drug response or susceptibility variance in drug response include 
SNPs located in promoter, introns, splice sites and intragenic regions. Furthermore, it has 
been postulated that even synonymous or silent SNPs are implicated in functional 
consequence via hypothesized mechanisms (Kimchi-Sarfaty et al., 2007). 

A more comprehensive approach is the genome-wide method (GWA) using SNP arrays 
(Grant & Hakonarson, 2008). With this strategy we move from studies involving the effects 
of single genes on drug disposition and response, to studies where the effects of several 
genes up to whole genome are investigated. In other words we move from 
Pharmacogenetics to Pharmacogenomics.  

A clear advantage of this method is that it is hypothesis-free and that this may reveal 
unexpected SNPs related to drug response. Hence this method does not rely on current 
knowledge of the metabolism and mechanism of action to drug response. Recent genome-
wide association studies have presented novel associations between SNPs and drug 
response. Studies on drug response have detected significant genome-wide associations for 

interferon-, clopidogrel response and anticoagulant dose requirement (Cooper et al., 2008; 
Shuldiner et al., 2009; Takeuchi et al., 2009; Tanaka et al., 2009; Teichert et al., 2009). As to 
ADRs, significant associations have been reported for statin-induced myopathy and 
flucloxacillin induced liver injury (Daly et al., 2009; Link et al., 2008). Most of these studies 
reported novel findings and made important contributions to the field, some even with the 
potential to influence clinical practice. 

Since it has been estimated that the human genome contains more than 10 million SNPs, 
comprehensive genome-wide SNP pharmacogenomic association studies would require too 
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many SNPs. Various strategies may be adopted to overcome these challenges: one could be 
to improve high-throughput sequencing technologies capable of sequencing a full human 
genome in the most cost-effective way, another to combine the candidate gene approach 
with the genome wide SNP association studies strategy (Kooloos et al., 2009), or to apply 
genome-wide haplotype pharmacogenomic association studies (Srinivasan et al., 2009). 

Haplotypes are a combination of alleles at different markers along the same chromosome 
that are inherited as a unit. Unlike a genotype, the identity of a single polymorphic location 
on both chromosomal alleles, a haplotype is the specific combination of nucleotides present 
at all of the polymorphic locations within a single chromosomal allele. All the genetic 
variations in a population, or species, can be described as the sum of all haplotypes present 
among the individuals of that population, or species. Nucleotide differences between these 
haplotypes are responsible for heterozygous genotypes and provide information useful in 
ascertaining the identity and/or structure of a haplotype. Consequently, haplotyping 
nucleotide polymorphisms requires two steps: firstly, the identification of the 
polymorphisms and, secondly, the determination of which polymorphisms are allelic to one 
another (Fig.2).  

 

Fig. 2. Haplotypes: a set of closely linked genetic markers (SNPs) present on one 
chromosome which tend to be inherited together 

Although the primary tool used in pharmacogenetic association studies has traditionally 
been the genotyping of SNPs, recent evidence indicates that determining haplotypes may be 
more informative than genotyping single variants (Evans & McLeod, 2003). Indeed, in this 

context, a study evaluated whether the response to inhaled 2-agonist therapy for asthma 

was best predicted by individual non-synonymous SNPs, or 13 SNPs within the 2-
adrenoceptor gene (ADRB2) (Drysdale et al., 2000). It reported that these 13 SNPs were 
organized into only 12 of the possible 8,192 SNP haplotype combinations. Although 
haplotype analyses did define a patient group with a significantly superior response to ǃ2-
agonist therapy, only 5/12 appeared with more than a 10% frequency in the multiethnic 
cohort studies. Therefore, there has been a great deal of interest in defining the haplotype 
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structure of the human genome (e.g. the human ‘‘HapMap’’ project). The HapMap project 
(The International HapMap Project, 2003) focuses on SNPs that are relatively common 
among human populations; assessing these SNPs at an appropriate density (i.e. number and 
position across the human genome) will provide new insights into the polymorphic nature 
of the human genome. 

As common SNPs are phylogenetically older than rare SNPs, they have arisen from 
recombination events of ancestral haplotypes (Wall & Pritchard, 2003). Therefore, focusing 
on these common SNPs will allow for the reconstruction of these ancestral haplotypes, 
tracing human evolutionary history. More importantly, the use of common SNPs to map the 
human haplotype structure will identify the haplotypes that make up the majority (perhaps 
up to 90%) of human variations and will be the most informative source for GWA 
pharmacogenomic studies. Recent evidence suggests that genotyping just 6 to 8 ‘‘haplotype 
tag’’ SNPs per 10–100 kb of genomic DNA may provide enough information to determine 
an individual’s haplotype for that region (Gabriel et al., 2002; Wall & Pritchard, 2003). This 
suggests that genotyping these haplotype tag SNPs will be the method of choice for the 
haplotyping of individual patients for common variations in genome-wide haplotype 
pharmacogenomic association studies. According to these new strategies, there is an ever 
increasing use of genome-wide association studies in the field of Pharmacogenomics, with 
several studies appearing between 2010 and 2011 (Daly, 2010). However, it has become 
apparent that there may be allelic epigenetic modifications at some genes that cause these 
alleles to exhibit different expression patterns (Fournier et al., 2002). Indeed, in the future it 
may be important to refine our concept of haplotypes and, therefore, GWA, beyond DNA 
sequence variations, to include other information, such as allelic epigenetic factors, which 
are inherited through mitosis and meiosis with the DNA itself and serve to extend the 
information content of the human genome (Jenuwein & Allis, 2001). 

3. Pharmacoepigenetics and pharmacoepigenomics 

Epigenetics is usually defined as the study of mitotically heritable changes in gene 
expression that are not attributable to nucleic acid sequence alterations. Therefore 
epigenetics refers to the regulation of various genomic functions controlled by stable, but 
potentially reversible changes in DNA methylation and chromatin structure (Henikoff & 
Matzke, 1997). Epigenomics refers to the study of epigenetics on a genome-wide basis 
(Peedicayil, 2008).  

There are two major mechanisms of epigenetic regulation, methylation of cytosines in the 
DNA sequence and modification of the histone proteins that the DNA is wrapped around. 
The coordination of both mechanisms results in dramatic changes in the remodelling of 
chromatin and altered gene transcription (Flanagan & Petronis, 2005). One of the most 
recent important observations is the increasing evidence that epigenetic factors play an 
important role in the etiopathogenesis of human diseases and the discovery that  epigenetic 
risk factors open new opportunities for diagnostic, prognostic and therapeutic approaches 
in human biology. Indeed, epigenetic factors contribute to numerous genomic functions, 
from the regulation of gene activity to genome stability and segregation of chromosomes, 
such as: genomic imprinting, X chromosome inactivation and suppression of parasitic DNA 
elements (Urnov & Wolffe, 2001). Moreover, epigenetic variation across individuals is much 
richer in comparison to DNA sequence variation and identical DNA sequences in unrelated 
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individuals exhibit significant epigenetic variation. Therefore, such epigenetic differences 
may have an impact on gene expression that translates into differential density of receptors, 
or varied numbers of molecules of an enzyme, factors that might contribute to the 
pharmacokinetic and pharmacodynamic drug variability. The main goals of 
Pharmacoepigenomics and Pharmacoepigenetics are to predict drug response and/or 
adverse reactions, based on the epigenetic individuality of an organism. 

3.1 The effect of methylation/deacetylation on drug response 

There are almost 300 genes involved in the absorption, distribution, metabolism, and 

excretion (ADME) of pharmaceutical compounds in humans. It has been demonstrated that 

DNA methylation, or histone modifications, potentially participate in the regulation of 

almost 60 human ADME genes (Kacevska et al., 2011). A correlation between the epigenetic 

state of the gene and a possible influence on drug therapy outcome has been experimentally 

established only for a few ADME genes. Nevertheless, there is credible evidence that 

epigenetic factors influence ADME gene expression, which, in turn, leads to changes in the 

metabolism and distribution of drugs. For example, about 30% of the lungs of heavy 

smokers and 70% of light smokers’ lungs have a CYP1A1 expression, with complete, or 

partial methylation of the CYP1A1 gene (Anttila et al., 2003). An increase in the methylation 

level was observed as early as 1-7 days after individuals had stopped smoking, possibly 

explaining the smoking-related increase in CYPA1A expression (Anttila et al., 2003). 

Moreover, hypomethylation at sites coinciding with the transcription activator binding sites, 

such as Arnt and Sp1, leads to overexpression of CYP1B1 in prostate cancer and correlates to 

the progression of malignancy (Tokizane et al., 2005). 

Similarly, CYP1A2, an enzyme abundant in the liver, is involved in the metabolism of many 

drugs (Zhou et al., 2010). Known SNPs account only partially for the wide interindividual 

differences observed for CYP1A2  (Jiang et al., 2006). Therefore, it has been implied that an 

epigenetic component in CYP1A2 regulation is responsible for the variability in CYP1A2 

expression and the methylation status of a CpG island in exon 2, consisting of 17 CpG 

dinucleotides, has been shown to correlate with interindividual differences in CYP1A2 

mRNA levels (Ghotbi et al., 2009). It has also been demonstrated that the methylation status 

of even a single CpG located far upstream from the transcriptional start site (−2579 bp) 

could contribute to differential CYP1A2 expression. Such interindividual variations might 

affect the pharmacokinetic and pharmacodynamic metabolization of the drug through 

CYP1A2, potentially failing the drug treatment or leading to ADRs. Among the members of 

the CYP2 family, the CYP2A6, CYP2C9, CYP2D6, CYP2J2, CYP2R1, CYP2S1 and CYP2W1 

genes contain putative important CpG islands, suggesting a potential role for DNA 

methylation in their regulation (Ingelman-Sundberg et al., 2007). 

As to phase II drug metabolism, glutathione-S-transferase genes, it has been shown that the 
extent of promoter methylation is dependent on the haplotype of the glutathione-S-
transferase P1 (GSTP1) gene in breast cancer patients (Rønneberg et al., 2008). Moreover, 
hypermethylation of GSTP1 is a common molecular alteration in human prostate cancer 
(Woodson et al., 2008). Irinotecan is a first-line treatment for metastatic colorectal cancer. Its 
active metabolite is inactivated through glucuronidation mediated by the UGT1A1 enzyme. 
The level of UGT1A1 expression is highly variable among primary colon tumours, thereby 
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contributing to their differential sensitivity to irinotecan treatment. UGT1A1 expression in 
colon tumours correlates with the methylation of its promoter and the outcome of cancer 
chemotherapy (Gagnon et al., 2006). 

The SLC19A1 gene encodes the reduced folate carrier. This enzyme is responsible for 
cellular uptake of reduced folates and of antifolate drugs, including methotrexate, the most 
effective drug against primary central nervous system lymphoma. The level of reduced 
folate carrier differs significantly among lymphoma samples and is associated with 
methylation of the SLC19A1 promoter. It has been hypothesized that an increase in SLC19A1 
methylation can contribute to methotrexate resistance in tumour cells (Ferreri et al., 2004). 

The promoter of the ABCB1 gene that encodes the P-gp transporter is found 
hypomethylated in cancer cell lines, manifesting a multidrug-resistance phenotype 
compared to drug-sensitive cell lines (Baker & El-Osta, 2004). These differences in 
methylation are also associated with histone modifications. Such epigenetic mechanisms 
have been shown to be responsible for the increased tolerance shown by certain types of 
cancer cells to anticancer drugs, such as doxorubicin, paclitaxel and vincristine. 
Hypomethylation of ABCB1 can also be induced by exposure of drug-sensitive cells to 
chemotherapeutic drugs (Baker et al., 2005). Once established, this epigenetic mark can then 
stably perpetuate through mitotic divisions of cells, manifesting as acquired multidrug 
resistance.  

In addition to these ADME genes, epigenetic influence has also been documented for the ǂ-1 

adrenergic receptors (ǂ1-ARs). The three subtypes of ǂ1-AR (ǂ1aAR, ǂ1bAR, and ǂ1dAR) 

display tissue-specific expression patterns and undergo subtype switching in response to 

many pathological stimuli. Basal expression of the ǂ1dAR (ADRA1D) subtype is dependent 

on the binding of Sp1 in the two proximal promoter GC boxes of the gene and this binding 

was shown to be dependent on the methylation status of the promoter region (Michelotti et 

al., 2007). The expression of the chemokine receptor CXCR4, involved in leukocyte 

trafficking, seems to be epigenetically regulated, as reported in human pancreatic cancer, 

where aberrant methylation influences CXCR4 expression (Sato et al., 2005). This finding 

may pave the way for the development of anticancer drugs that target the CXCR4 receptor, 

which is overexpressed in various cancers. Moreover, the CXCR4 receptor ligand CXCL12, 

which has also been shown to be regulated by DNA methylation, has a role in tumour 

invasion and metastasis and may offer another target for anticancer drugs (Kubarek & 

Jagodzinski, 2007). The MGMT gene, which encodes the DNA repair enzyme O6-

methylguanine-DNA methyltransferase, plays a prominent role in the repair of DNA lesions 

caused by alkylating agents. The extent of methylation of the MGMT promoter has been 

shown to correlate with the responsiveness of gliomas to alkylating drugs, such as 

carmustine and temozolomide  (Paz et al., 2004). Lastly, although the oestrogen receptor is 

also regulated epigenetically, both by DNA methylation and histone modifications (Bovenzi 

& Momparler, 2001) in cancer, a non-cancer-related event (ischemia) has also been shown to 

affect the methylation and expression status of the oestrogen receptor in an animal model  

(Westberry et al., 2008), demonstrating the wide range of genes that may contribute to drug 

response variations by means of epigenetic regulation.  

As reported for the oestrogen receptor, also histone modifications play an important role in 
the control of genes encoding drug targets and proteins involved in drug ADME. However, it 
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must not be forgotten that DNA methylation and histone modification are interconnected 
events. Let’s go back then to CYP1A1, this enzyme has been shown to be also under histone 
modification control, particularly methylation of lysine 4, a H3 histone (3meK4H3) (Okino et 
al., 2006). Again, in phase I drug metabolism, an increase in CYP2A6 mRNA and protein 
levels was observed in human hepatocytes in response to dexamethasone. This was shown to 
be mediated by the hepatic nuclear factor 4ǂ and the glucocorticoid receptor (GR). The 
binding of the hepatic nuclear factor 4ǂ to the hepatic nuclear factor 4ǂ response element was 
promoted by the increased acetylation of histone H4, also in response to dexamethasone 
(Onica et al., 2008). This modification relaxes the chromatin, thereby allowing the binding of 
DNA-binding proteins. As a response to cisplatin treatment of HeLa cells, specific 
phosphorylation of Ser-10 at histone H3 is mediated by the p38 mitogen-activated protein 
kinase pathway. Likewise, cisplatin induces phosphorylation of H3 at Ser-28 and acetylation 
of histone H4 (Wang & Lippard, 2004). These findings provide a link between the drug 
response and chromosomal structural alterations through histone modifications. 

3.2 The effect of drugs on methylation/deacetylation 

Several chemicals are able to affect the epigenome, either as agents used in clinical practice, 
or causing ADRs. A range of first-generation compounds that target the epigenome, 
including DNA methyltransferases (DNMTs) and histone deacetylase inhibitors, have met 
with success in the treatment of haematological disorders. The earliest of these, 5-
azacytidine and azacytidine, are chemical analogs of the nucleoside cytidine and its deoxy 
derivative, 5-aza-2′-deoxycytidine (decitabine). Through incorporation into DNA (during 
replication) and RNA (during transcription), they inhibit methyltransferases and lead to 
demethylation of the sequence (Christman, 2002). Other drugs that affect the epigenome 
have also emerged, such as zebularine, a cytidine analog that inhibits DNA methylation 
(Bradbury, 2004). Second-generation drugs that target epigenetic enzymes with more tightly 
defined modes of action are, at time of writing, still in the investigation phase. Some such 
drugs include MG98, an antisense oligonucleotide that targets the 3′-untranslated region of 
the maintenance methyltransferase DNMT1, inhibiting it (Goffin & Eisenhauer, 2002); 
RG108, a small molecule that effectively blocks DNMTs, particularly DNMT1 and inhibits 
their activity (Suzuki et al., 2010), and psammaplin, a natural product derived from the sea 
sponge Pseudoceratina purpurea that inhibits DNMTs as well as histone deacetylases 
(McCulloch et al., 2009). Increasing attention is being paid not only to research on drugs that 
modify the DNA methylation landscape, but also to developing drugs that affect histone 
modifications. Histone deacetylase inhibitors have been object of research in anticancer drug 
development, as they present a potential strategy to reverse aberrant epigenetic changes 
associated with cancer (Dannenberg & Edenberg, 2006). However, there is also an increasing 
awareness that commonly used drugs can affect epigenome and cause ADRs. Among the 
better-documented examples are valproic acid (VPA), hydralazine, and procainamide. 
Although VPA is an established antiepileptic and mood-stabilizing drug, clinically used 
since the 1960s, only recently it has been found that VPA is a direct inhibitor of histone 
deacetylase (Phiel et al., 2001). Furthermore, the resultant increase in histone acetylation 
caused by VPA was shown to be interrelated with changes in genomic DNA methylation 
(Milutinovic et al., 2007). Animal and cell culture studies have implicated the epigenetic 
mode of action of VPA in a wide range of gene expression changes associated with VPA-
induced side-effects, such as teratogenicity and cognitive disorders (Fukuchi et al., 2009; 
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Nagai et al., 2008; Tung & Winn, 2010). Procainamide, an antiarrythmic sodium channel 
blocker and hydralazine, a vasodilator used to treat hypertension, did not have well-
characterized mechanisms of action when they were first introduced. Mechanistic studies 
have now shown that procainamide directly inhibits methyltransferases activity, specifically 
DNMT1 (Lee et al., 2005), whereas hydralazine mainly inhibits DNMT expression (Arce et 
al., 2006). Consequently, the extensive hypomethylation induced by these drugs alters 
appropriate protein expression in T cells and triggers a lupus-like autoimmune disease 
(Chang & Gershwin, 2010; Yung et al., 1996). 

The notion that some drug-induced epigenetic marks may have a transgenerational impact 
is even more alarming. It has been suggested that drugs, such as thalidomide, a sedative–
hypnotic and immunomodulatory agent and the synthetic oestrogen diethylstilbestrol may 
induce transgenerational epigenetic alterations that result in persistent pathological changes 
in subsequent generations (Holliday, 1998; Newbold et al., 2006). However, given the 
inadequacy of experimental tools and approaches, solid evidence for true transgenerational 
epigenetic impact has not been clearly established, although it is an attractive hypothesis to 
explain such observations.  

Other drugs, such as isotretinoin, methylphenidate, tamoxifen, methotrexate and even 
families of drugs, such as conventional neuroleptics, selective serotonin reuptake inhibitor 
antidepressant, ǃ-blockers, and chloroquine and fluoroquinolone antibiotics, have all been 
suggested to affect the epigenome (Csoka & Szyf, 2009). Such conclusions have been based 
mainly on observations of altered DNA methylation patterns, chromatin remodeling, or 
substantial changes in gene and protein expression that persist even after therapy has 
ceased. However, the exact mechanisms through which these drugs influence the 
epigenome and the consequences of the drug-induced epigenetic reprogramming have not 
been sufficiently investigated  

4. Pharmacogenomics of microRNA 

Although sequencing the whole genome and identifying genetic variations, such as SNPs, 
small insertions, deletions, inversions, variable numbers of tandem repeat (minisatellite), 
short tandem repeat (microsatellite), and copy number variations (Nakamura, 2009), are 
important for the understanding of human biology, having information on only these 
genomic aspects is limiting when attempting to explain interindividual differences in drug 
response and ADRs. Consequently, researchers have suggested that knowledge and 
understanding of functional genomics related to gene expression, such as transcriptional 
and translational processes, be included. One of the first steps to be taken towards 
understanding the difference in gene expression to identify the variability in drug response 
is investigating the role of nuclear receptors, or transcription factors, such as the 
arylhydrocarbon receptor (AhR), peroxisoma proliferator activated receptor (PPAR), 
pregnane X receptor (PXR) and constitutive androstane receptor (CAR), in the transcription 
control of genes encoding drug transporters, enzymes and drug targets (Lehmann et al., 
1998; Smirlis et al., 2001;  Synold et al., 2001; Xie et al., 2000a, 2000b). However the discovery 
of the world of small regulatory RNAs, or microRNA (miRNA), which are coded in our 
genomes and implicated in post-transcriptional control, has been more promising. Some 
researchers classify microRNA regulation as an epigenetic phenomenon (Peedicayil, 2008) 
but, even if it is closely related to epigenetic phenomena, microRNAs are not themselves 
epigenetic factors (Chuang & Jones, 2007). 
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MiRNAs are small, single stranded, 21–23 nucleotide-long, independent functional units of 
noncoding RNA (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee & Ambros, 2001) which 
bind to the target transcript in the 3’-untraslated region (3’-UTR) to inhibit the translation of 
proteins and destabilize their target mRNAs (Baek et al., 2008, Selbach et al., 2008). MiRNAs 
regulate specific genes broadly involved in multiple pathways, like cell death, cell 
proliferation, stress resistance and fat metabolism (Ambros, 2003, Lim et al., 2003a, 2003b). 

Work on miRNA knock-down and miRNA transfections has recently shown that 
approximately one third of the miRNA targets are translationally repressed in a cell display 
mRNA destabilization (Baek et al., 2008, Selbach et al., 2008). Consequently, miRNAs fine-
tune protein output in the cell by translationally repressing and destabilizing the target 
mRNA (Baek et al., 2008; Mishra et al., 2007; Selbach et al., 2008). Other evidence suggests 
that a gain, or loss in miRNA function is associated to disease progression and prognosis 
(Lu et al., 2005; Mishra et al., 2007), as several studies have now established that miRNAs 
are expressed differently in human cancers than in normal healthy tissue (Calin et al., 2004; 
He et al., 2007; Lu et al., 2005). 

4.1 Effect of polymorphisms in miRNA in drug response and adverse drug reactions 

Polymorphisms in the miRNA regulatory pathway (miR-polymorphisms) are a novel class 

of functional polymorphisms present in the human genome. MiR-polymorphisms reside at, 

or near to, a miRNA binding site of a functional gene, influencing its expression by 

interfering with miRNA function (Bertino et al., 2007; Mishra et al., 2007, 2008). Several 

groups worldwide have acknowledged the role of miR-polymorphisms, suggesting a strong 

association between miR-polymorphisms and disease progression, as well as with drug 

response. Indeed, a single miR-polymorphism can potentially affect the expression of 

multiple genes involved in pathways regulating drug absorption, metabolism, disposition 

and may affect the overall clinical efficacy of a drug and/or resistance to that drug. 

An analysis of the publicly available SNP database revealed the presence of a relatively high 

level of variations in the 3’-UTRs of miRNA target genes (Saunders et al., 2007) 

demonstrating that some of these variations may interfere with the function of miRNA and 

are potential miR-polymorphisms with the capacity to affect the expression of miRNA 

targets (Barnes et al., 2007; Kertesz et al., 2007; Mishra et al., 2007). MiRNA mutation (miR-

mutations) can be defined as a mutation that interferes with miRNA function. MiR-

polymorphisms and miR-mutations can be present either in heterozygous, or homozygous 

forms in a population. These variants in the human genome may take the form of insertions, 

deletions, amplifications, or chromosomal translocations, resulting in loss, or gain of miRNA 

site/function (Mishra et al., 2007). Functional miR-polymorphisms, or mutations, may 

create, or destroy, a miRNA binding site within a target mRNA and affect gene expression 

by interfering with the function of a miRNA  (Bertino et al., 2007; Mishra et al., 2007, 2008). 

Recently, the role of miRNA in drug-resistance/sensitivity has been investigated. It was 
functionally demonstrated that a polymorphism in a miRNA binding site could lead to 
drug-resistance/drug sensitivity (Bertino et al., 2007; Mishra et al., 2007, 2008). For example, 
a C>T SNP present in the 3’-UTR of dihydrofolate reductase gene (DHFR) was originally 
identified in a case–control study of childhood leukaemia patients to occur with 14.2% allelic 
frequency in the Japanese population (Goto et al., 2001). Later it was demonstrated that the 
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SNP is present near a miR-24 miRNA-binding site in human DHFR. The C>T SNP near the 
miRNA-binding site acts as a loss-of-function mutation and interferes with miR-24 function. 
The loss of miR-24 function results in high steady-state levels of DHFR mRNA and protein 
levels leading to drug resistance (Mishra et al., 2007). Interestingly, loss of miR-24 function, 
due to the SNP, led to a twofold increase in the half-life of the mRNA target. This 
observation not only explained the corresponding increase in DHFR mRNA and protein 
levels, but also suggested that the target mRNA destabilization could be a principle 
mechanism of action of a miRNA (Mishra et al., 2007). This finding may also be useful in 
predicting the clinical outcome of methotrexate treatment in clinical settings. Consequently, 
various miR-polymorphisms, located in many important genes that are drug targets, may 
affect drug response in patients and may lead to drug resistance and/or drug sensitivity 
and even unexpected toxicity. 

This new insight has introduced a novel and promising field of research: 

Pharmacogenomics of miRNA, that holds new possibilities for tailor-made medical therapy. 

MiRNA pharmacogenomics can be defined as the study of miRNAs and polymorphisms 

affecting miRNA function in order to predict drug behaviour and improve drug efficiency 

(Bertino et al., 2007; Mishra et al., 2008). There are several reasons why miRNA 

pharmacogenomics have strong clinical implications: miRNAs are attractive drug targets, 

are differentially expressed in abnormal cells in all different diseases versus normal cells 

and regulate the expression of several important proteins in the cell (Calin et al., 2002; Iorio 

et al., 2005) supporting the hypothesis that miRNA polymorphisms, located near the 

miRNA-binding site of important genes involved in the drug pharmacokinetics and 

pharmacodynmics, have the potential to affect drug behaviour. Therefore, these miR-

polymorphisms are potential predictors of drug response in the clinical setting and will 

hopefully lead to the development of more accurate methods of determining appropriate 

drug dosages based on a patient’s genetic make-up and decrease the likelihood of drug 

overdose (Bertino et al., 2007) 

4.2 MiRNA expression and drugs 

Even though each miRNA appears to regulate the expression of tens to hundreds of 
different genes at time of writing, there are only a few examples demonstrating the 
relevance of miRNA in the regulation of proteins involved in drug metabolism, transporting 
and targeting. In CYP research, miR-27b expression was found to be lower in breast cancer 
tissues than in neighbouring healthy tissue (P < 0.0005). This expression profile correlated 
inversely with CYP1B1 expression and, in vitro studies, showed the involvement of miR-27b 
in the post-transcriptional regulation of CYP1B1 (Tsuchiya et al., 2006). Human CYP2E1 
expression, an important CYP450 isoform from a pharmacologically and toxicological point 
of view, is regulated by miR-378, mainly via translational repression (Mohri et al., 2010). 
Again, CYP24 by miR-125b post-transcriptionally, which serves as a possible mechanism for 
the high CYP24 expression in tumour tissues, since CYP24 catalyzes the inactivation of 

1,25-dihydroxyvitamin D3 (calcitriol), which exerts antiproliferative effects (Komagata et 
al., 2009). Moreover, the transcription factor pregnane X receptor, which regulates the 
expression of a number of CYP members, including CYP3A4, was shown to be regulated by 
miR-148a (Takagi et al., 2008). The miR-148a–dependent decreases in pregnane X receptor 
protein attenuated the induction of CYP3A4 mRNA (P < 0.05) and protein levels (P < 0.010). 
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As to drug transporters, ABCG2 expression was found to be inhibited by miR-519c in a 
parental S1 colon cancer cell line. However, this inhibition was lost in the drug-resistant 
counterpart due to a shorter 3′-UTR in these cells, most likely responsible for  the resistance 
(To et al., 2008). There was a similar effect on drug resistance in the multidrug resistant cell 
lines (A2780DX5 and KB-V1.27), where miR-27a and miR-451 led to overexpression of P-
glycoprotein (P-gp) (Zhu et al., 2008). Again, some researchers reported that miR-451 
regulates P-gp expression in doxorubicin-resistant MCF-7 cells (Kovalchuk et al., 2008). 
There is other evidence on miRNA and anticancer agents, such as tamoxifen (Cittelly et al., 
2010), cisplatin (Bian et al., 2011; Imanaka et al., 2011), 5-fluorouracil (Shah et al., 2011; Valeri 
et al., 2010) and other anticancer drugs (Giovannetti et al., 2011). 

Other examples involve the role of miRNA as regulators of nuclear receptors. Peroxisome 

proliferator-activated receptor gamma (PPAR) has gained considerable interest as a 
therapeutic target during chronic inflammatory diseases. Indeed, the pathogenesis of 

diseases such as multiple sclerosis, or Alzheimer, might be associated with impaired PPAR 
expression. Jennewein and colleagues have provided, in vitro, evidence of the PPAR mRNA 

destabilization through miRNA 27b binding PPAR 3’-UTR, which is induced by 

inflammatory response (Jennewein et al., 2010). Hepatocyte nuclear factor (HNF) 4 is a key 
transcription factor regulating endo/xenobiotic-metabolizing enzymes and transporters and 
this nuclear factor was down-regulated, in vitro, by miR-24 and miR-34a, affecting the 
metabolism and cellular biology (Takagi et al., 2010). Glucocorticoids (GCs) exert profound 
effects on a variety of physiological processes, including adaptation to stress, metabolism, 
immunity, and neuronal development. Vreugdenhil et al. tested the hypothesis that miRNA 
might control GR activity by reducing GR protein levels in neuronal tissues and found that 
miRNA 18 and 124a not only reduced GR-mediated events, but also decreased GR protein 
levels, providing a better understanding of the etiology of stress-related diseases as well as 
the efficacy of GC therapy (Vreugdenhil et al., 2009). When considered as a whole, these 
results indicate a possibility of intervening in the drug response mechanisms by modulating 
miRNA expression but many hurdles must be overcome before finding methodologies or 
agents (anti-miRNA) capable of efficiently modulating miRNA expression (Thai et al., 2010). 

5. Complementary approaches  

Even if the process of understanding the mechanisms responsible for variable responses to 
the powerful therapeutic agents have been accelerated by these new approaches, the 
identification of a particular phenotype unequivocally from an equivocal genotype still 
remains a challenge. Nebert et al. report several reasons why no example can be cited in 
which a single genotype is always associated with a phenotype in all individuals within all 
human populations (Nebert & Vesell, 2004). Indeed, there is always a reason why a genomic 
event, or another phenomenon might override a single DNA variant site somewhere in a 
gene (Nebert & Vesell, 2004). Therefore, studies on drug response are expanding beyond 
genomics to new horizons encompassing trascriptomics, metabonomics, proteomics and 
mathematical models, to become a systems-based discipline, or system biology approach. 
Even if much still remains to be done in the field of genomics to better understand the exact 
role of the genotype in the development of the phenotype e.g. through gene-gene 
interactions resulting from particular stimuli that affect a complex circuitry of pathways, 
ending in a response by the cell, or organism, these new fields are very promising to 
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understand and predict variation in drug response phenotype. Trascriptomics refers to the 
study of gene transcripts (Kiechle & Holland-Staley, 2003), generally analyzed by cDNA 
expression microarrays. Such cDNA expression studies have led to a number of exciting 
breakthroughs in basic science. For example, microarray analysis of certain tumours has 
been successful in correlating particular expression patterns with patient prognosis 
(Macgregor, 2003). Microarrays of cDNA expression have also been used effectively as 
predictors of success for hormone responsiveness, hormone non-responsiveness, clinical 
outcomes and anticancer chemotherapeutic drugs (Domchek & Weber, 2002; Liu & Karuturi, 
2004), even if other phenotypes may also be directly related to drug response. One of those 
phenotypes is the level of metabolites, not drug metabolites, but rather all small molecules 
that can be accurately assayed in the organism. These thousands of small molecules i.e. the 
metabolome, may also be altered by drug exposure and, consequently, able to predict 
variation in drug response. Metabonomics or metabolomics refers to the study of metabolite 
profiling, or metabolome i.e. the repertoire of small molecules present in cell, tissues, organs 
and biological fluids (Dettmer & Hammock, 2004; Lindon et al., 2004; Maddox et al., 2006; 
Plumb et al., 2003; Reo, 2002; Schmidt, 2004a, 2004b; van der Greef et al., 2007). The 
metabonome represents a real time integrated response to all endogenous and all exogenous 
stimuli (drugs, chemical exposures, occupation, lifestyle, nutrition, age, gender). Therefore, 
metabonomics might provide a sensitive means to follow an individual patient’s phenotype 
as a function of all these stimuli. Recently, metabonomics has achieved major new advances 
due to novel, highly sensitive techniques for the measurement of urinary metabolite profiles. 
The analytical data in these studies are derived from electrospray mass spectrometry 
coupled to gas chromatography, liquid chromatography, or mass spectrometry time-of-
flight (Plumb et al., 2002). The metabolites measured include, not only those from drugs, but 
hundreds of small-molecular weight compounds present in synthetic and degradation 
pathways. 

Animal model studies, using the metabonomic approach have been reported to perform a 

study of drug-induced hepatotoxicity. Hepatotoxicity is a common and potentially serious 

adverse reaction to drugs, such as acetaminophen (Fontana & Quallich, 2001; Watkins et al., 

2006). In this metabolomic study, male Sprague-Dawley rats were treated with 

acetaminophen and both pre and post-drug exposure urine samples were subjected to 

Nuclear Magnetic Resonance (NMR) analysis. A model was then developed that used pre-

drug metabolomic data to predict both ratios of acetaminophen glucuronide conjugate to 

parent drug and post-acetaminophen hepatotoxicity  (Clayton et al., 2006). 

Clinical studies using metabonomics are still in the teething stage. For example, one study 

focused on metabolic profiles of antipsychotic drugs and used a specialized lipidomic 

platform to measure more than 300 lipid metabolites for the evaluation of global lipid 

changes in schizophrenia after treatment with three commonly prescribed atypical 

antipsychotics: olanzapine, risperidone and aripiprazole (Kaddurah-Daouk et al., 2007). A 

major side-effect associated with the use of these drugs is weight gain. Effects of the three 

antipsychotic drugs on lipid biochemical pathways were then evaluated by comparing 

metabolic profiles at baseline with post treatment assays. Phosphotidylethanolamine 

concentrations were elevated after treatment with all three drugs. Olanzapine and 

risperidone affected a much broader range of lipid classes than did aripiprazole, with an 

increase in about 50 lipids after exposure to these drugs, but not after aripiprazole therapy. 

www.intechopen.com



 
Beyond Pharmacogenetics 281 

Thus, metabonomics might well help the physician to provide each patient with 
personalized drug therapy and avoid toxicity, consequently minimizing the risk of ADRs. 
This new form of metabolite profiling would resemble what clinical pharmacology has done 
previously, with the difference that it would be several orders of magnitude more sensitive 
in detecting subtle toxicity, or other ADRs, long before these become clinically evident. 
Changes in an individual’s metabolite profile might warrant an aggressive regimen, for 
example, to prevent, or impede the onset of arthritis, or renal disease, long before clinical 
symptoms appear. It seems practicable that, in the distant future, metabonomics will go 
hand in hand with genomics to revolutionize and individualize drug therapy.  

Proteomics is the study of all proteins encoded by the genome (Tuma, 2004). Although a 
recent study (Rual et al., 2004) estimated an average of 2 to 3 human proteins per gene, 
others have estimated that the true number of proteins per gene might be considerably 
higher. Even though proteomics has not yet been widely applied to the study of drug 
response, it is however, both conceivable and feasible, that, in the future, proteomic 
investigators might identify certain protein profiles, similar to ways in which metabonomics 
can identify certain metabolite profiles, which might be useful in predicting ADRs long 
before they become overt.  

6. Future challenges 

The purpose of this chapter is to provide an overview of the development of 
Pharmacogenetics and the scientific advances that have contributed to the continuing 
evolution of this discipline. Therefore, the ultimate approach in this field would be the 
union of genomic, trascriptomic, metabonomic and proteomic data as well as clinical 
diagnosis and pharmacological treatment response to build a computational cellular, or 
organ model. If the model is sufficiently accurate and detailed, it will then be possible, firstly 
to predict the behaviour of a system given any disturbance within it, secondly, gene 
regulatory networks could be redesigned to create new system properties. This second 
possibility could take on an extremely important role in Pharmacogenomic research for the 
development of new drugs. 

However, to fully realize the potential of this approach and new insights, a number of issues 
and challenges must be met. First and foremost, researchers should continue training on 
systems biology. This will require developing new global technologies for genomics, 
trascriptomics, proteomics, metabolomics and phenotyping. It will also involve the 
development of software able to capture, store, analyze, graphically display, integrate, 
model and disperse the global data sets of systems biology. We must learn how to 
determine the nature of proteins and gene regulatory networks and their integrations and   
how to integrate many types of data as well as analyze and integrate global data sets across 
the dynamic transitions of development, or physiological responses. We also must deal with 
the challenge of providing access for the laboratories practicing small science to these global 
technologies and powerful computational tools. Lastly, access to biological samples from a 
large number of healthy and diseased subjects must be made available so as to begin the 
global correlative studies able to establish the foundational framework of predictive 
medicine and pave the way for moving forward into preventive medicine. There is, 
however, little doubt that the application of Systems Biology will significantly advance our 
ability to individualize drug therapy over the next few years. 
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7. Conclusions 

Although Pharmacogenetics and Pharmacogenomics hold out the promise of leading to 
individualized therapy, to date, relatively few Pharmacogenetic/Pharmacogenomic tests are 
currently used in the clinical setting and even those that are used are done so less frequently 
than indicated. Even if there has recently been an increase  in the awareness on the part of 
the Food and Drug Administration of the necessity to integrate genomic data into regulatory 
review (http://www.fda.gov/cder/genomic/), the goal of individualized prescribing still 
remains an arduous task. Therefore, Pharmacogenetics and/or Pharmacogenomics requires 
further research in various areas of science and the development of the capability to 
integrate them so as to be able to treat each patient as they deserve i.e. as the complex, 
unique and fascinating individual they really are. 
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