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1. Introduction 

"Personalized medicine” represents a conceptual change in pharmacotherapeutics, where an 
individual's genetic profile will determine the appropriate drug and/or dose the patient 
should receive. Currently, medicine is addressing this challenge through the lens of genomic 
technologies. In the domain of anthithrombotic therapy, warfarin, clopidogrel and aspirin 
are still the most relevant drugs for treatment of thromboembolic cardiovascular disorders 
and prevention of stroke. Incorporation of pharmacogenetic approaches, particularly in the 
antithrombotic drug therapy, may lead to better understanding of what stands behind the 
individual differences in drug efficacy and adverse drug effects, with the aim of increasing 
benefits and reducing risks on individual level. For now, two antithrombotics, warfarin and 
clopidogrel are emerging as the leading examples for pharmacogenetically-guided 
therapeutic optimization. Several recent randomized and controlled trials have 
demonstrated a number of improved clinical outcomes in warfarin-treated patients 
undertaking pharmacogenetic testing, particularly in patients with exceptionally low or 
high warfarin dose requirements (outliers). In addition, there were significant achievements 
in identification of genetic markers of reduced clopidogrel pharmacokinetics, which can 
partially explain inefficiency of clopidogrel response. The American Food and Drug 
Association (FDA) acted quickly on these developments in approving additional labeling for 
warfarin and clopidogrel package inserts to include relevant genetic testing, and called for 
further large-scale studies on the effectiveness of pharmacogenetic approaches to therapies 
using these drugs. However, there is still a considerable debate on the quality, quantity, and 
type of evidence that are needed to encourage such changes in clinical practice. There are 
also pertinent questions regarding which genetic markers should be used to ensure overall 
population benefits from genetic testing on a population level. It is also important to 
establish the relationship between genetic and non-genetic factors, particularly the effects of 
drug-drug interactions, and also the most appropriate pharmacogenetically-based dosing 
algorithm designed for clinical use. This review provides an update on the most significant 
pharmacogenetic studies on the commonly used oral anticoagulants and antiplatelet drugs, 
summarizing knowledge on the known genetic polymorphisms, their therapeutic effects 
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and utility of pharmacogenetic approaches in various world populations, with special 
emphasis on current gaps of knowledge and challenges for future research. Most recently, a 
new oral warfarin alternative, a direct thrombolytic dabigatran, has been approved by the 
FDA. This new drug is particularly relevant for warfarin dose outliers and un-stabilized 
patients, making warfarin pharmacogenetics especially relevant for selection of safe and 
efficient antithrombotic therapy for each patient.  

2. Antithrombotic therapy 

Cardiovascular disease (CVD) remains the leading cause of death in the modern Western 

societies, despite scientific and technological advancements. According to the American 

Heart Association (AHA) statistical update 2009, an estimated 80 million American adults 

(approximately 1 in 3) have one or more types of CVD (Lloyd-Jones et al., 2009). Arterial and 

venous thrombotic complications closely accompany CVD in contexts of myocardial 

infarction (MI) and stroke (Mackman, 2008). Venous thromboembolitic disorders (VTE), 

including deep venous thrombosis and pulmonary embolism, are considered the third 

leading cause of CVD-related death after MI and stroke (Cushman, 2007), particularly in 

patients with cancer (Heit, 2005). Antithrombotic therapies with anticoagulant and 

antiplatelet agents have been the most important means for prevention and treatment of 

CVD, with validity established in a wide range of clinical conditions, including acute 

coronary syndrome (ACS) (Anderson et al., 2007a), ischemic stroke (Sacco et al., 2006), 

peripheral vascular disease (Hirsch et al., 2006), atrial fibrillation (AF) (Fuster et al., 2006), 

and symptomatic and asymptomatic VTE (Hirsh et al., 2008). Over the past decades, 

increasing resources have been devoted to the improvement of antithrombotic therapy, 

specifically focusing on development and validation of new antithrombotic agents. A series 

of anticoagulants and antiplatelet drugs with already known or totally new mechanisms of 

action have been developed and tested in randomized controlled clinical trials (Table 1). 

However, although providing support for improved clinical outcomes in a population 

defined by explicit clinical criteria, these trials generally did not address the issue why some 

patients do not respond to the antithrombotic treatment, while others have excessive 

pharmacologic responses and distinctive patterns of adverse effects. This broad inter-patient 

variability in drug response in terms of both, pharmacological efficacy and toxicological 

adverse effects, imposes a major concern with the use of antithrombotic drugs. In common 

clinical practice, physicians cope with this variability by "trial and error" approach in ruling 

out inappropriate types of drug or dosage for each patient. The best example over the past 

50 years is warfarin (coumadin) and its derivatives, in which to avoid drug over- or under-

dosing and risks of bleedings or drug insufficiency, individual dose is determined by 

frequent monitoring of the International Normalized Ratio (INR), especially at the initial 

phase of treatment. Furthermore, intermitted medical conditions and subsequent changes in 

concomitant medications and their interaction with warfarin produce additional difficulties 

in the daily management of warfarin-treated patients. In the same way, there are growing 

concerns over inter-individual variability in drug response to antiplatelet drugs, which have 

been given so far in a universal dose estimated as effective in clinical trials (Steinhubl et al., 

2002; Yusuf et al., 2001). Specifically, there is an increasing awareness of the need for 

individualized dosing of the high-profile antiplatelet clopidogrel (Bonello et al., 2008), to 

which this review dedicates special discussion. 
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Drug class Drug Administration 
Mechanisms 

of action 

Metabolizing 

enzyme 
Limitations References 

Vitamin K 

antagonists 
Warfarin Oral Inhibits VKOR  

Predominantly 

CYP2C9 

Frequent INR 

monitoring; 

Sensitivity or 

resistance 

(Mackman, 

2008) 

(Kamali & 

Wynne, 2010) 

Heparins 

Low Molecular 

Weight Heparins 

(LMWH)/ Clexan  

Intravenous 

Inhibit factor 

Xa and 

thrombin 

Not metabolized 

by CYP450 

enzymes 

Thrombocytopenia;  

Antibodies for 

heparin-platelet 

factor complex 

(Mackman, 

2008) 

Antiplatelet 

agents 
Aspirin Oral 

Irreversibly 

acetylates 

COX1  

Not metabolized 

by CYP450 

enzymes 

Weak antiplatelet 

agent; 

Gastric ulceration 

Aspirin resistance  

(Michelson, 

2010) 

 Clopidogrel/Plavix Oral 

Active 

metabolite 

irreversibly 

inhibits P2Y12 

receptor 

CYP2C9 and 

CYP3A4 Pro-

drug activated 

by CYP2C19  

Inter-patient 

variability; 

Clopidogrel 

resistance 

(Michelson, 

2010) 

(Giorgi et al. 

2011) 

 Prasugrel Oral 

Active 

metabolite 

irreversibly 

inhibits P2Y12 

receptor 

CYP3A4-5 and 

CYP2B6 

Bleedings;  Superior 

to clopidogrel in 

TRITON-TIMI 38 

trial 

(Michelson, 

2010) 

(Giorgi et al., 

2011) 

 Ticagrelor  Oral 

Reversibly 

inhibits P2Y12 

receptor 

CYP3A4-5 

Bleedings; Superior 

to clopidogrel in 

Phase III PLATO 

trial 

(Wallentin et 

al., 2009) 

(Giorgi et al., 

2011) 

 
Integrin ǂIIbǃ3 

anatagotists 
Intravenous 

Interfere with 

platelet 

activation  

Not metabolized 

by CYP450 

enzymes 

Bleedings; 

Thrombocytopenia 

(Michelson, 

2010) 

Direct 

thrombin 

inhibitors 

(DTIs) 

Dabigatran/ Pradaxa Oral 

Reversibly 

inhibits free 

and clot-

bound 

thrombin 

Neither  

metabolized nor 

induced by 

CYP450  

enzymes 

Superior to warfarin 

in Phase III RE-LY 

trial 

(Galanis et 

al., 2011); 

(Wallentin et 

al., 2010b) 

 Rivaroxaban Oral 

Reversibly 

inhibits Factor 

Xa 

CYP3A4 
Phase III ROCKET-

AF trial 

(Galanis et 

al., 2011) 

 Apixaban Oral 

Reversibly 

inhibits Factor 

Xa 

CYP3A4 
Phase III 

ARISTOTLE trial 

(Galanis et 

al., 2011) 

Abbreviations: VKORC1 vitamin K epoxide reductase; CYP2C9, CYP3A4-5 and  

CYP2C19 cytochrome P450 enzymes; COX1 cyclooxygenase-1; P2Y12 platelet plasma membrane 

receptor; INR International Normalized Ratio. 

Table 1. Antithrombotic drugs including generic, FDA approved and currently tested 

anticoagulants and antiplatelet agents 

While the phenomenon of individual drug response variability has been well-recognized, 

its causes are not well-defined and are likely to be multifactorial, in which patient’s age, 

sex, weight, nutrition, infections, concomitant medications and genetics play an important 

role (Sadee & Dai, 2005). Pharmacogenetic point of view, essentially referred to as 

"personalized medicine", suggests that in parallel to the development of new drugs 

improvement of known drugs efficacy and safety should be pursued and can be achieved 

by taking into account an individual’s genetic make up (Aspinall & Hamermesh, 2007). 

Pharmacogenetics suggests that knowing more about genes implicated in drug 
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mechanisms, drug pharmacokinetics (drug metabolic enzymes and transporters) and 

pharmacodynamics (target enzymes or receptors), and genetic variations with meaningful 

biological and population impacts, could potentially lead to more intelligent clinical 

decisions on therapeutic doses and risks of adverse events for individual patients. 

Pharmacogenetic approaches, using only a limited number of genetic variations, are 

currently emerging across broad classes of antithrombotic drugs. For warfarin in 

particular, it has been recently demonstrated that incorporation of a pharmacogenetic 

rationale into the clinical decision making may hold promise for better optimization of 

drug benefit-to-risk outcomes (Klein et al., 2009). In the near future, pharmacogenetics 

together with advanced diagnostic technologies such as molecular imaging may enable to 

shift from the study of single genes to more comprehensive paradigms focusing on 

functions and interactions of multiple genes and gene products, among themselves and 

with an environment. The information gained from such analyses, in combination with 

clinical data will improve individual risk assessments, eventually guiding clinical 

management and decision-making to improved use of antithrombotic drugs for 

prevention and treatment of CVD.  

This review provides an update on the most significant pharmacogenetic studies on the 
commonly used oral anticoagulants and antiplatelet drugs, principally including warfarin, 
clopidogrel and aspirin. It summarizes knowledge on the known genetic polymorphisms, 
their therapeutic effects and utility in pharmacogenetic approaches in various world 
populations, with special emphasis on current gaps of knowledge and challenges for future 
research. There is an ongoing debate over the utility of pharmacogenetic diagnostics in the 
routine clinical practice (Woodcock, 2010). This review tackles on these unresolved issues in 
the context of antithrombotic drug, specifically whether implementation of pharmacogenetic 
testing indeed improves therapy benefits, damage reduction and clinical outcomes. In a 
broader sense, this review relates to the place of genetics among traditional approaches to 
personalized clinical care, which rely on knowledge of patient’s behavior, diet, social 
circumstances and environment, and if in the future physicians could use genetics to 
"personalize" treatment.  

3. Pharmacogenomics 

The conceptual basis of pharmacogenetics was laid more that 50 years ago (Motulsky, 1965). 
Since then, the science behind pharmacogenetics has contributed a great deal to basic 
understanding of molecular mechanisms responsible for variation in drug response and to 
translation of that understanding to the drug development process (Weinshilboum & Wang, 
2006). Clinically relevant pharmacogenetic examples, mainly involving drug metabolism, 
have been recognized. With the completion of the Human Genome Project and 
advancement of genotyping technologies, both genomic science and its application to drug 
response have undergone major advances (Feero et al., 2010). The field of pharmacogenetics 
has evolved into "pharmacogenomics", involving a shift from candidate gene approach to 
whole genome studies that now can be performed with more precision in a lot more 
samples. Former analyses of genetic variations using lower density chromosomal markers, 
such as tandem nucleotide repeats (VNTRs and STRs), are now mostly focus on more 
ubiquitous and informative variations - single-nucleotide polymorphisms (SNPs). More 
efficient and accurate platforms are now adapted for ever smaller DNA samples to detect 
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SNPs, gene copy variations (CNV) and insertion/deletion (INDEL) mutations, and also for 
analyses of gene expression (RNA/protein microarrays) and DNA chemical modifications 
(epigenomics). The HapMap project, launched in 2002, now includes a remarkable number 
of common human genetic variations. Most notably, new methods have dramatically 
increased the rates and lowered costs of DNA sequencing (Collins, 2010; Venter, 2010), 
facilitating the discovery of new genetic variations. More advanced bioinformatic and 
statistical tools have enabled genome-wide association studies (GWAS) that transformed the 
search for genetic factors in complex traits (Manolio, 2010), although applicability of GWAS 
to drug response has been hampered by the complexity and multifactorial nature of this 
phenotype. 

It is not uncommon that drugs have a narrow therapeutic index. Warfarin and clopidogrel, 

the most widely prescribed antithrombotic drugs, have narrow therapeutic indexes that  are 

influenced by genetic variations, a hallmark of drugs for which pharmacogenetic/genomic 

approaches can potentially provide substantial clinical benefits (Wang et al., 2011). 

Pharmacogenetic studies of these drugs illustrate the rapid evolution of our understanding 

regarding the relationships between genetic variations and drug efficacy and safety. For 

both these drugs, the classical candidate gene approach provided identification of important 

genetic markers of inter-individual variability in drug response. Additional data supporting 

pharmacogenetic testing for both these drugs are rapidly accumulating, among them a 

recent GWAS confirming the principal genetic determinants of warfarin response (Takeuchi 

et al., 2009) and most recent studies supporting the significance of the only known genetic 

factor in clopidogrel response (Mega et al., 2010b; Pare et al., 2010). Despite only partial 

resolution of clopidogrel pharmacogenetics, the American Food and Drug Association 

(FDA) acted quickly on these data by re-labeling warfarin and adding a warning on the 

clopidogrel label to include relevant genetic testing prior to drug use. In addition, the FDA 

approved several diagnostic kits for genetic testing of warfarin dosing markers, specifically 

those associated with warfarin sensitivity and related risk of bleedings. It is not surprising 

that dosing markers of warfarin and clopidogrel include variants of cytochrome P450 (CYP) 

enzymes that are responsible for drug metabolism or pro-drug activation. Distinct CYP 

polymorphisms related to reduced enzyme activity have been demonstrated as significant 

determinants of warfarin and clopidogrel responses and toxicity effects (Higashi et al., 2002; 

Mega et al., 2009b). As CYPs are responsible for metabolism of many other types of drugs 

(Sadee & Dai, 2005), we can presume that inclusion of genetic data on CYP polymorphisms 

in drug package labels is only starting to emerge. While these developments represent 

relative success of pharmacogenetics in the antithrombotic drug therapy, they also raised 

some pressing questions regarding clinical utility of pharmacogenetic testing, especially in 

the general population of patients (Woodcock, 2010). One problem is that the 

pharmacogenetic puzzle for clopidogrel is far from being complete (Fuster & Sweeny, 2010), 

and even more so for prasugrel, the third generation antiplatelet drug acting by the same 

mechanism, in addition evaluation of relative effects of genetic and non-genetic factors is 

still limited (Zhang et al., 2008). From an evolutionary point of view, pharmacogenetically 

meaningful inherited variations have most probably evolved and persisted in the human 

population due to ancient natural stressors such as nutrition and parasites, understanding of 

which may provide yet unknown and unexpected insights into the etiopathology and 

mechanisms of human diseases and evolutionary adaptations.  
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On the way towards personalize medicine, pharmacogenetics ultimately aims to replace 

"one drug fits all" or "trial and error" methods in choosing an optimal drug at the most 

advantageous dose for each patient. Even if pharmacogenetics is still unable to achieve 

accurate predictions of therapeutic dose at an individual level, it can assist in identifying 

patients who are likely to benefit from a drug from those who are prone to adverse reactions 

that could lead to toxicity and death ("outliers"). Perhaps the most promising advances in 

implementation of pharmacogenetics have been made so far in the field of oncology, using a 

patient's genetic profile to predict the need and the choice of chemotherapy (Huang et al., 

2003; Kroese et al., 2007). Adverse drug reactions are a major problem with current 

antithrombotic drugs and are the major cause of hospitalizations in the US today (Lloyd-

Jones et al., 2009). Reducing the number of failed drug attempts and number 

hospitalizations due to adverse events, are all reasons why the implementation of 

pharmacogenetics could be beneficial and cost effective, and overall could potentially lead 

to decreased costs of health care (Ginsburg et al., 2005). 

4. Warfarin pharmacogenetics 

The most complete pharmacogenomic picture is presently available on the anticoagulant 

warfarin. Warfarin (coumadin), originally patented as rat poison, was introduced into the 

clinical practice in the 40s as an anticoagulant inhibiting the vitamin K cycle and thereby 

the action of vitamin K-dependent factors of the coagulation cascade, specifically factors 

II, VII, IX, and X (Figure 1). Warfarin and other coumarin derivatives are indicated in a 

wide range of clinical conditions, including prevention and treatment of venous 

thrombosis (VTE) and arterial thromboembolism in patients with AF and mechanical 

heart valves. Maintenance on warfarin most often persists for years or lifetime. Warfarin 

is still the most commonly prescribed oral anticoagulant in the North America and much 

of Europe (phenprocoumon and acenocoumarol) (Daly & King, 2003). Every year, two 

million patients start warfarin therapy in the US alone (Melnikova, 2009). One problem 

with warfarin is a narrow therapeutic index resulting in serious risks of adverse reactions 

at both ends of the dosing scale: low-responders to warfarin are at increased risk for 

embolic events and high-responders can develop intracranial hemorrhages or 

gastrointestinal bleeds. The other problem is an extensive variability in warfarin dose 

response, reflected in more than 20-fold inter-individual differences in warfarin dosing. 

All patients receiving warfarin are closely monitored using INR, a universal laboratory 

test for anticoagulation efficiency (prothrombin time). Frequent INR monitoring is 

especially crucial in naive patients at the beginning of warfarin administration. For most 

clinical indications, the therapeutic range for target INR is between 2.0 and 3.5, while 

INRs below or above this range are indicative of under-anticoagulation (risk of 

thrombosis) or over-anticoagulation (risk of bleeding), respectively. Although therapeutic 

control, i.e. achieving and maintaining target INR within the therapeutic range, is 

considered an important predictor of adverse events, it is still insufficient even in clinical 

trials settings, in which the average time spent in the therapeutic INR is only 50-70% 

(Ansell et al., 2008). Thus, it is not surprising that warfarin still ranks among the five top 

most “hazardous” drugs that are most often responsible for emergency room visits 

(Budnitz et al., 2007; Wysowski et al., 2007), making it a leading candidate for genetic 

testing before starting any patient on warfarin therapy.  
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Abbreviations: VKORC1 vitamin K epoxide reductase; GCCX Ǆ-glutamyl carboxylase;  
CYP2C9 cytochrome P450 enzyme; OH-Warfarin inactive hydroxylated warfarin metabolites;  
LMWH low molecular weigh heparins; arrows indicate activation and blocked lines inhibition.  

Fig. 1. Targets of anticoagulants and direct thrombin inhibitors (DTIs)  

Warfarin pharmacokinetics is predominantly determined by the hepatic CYP2C9 enzyme 
responsible for its metabolism. Warfarin is a racemic mixture of S and R enantiomers, S-
warfarin is the main CYP2C9 substrate, has a shorter half-life and is 3-5 times more potent 
anticoagulant. Other drugs interfering with CYP2C9 activity and warfarin clearance 
(Holbrook et al., 2005), as well as age and weight (Dobrzanski et al., 1983; Wynne et al., 
1995), can have significant effects on the efficacy of warfarin therapy, and also nutritional 
factors affecting the vitamin K cycle (Greenblatt & von Moltke, 2005). A number of genetic 
variants of CYP2C9 have been identified in various world populations 
(http://www.cypalleles.ki.se/), the two most important due to occurrence and functional 
implications are Arg144Cys (*2) and Ile359Leu (*3). CYP2C9*2 and *3 have been related to 
approximately 30% and 80% respective reductions in enzymatic activity in vitro (Rettie et al., 
1994; Takahashi et al., 1998) and to reduced S-warfarin clearance in vivo, comparing wild 
type allele homozygotes *1/*1 to mutation carriers *1/*2 or *1/*3 (40-45% reduced 
clearance) or homozygotes *2/*2 and *3/*3 (70-85%) (Kaminsky & Zhang, 1997). Following 
key study (Aithal et al., 1999) suggested that a patient’s CYP2C9 genetic composition is 
indicative of his warfarin dose requirement, in showing that hypofunctional *2 and *3 alleles 
were more common among patients with significantly lower steady-state doses, and that *2, 
*3 carriers and homozygotes had greater INR instability and more bleeding complications at 
warfarin induction. Gene-dose relationship between hypofunctional *2 and *3 alleles and 
reduced warfarin requirements was subsequently reproduced and refined in numerous 
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studies. A retrospective study representing an unselected patients population (Higashi et al., 
2002) investigated whether patients with CYP2C9*2,*3 genotypes also demonstrate 
increased time to therapeutic INR, time taken to achieve stable dosing, incidence of supra-
therapeutic INR and risk of serious or life-threatening bleeding events. The investigators 
found that carriers of *2,*3 required more time to achieve stable dosing (hazard ratio 
HR=0.65 [95% confidence interval CI: 0.45-0.94] with a median difference of 95 days 
(p=0.004), had higher risk of supra-therapeutic INR (HR=1.4 [1.03–1.90]) and moreover were 
more prone to bleedings at warfarin initiation (HR=3.94 [1.29–12.06]) and over the entire 
study (HR=2.39 [1.18–4.86]). While deciphering the relationship between patient’s CYP2C9 
genotype and warfarin therapeutic dose, this study suggested an optimistic perspective that 
the use of genotype-guided dosing can reduce the time to reach stable therapeutic dose, risk 
of above-range INR’s and incidence of bleeding events. A recent meta-analysis (Lindh et al., 
2009) summarizing data for almost 8,000 patients from 39 studies estimated that compared 
to patients with the wild type *1/*1 genotype, the steady-state warfarin maintenance dose 
was reduced by 20% [17-22%] and 34% [29-38%] for *1/*2 and *1/*3 carriers, and by 36% 
[30-42%], 57% [49-64%] and 78% [72-84%] for *2/*2, *2/*3 and *3/*3 homozygotes and 
compound heterozygotes, respectively. It is worth mentioning that CYP2C9*2,*3 have been 
similarly associated with reduced S-acenocoumarol clearance, lower steady state 
acenocoumarol dose requirements and higher risk for supra-therapeutic INRs, but not of 
bleeding complications (Stehle et al., 2008; Teichert et al., 2009).Thus, significant 
contribution of common hypofunctional CYP2C9 variants to warfarin sensitivity has been 
well-established, although accurate estimates of their contribution varies between studies 
and is dependent on inclusion of other factors.  

Despite these advances, robust estimates of bleeding risks for specific CYP2C9 genotypes are 

still ambiguous, due to the rarity of severe bleeding events and the need of large cohort 

studies. In order to circumvent this limitation, most studies use grouping of CYP2C9 

genotypes. For instance, a 365 patients study (Sanderson et al., 2005) reported relative bleeding 

risk RR=2.26 [1.36-3.75] for carriers of *2 or *3 variants, while a 446 patients study (Limdi et al., 

2008) a reported hazard ratio HR=3.0 [1.1-8.0] for major bleeding that was highest during 

induction (5.3-fold) but remained increased (2.2-fold) after stabilization. A large prospective 

Swedish Warfarin Genetics (WARG) cohort of 1496 patients (Wadelius et al., 2009) reported 

that 1 of 8 (12.5%) patients homozygous for *3 experienced a serious bleeding event, compared 

to 4 of 1482 (0.27%) with other CYP2C9 genotypes (p=0.066). Judging from these and other 

observations, it was clear that CYP2C9 polymorphisms can not explain the entire inter-

individual variability in warfarin dose response. In addition, CYP2C9*2,*3 allele frequencies in 

various world populations were not entirely matching to previous epidemiological findings of 

ethnic differences in warfarin dose requirements, suggesting that individuals of Asian origin 

are relatively low dose requirers and individuals of African origin are high dose requirers 

compared to Caucasians (Absher et al., 2002; Dang et al., 2005). Conversely, CYP2C9*2 and *3 

were found prevalent in Caucasians (12% and 8% respectively), but were hardly present in 

African or Asian populations (Moyer et al., 2009; Stehle et al., 2008).  

Recent studied suggested implication of yet another cytochrome P450 in warfarin dose, 
CYP4F2, showing that coding and exceptionally common Val433Met polymorphism (up to 
30% allele frequency in white populations) is associated with 4-12% increase in warfarin 
dose requirements (Borgiani et al., 2009; Caldwell et al., 2008). Contribution of this factor 
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was further supported in recent GWAS showing that when CYP2C9 and VKORC1 effects 
were removed through multiple regression adjustments, an additional signal for CYP4F2 
was observed (Takeuchi et al., 2009). Although the effect of this CYP4F2 polymorphism is 
probably small (about 1.1% variability explained), the suggested molecular explanation of 
this effect is interesting. CYP4F2 was shown to catalyze vitamin K oxidation, while the 
presence of 433Met variation reduced its catalytic ability, potentially leading to 
accumulation of the VKORC1 substrate - vitamin K epoxide and larger warfarin doses 
required for inhibition of this pathway (McDonald et al., 2009). CYP4F2 Val433Met was also 
associated with acenocoumarol dose requirements with similar modest effect (1.2-1.3%) 
(Perez-Andreu et al., 2009; Teichert et al., 2009). 

A major step forward has been taken with discovery of an enzyme responsible for warfarin 
pharmacodynamics and direct warfarin target, the vitamin K epoxide reductase (VKOR). 
When VKOR is blocked by warfarin, vitamin K epoxide cannot be reduced to replenish the 
active form of vitamin K, which is necessary for activation of coagulation factors by  
Ǆ-carboxylation (Figure 1). Therefore, lack of active vitamin K eventually results in less 
activated coagulation factors and decreased coagulation activity. After more than 50 years of 
search for the warfarin target, the gene encoding the VKOR catalytic subunit (VKORC1) was 
identified in parallel by two independent groups (Li et al., 2004; Rost et al., 2004), the latter 
also provided first evidence of rare VKORC1 mutations in patients with exceptionally high 
warfarin dose requirements (i.e. warfarin resistance). Shortly after, several studies reported 
that VKORC1 polymorphisms affect warfarin dose response (Bodin et al., 2005; D'Andrea et 
al., 2005; Sconce et al., 2005) and studies considering both CYP2C9 and VKORC1 
polymorphisms suggested that they provide relatively good explanation of low dose 
requirements conditional on enzymes insufficiencies and a total of about 50% variability 
explained (Bodin et al., 2005; Sconce et al., 2005). A landmark study (Rieder et al., 2005) 
revealed a series of VKORC1 polymorphisms (10 SNPs including previously reported) that 
construct high-linkage disequilibrium haplotype structure with distinct frequencies among 
human populations. Specifically, haplotypes H1 and H2 containing promoter -1639G>A 
(also 3673G>A), and intragenic 1173C>T (also 6486C>T), 6853G>C and 7566C>T variations 
were associated with reduced VKORC1 transcription and lower warfarin doses, consistent 
with the notion that lower target enzyme production leads to lower requirement of its 
specific inhibitor. Since then, numerous studies have supported the notion that H1 and H2 
haplotype variants (also VKORC1*2 (Geisen et al., 2005) are associated with warfarin 
sensitivity. Studies examining VKORC1 haplotype frequencies in various world populations 
confirmed that VKORC1 alleles/haplotypes are important genetic factors in determining 
individual as well as populational warfarin dose response variability, particularly the 
occurrence of warfarin sensitivity (Mushiroda et al., 2006; Takahashi et al., 2006; Veenstra et 
al., 2005). A paramount analysis of VKORC1 alleles/haplotypes in 8,750 patients from 11 
countries partaking in the International Warfarin Pharmacogenetics Consortium (IWPC) , 
the largest cohort representing three racial groups (Asians, whites and blacks) (Limdi et al., 
2010), showed that the -1639G>A marker is sufficient to explain the variance across all three 
racial groups. In fact, the -1639G>A marker has been incorporated into all warfarin genetic 
testing kits approved by the FDA. However this study acknowledged that the contribution 
of VKORC1 to dose requirements is higher in whites than in non-whites. The most 
compelling evidence for VKORC1 contribution to warfarin sensitivity were provided by the 
IWPC study of over 5,000 patients (Klein et al., 2009), showing that patients with -1639 GG, 

www.intechopen.com



 
Clinical Applications of Pharmacogenetics 

 

130 

GA, and AA genotypes had mean warfarin weekly doses of 42.6mg [41.5-43.7], 30.7mg [29.9-
31.5] and 20.3mg [19.8-20.8], respectively, corresponding to approximately 25% dose 
reduction per A allele. Moreover, the -1639A allele was associated with other clinical 
outcomes indicative of increased warfarin sensitivity, specifically with higher INR values 
and shorter time spent within the therapeutic range, but not with bleeding complications 
(Limdi et al, 2008; Schwarz et al, 2008; Wadelius et al, 2009), as previously mentioned, 
evaluation of bleeding risks may require larger studies. VKORC1 alleles/haplotypes were 
shown to have similar effects on increased sensitivity to acenocoumarol (Stehle et al., 2008).  

Thus, added genetic data on CYP2C9 and VKORC1 provided sufficiently good resolution of 

warfarin sensitivity but not of warfarin resistance, showing by default that patients of 

African origin (African-Americans), in which warfarin resistance is common, are essentially 

lacking markers of warfarin sensitivity. In addition, use of correlation analyses and more 

complex models accounting for other genetic and non genetic factors in African-American 

patients, did not reach the values achieved in Caucasian and Asian patients (Momary et al., 

2007; Schelleman et al., 2007). Rare VKORC1 mutations identified in singular families with 

multiple coagulation factor deficiency (Rost et al., 2004) and rare patients with severe 

warfarin resistance (Harrington et al., 2005) also could not explain the relatively common 

occurrence of warfarin resistance in patients of African origin. Other gene variants, such as 

polymorphisms in the microsomal epoxide hydrolase (EPHX1) and calumenin (CALU), 

were shown to have only marginal contribution to higher warfarin doses (Loebstein et al., 

2005; Wadelius et al., 2007). This gap of knowledge was resolved by two studies reporting a 

common warfarin resistance marker, the VKORC1 Asp36Tyr mutation, with significant 

contribution to high warfarin doses (>70 mg/week) and dominant effect over warfarin 

sensitivity markers in the same individual (Loebstein et al., 2007; Scott et al., 2008). Initially 

described in the Jewish Ashkenazi (4% allele frequency), Asp36Tyr was further found 

surprisingly prevalent in individuals from Ethiopia (15%) (Aklillu et al., 2008). Most recent 

study specifically focusing on high-dose coumarins requirers reported that Asp36Tyr is the 

most common VKORC1 mutation also among European warfarin resistant patients and 

appears to affect phenprocoumon therapeutic in the same way (Watzka et al., 2011). 

5. Implementation of warfarin pharmacogenetics 

Prior to the genetic era, warfarin dose prediction at the initiation of therapy used a clinical 
algorithm, including variables such as age, weight or height, race, concomitant medication 
and dietary vitamin K consumption, all together accounting for 20-30% of warfarin dose 
variability (Gage et al., 2008). Taken together, CYP2C9 and VKORC1 genotypes could 
explain additional 20-30% of warfarin dose variability (Wu, 2007) and by other estimates 
even 30-40% (Manolopoulos et al., 2010), again showing an overriding effect of genetic 
factors. These observations raised the possibility that genetic testing of patients prior to 
therapy initiation might provide information that could enhance the clinical algorithm. 
Several prospective studies examined potential clinical utility of the pharmacogenetic 
algorithm including genetic and clinical data. The first prospective randomized study 
comparing between the pharmacogenetically-guided and standard dosing algorithms for 
206 patients initiating warfarin therapy (Anderson et al., 2007b) failed to show significant 
differences between groups for the primary endpoint, i.e. the number of out-of-range INR 
standardized by the number of INRs obtained (30.7%±22.9 in pharmacogenetic-guided 
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versus 33.1%±22.9 in standard dosing group). However, the investigators succeeded to show 
that the pharmacogenetic algorithm slightly, but significantly, decreased the number of dose 
adjustments from 3.6 to 3.0 per patient (mean decrease of 0.62 adjustments [0.04–1.19], 
p=0.035). While it was clear that a patient’s genetics influences warfarin dosing, it was still 
unclear how this data could be utilized in the clinic. Several groups suggested other 
pharmacogenetic algorithms, using genetic and clinical factors (Gage et al., 2008; Limdi et 
al., 2008; Takahashi et al., 2006). The IWPC pharmacogenetic algorithm was constructed on 
the basis of analysis of 4000 patients of various ethnicities, accounting for patients’ genetic 
(VKORC1 and CYP2C9) and clinical data (age, weight and early INR values) (Klein et al., 
2009). The predictive value of this pharmacogenetic algorithm was then validated in a 
cohort of 1000 patients, calculating the percentage of patients whose predicted dose was 
within 20% of the actual stable therapeutic dose. The investigators found that the 
pharmacogenetically-guided dosing was more accurate compared to the traditional 
approach. The greatest predictive value of the pharmacogenetic algorithm was seen in 
patients receiving weekly doses of 21mg or less, and 49mg or more to achieve the target 
INR, 49.4% in pharmacogenetically-guided versus 33.3% in traditional among patients 
requiring ≤ 21mg and 24.8% versus 7.2% among patients requiring ≥ 49mg (p<0.001 for both 
comparisons). Thus, the conclusion was that the addition of genotype information enhanced 
outcomes, especially for patients who required unusually high or low warfarin doses 
(outliers). CYP4F2 was not included in this algorithm but has been included in several 
algorithms developed later (Sagreiya et al., 2010; Zambon et al., 2011). Probably the most 
direct evidence for benefits of the pharmacogenetically-guided approach were provided in 
the latest study comparing nearly 900 patients for whom genetic information on CYP2C9 
and VKORC1 was made available to prescribing physicians with matched 2,690 patients 
control group who started warfarin therapy without genetic information (Epstein et al., 
2010). Six months after warfarin initiation, the genotyped cohort had 31% fewer 
hospitalizations overall (HR=0.69 [0.58-0.82], p< 0.001) and 28% fewer hospitalizations for 
bleeding or thromboembolism (HR=0.72 [0.53-0.97], p=0.029) 

In February 2010, the FDA revised warfarin label providing genotype-specific ranges of 

doses and recommending, but not requiring, that genotypes be taken into consideration 

when the drug is prescribed. The wide availability of CYP2C9 and VKORC1 genotyping and 

the release of both Web-based and personal decision-support tools have facilitated clinical 

use of this information. Nevertheless, clinical adoption of genotype-guided administration 

of warfarin has been slow (Ansell et al., 2008). Several prospective clinical trials are 

currently ongoing to fill the need for prospective assessment of the value of genetic 

information in warfarin therapy (Ginsburg & Voora, 2010). Alternative anticoagulant 

therapies are also being developed that might replace warfarin, perhaps in patients with 

genotypes associated with extreme warfarin dose response (Kanagasabapathy et al., 2010). 

6. Antiplatelet therapies 

Platelets play a central role in cardiovascular arterial thrombosis caused by endothelial 
damage due to a ruptured atherosclerotic plaque, they adhere to the damaged sub-
endothelial matrix and aggregate with each other to form a prothrombotic surface that 
promotes clot formation and subsequently vascular occlusion. Treatment of cardiovascular 
arterial disease has been using drugs targeting key pathways of platelet activation, 
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including thromboxane A2 synthesis and ADP-mediated and integrin ǂIIbǃ3 signaling 
pathways. The most common antiplatelet agents include aspirin, clopidogrel and integrin 
ǂIIbǃ3 antagonists (Figure 2). Numerous clinical trials have accumulated substantial evidence 
for efficacy of aspirin and clopidogrel, or both, in the primary and secondary prevention of 
MI, stroke and cardiovascular death (Wang et al., 2006). However, these trials have also 
demonstrated subsets of patients in which failure of antiplatelet therapy increased risks of 
vascular event and death. It has been estimated that 10-15% of the population is resistant to 
aspirin and close to 30% to clopidogrel, while resistance to both aspirin and clopidogrel 
occurs in 9% (Dupont et al., 2009). A lot of focus has been drawn to defining antiplatelet 
drug resistance and understanding how it develops. The term ‘resistance’ has been coined 
for lack of ability to attain the expected pharmacologic effect in the laboratory in vitro tests of 
platelet function (Barragan et al., 2003; Mehta et al., 1978; Muller et al., 2003). However, lack 
of agreement on a standardized definition for antiplatelet resistance contributed to the 
disparity in its incidence among different studies. Multiple assays for platelet function have 
been developed, among them the test considered the gold standard for aspirin response - 
light transmittance aggregometry (LTA), the point-of-care platelet function analyzer PFA-
100 device and the newly introduced ‘VeryfyNow’ assays for aspirin and clopidogrel. One 
problem is the extent to which these laboratory methods correlate with one another, recent 
study using six different platelet function test has demonstrated that their results are weakly 
comparable regarding aspirin response (Lordkipanidze et al., 2007). The other problem is 
that the phenomenon of resistance is not well understood and, apart from genetic factors, is 
highly dependent on drug-drug interactions, diet and clinical conditions associated with 
high platelet turnover, such as inflammation, chronic infection and other disorders 
(Musallam et al., 2011). Therefore, a more subtle term, i.e. “non-responsiveness”, have been 
suggested (Hennekens et al., 2004) until the reasons for antiplatelet treatment failure are 
better recognized.  

7. Aspirin 

For over 50 years, aspirin has been the foundation of antiplatelet therapy. Aspirin 

(acetylsaliylic acid) irreversibly acetylates the platelet cyclooxygenase-1 (COX1) at serine 

529, which reduces the production of thromboxane A2, a potent platelet activator (Figure 2). 

Oral aspirin is rapidly absorbed from the stomach and small intestine, reaching peak plasma 

levels in 1-4 hours, its plasma half-life is only 15–20 minutes, but the platelet inhibitory 

effect lasts for platelets lifespan because of the irreversible inactivation of COX1 (Patrono et 

al., 2008). In high-risk patients, aspirin reduces vascular death by approximately 15% and 

non-fatal vascular events by 30% (Patrono et al., 2008). Aspirin may also be of benefit in the 

primary prevention of cardiovascular events, but the effect is more modest (Patrono et al., 

2008). Consensus guidelines on the role of laboratory testing for aspirin response remain 

lacking, as evaluation of platelet function for aspirin is highly test specific. The very low cost 

of the drug is a major advantage.  

Potential contribution of genetic factors to aspirin resistance has been investigated in 
numerous studies, but has not been entirely resolved. Early studies suggested that 
polymorphisms in the COX1 gene could be responsible for partial resistance to low dose 
aspirin (Eikelboom et al., 2002; M.K. Halushka & P.V.Halushka, 2002). Further study of 144 
CVD patients on aspirin using LTA for platelet activity studies (Maree et al., 2005) 
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confirmed that polymorphisms in COX1 significantly affect arachidonic acid (AA)-induced 
platelet aggregation and serum thromboxane A2 levels (p=0.004). However, more recent 
systematic review has not supported the association between COX1 polymorphisms and 
aspirin resistance (Goodman et al., 2008). Candidate polymorphisms in platelet glycoprotein 
receptors (GPIa/IIa, GP Ibǂ and GPIIIa) have been also considered as potential contributors 
to variability in aspirin response. An original study of 100 patients on low dose aspirin 
using PFA-100 method for measuring platelet-induced hemostasis in vitro (Macchi et al., 
2003) reported that patients with poor platelet response to aspirin therapy had significantly 
more often GPIIIa A1/A1 genotype (86.2%) than good responsers (59.4%; p = 0.01). No 
relation was found between aspirin resistance and other GP genotypes. Association between 
homozygosity for the GPIIIa A1 allele and resistance to aspirin inhibition was furhter 
supported by several studies (Dropinski et al., 2007; Feher et al., 2009; Papp et al., 2005), but 
refuted by others (Lev et al., 2007). Another interesting study re-assessing the effects of 
various polymorphisms in COX1 or platelet glycoprotein receptors on variable response to 
aspirin, used both PFA-100 and LTA platelet activity assays (Lepantalo et al., 2006). This 
study emphasized the effect that the two methods may have on association findings, in 
addition, the authors suggested that the poor response to aspirin was also associated with 
female gender (p=0.019). Several studies using female platelets have shown increased 
platelet reactivity at baseline and a less effective inhibition of platelet aggregation by aspirin 
(Zuern et al., 2009). The mechanisms underlying these differences are still to be elucidated, 
but influences of female sex hormones may play an important role. As a consequence, 
inhibition of platelet aggregation in women treated with aspirin may be insufficient, and 
female patients might benefit from higher maintenance dosages or the use of alternative 
antiplatelet medications. 

Thus, the potential causes, incidence and clinical impact of aspirin resistance are still 

obscure. Measured variability in response to aspirin is most probably multifactorial, with 

genetics playing what appears to be a small, undefined role. Others suggest that the actual 

incidence of true clinical aspirin resistance is very low, and that aspirin failure has little to 

do with ex vivo-determined responsiveness (Cuisset et al., 2009). Alternate pathways for 

platelets activation that are not inhibited by aspirin, such as erythrocyte induced platelet 

activation (Santos et al., 1991), may be responsible for aspirin resistance. Based on these 

notions and the mixed results shown in the above studies, there is currently no defined role 

for pharmacogenetic testing to dose aspirin.  

8. Clopidogrel high-risk pharmacokinetics 

Thienopyridines, such as clopidogrel and prasugrel, irreversibly bind to the purinoceptor 

P2Y12 receptor resulting in inhibition of platelets activation in response to adenosine 

diphosphate (ADP) and inhibition of platelet aggregation (Figure 2). Clopidogrel is given 

orally in a daily universal dose, it has substantial benefits in patients after PCI and stent 

implantation (Anderson et al., 2007a). Dual antiplatelet therapy (aspirin plus clopidogrel) is 

the standard of care for patients with acute coronary syndrome managed medically after 

coronary stenting or by PCI (Anderson et al., 2007a). However, major adverse 

cardiovascular events including stent thrombosis can occur despite antiplatelet therapy, 

recent meta-analysis showed that persistent platelet reactivity on clopidogrel treatment 

confers a five-fold increased risk of major adverse cardiovascular events (Sofi et al.,2010). All 
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thienopyridines are pro-drugs requiring activation by the hepatic cytochrome P450 enzyme 

system. Clopidogrel is metabolized to its active metabolite through a two-step process 

mediated by various CYPs, among which CYP2C9 and CYP2C19 play a major role (Brandt 

et al., 2007), the activation of prasugrel, in contrast, is mediated by esterases and by CYP3As 

with lesser contribution of CYP2C9 and CYP2C19 (Jakubowski et al., 2007). Inter-patient 

response variability to clopidogrel became evident from platelet function assays in vitro 

(Barragan et al., 2003; Muller et al., 2003) and from associations of poor clopidogrel response 

in vitro (clopidogrel resistance or none-responsiveness) to poor clinical response evidenced 

by major adverse events (Snoep et al., 2007).  

 

Abbreviations: CYP2C19 cytochrome P450 enzyme; ADP adenosine diphosphate; P2Y12 and P2Y1 
purinoceptor receptors; coupled Gi and Gq proteins; Gi protein ǂ and ǃ subunits; AC adenyl cyclase; 
PI3K phosphatidylinositol 3-kinase; PLC phospholipase C; AA arachidonic acid; PGG2 and PGH2 
endoperoxides; TXA2 TXB2 thromboxanes; COX1 cyclooxygenase 1; surface GPVI glycoprotein VI and 
integrin ǂ2bǃ1; VWF von Willebrand factor; arrows indicate activation and blocked lines inhibition.  

Fig. 2. Targets of several antiplatelet agents, clopidogrel, aspirin and integrin ǂ2bǃ3 inhibitors 

Multiple factor have been implicated in high-on clopidogrel platelet reactivity, including 

drug compliance, drug-drug interactions, age, diabetes, body-mass index, left ventricle 

ejection function and inflammation (Giusti et al., 2010). Several studies have demonstrated 

that common and functional polymorphisms in CYPs responsible for clopidogrel 

pharmacokinetics can affect clopidogrel responsiveness. In a key study (Brandt et al., 2007), 
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the investigators hypothesized that polymorphisms inducing loss-of-function of CYP2C19, 

CYP2C9, and CYP3A5 could contribute to decreased formation of the active clopidogrel 

metabolite and thereby affect inhibition of platelet activation. They examined the effect of 

loading doses of clopidogrel and prasugrel on platelet function in vitro, showing significant 

association between the CYP2C19*2 allele encoding a truncated protein product with little 

enzymatic activity and poor response to clopidogrel, but not to prasugrel. CYP2C9*2 and *3 

showed similar tendencies. Carriers of CYP2C19*2 were more frequency poor responders 

compared to patients without the allele (72% versus 41% respectively, p=0.030). A similar 

trend was observed among CYP2C9*2,*3 homozygotes compared to patients with the wild 

type genotype (75% versus 41.4%, p=0.024). Overall, the presence of either CYP2C19*2 or 

CYP2C9 (*2/*2 or *3) was strongly associated with poor clopidogrel response (p<0.001). No 

association was found between CYP3A5 polymorphisms and clopidogrel response. In 

addition, the presence of these or any other CYP polymorphisms had no effect on response 

to prasugrel. The effect CYP3A5 polymorphisms on clopidogrel response is still elusive, a 

follow up study of 348 patients treated with clopidogrel after stent placement (Suh et al., 

2006) suggested that the CYP3A5*3 ‘non-expressor’ allele contributed to significantly 

increased risk of atherothrombotic events, however these findings could not be reproduced 

by others (Simon et al., 2009). Since CYP3A5 and A4 have an overlapping substrate 

specificity (Lamba et al., 2002), variability in CYP3A4 activity was also associated with 

clopidogrel response (Lau et al., 2004). As a result, other drugs that are metabolized by 

CYP3A4, e.g. certain statins commonly used in patients with athrosclerosis, could interfere 

with clopidogrel activation.  

The concept of high-risk pharmacokinetics in response to clopidogrel and specifically the 

role of CYP2C19*2 became increasingly recognized owing to several recent studies. Sub-

group analysis of the EXCELSIOR study examined whether the loss-of-function CYP2C19*2 

allele is associated with increased platelet reactivity despite clopidogrel treatment in 

patients undergoing elective PCI with stent placement (Trenk et al., 2008). CYP2C19*2 was 

significantly associated with residual platelet aggregation (RPA>14%) before hospital 

discharge. Patients with RPA>14% had significantly increased risk of death or MI (HR=3.0 

[1.4–6.8], p=0.004) 1-year post-procedure. The authors concluded that patients carrying at 

least one CYP2C19*2 allele are more prone to high-on clopidogrel platelet reactivity, 

although this study was not adequately powered to determine the effect of variant alleles on 

clinical outcomes. A consecutive study (Shuldiner et al., 2009) clarified the association 

between CYP2C19*2 and clinical outcomes, by doing GWAS and CYP2C19*2 genotyping in 

conjunction with platelet function assays in 429 healthy Amish volunteers on clopidogrel 

from the Amish Pharmacogenomics of Antiplatelet Intervention (PAPI) study, and then re-

examining PAPI findings in relation to cardiovascular outcomes in an independent cohort of 

227 clopidogrel-treated patients after PCI. The investigators established that CYP2C19*2 was 

associated with reduced clopidogrel response in PAPI study accounting for 12% of the 

variability in ADP-induced platelet aggregation (p=4.3x10-11). The relation between 

CYP2C19*2 genotype and platelet aggregation was replicated in the patients cohort (p=0.02). 

Moreover, patients with the CYP2C19*2 variant were more likely (20.9% versus 10.0%) to 

have cardiovascular ischemic events or death during the 1-year follow-up period (HR=2.42 

[1.18-4.99], p=0.02) (Shuldiner et al., 2009). In patients no longer taking clopidogrel after 1-

year, no increase was observed between carriers and non-carriers of CYP2C19*2 (Mega et al., 
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2009a). Apart from the CYP2C19*2 contribution (12%), age, body mass, and lipid levels 

accounted for additional 10% of clopidogrel response. Essential confirmation of CYP2C19*2 

as an important determinant of clopidogrel response was provided by a sub-analysis of the 

randomized TRITON-TIMI 38 trial of clopidogrel and prasugrel outcomes using similar 

two-phase approach (Mega et al., 2009a). This study tested associations between CYP2C19 

reduced-function alleles (five alleles were tested) and measurements of active drug 

metabolite in plasma and platelet aggregation in response to clopidogrel in healthy 

individuals (n=162), and then re-evaluated these associations in a separate cohort of patients 

with acute coronary syndrome (n=1477) considering cardiovascular outcomes. In healthy 

individuals, carriers of at least one CYP2C19 reduced-function allele (approximately 30% of 

the population) had 32.4% reduction in plasma exposure to the active drug metabolite and 

reduction in maximal platelet aggregation in response to clopidogrel, as compared to non-

carriers (both p<0.001). Among TRITON–TIMI 38 patients, carriers of the CYP2C19 reduced-

function allele had 53% increase in the risk of death from cardiovascular causes, MI or 

stroke compared to non-carriers (12.1% versus 8.0%, HR=1.53 for carriers [1.07-2.19], p=0.01) 

and increase in the risk of stent thrombosis (2.6% versus 0.8%, HR=3.09 [1.19-8.00], p=0.02). 

These findings imply that in patients receiving clopidogrel reduced-function CYP2C19 

alleles can lead to reduced exposure to the active metabolite, less platelet inhibition and 

reduced protection from ischemic events, including stent thrombosis. Interestingly, no 

associations were found with any of these CYP variants among patients randomized to 

prasugrel therapy in the TRITON trial (Mega et al., 2009b). One drawback raised in a 

parallel study of the French FAST-MI registry including 2,208 patients (Simon et al., 2009), 

suggested that only carriers of two loss-of-function alleles CYP2C19*2, *3, *4, or *5 (i.e. 

homozygotes or compound heterozygotes) have increased risk of death, nonfatal MI or 

stroke during 1-year period (21.5% versus 13.3%, HR=1.98 [1.10–3.58]). This risk was 

increased even further in PCI (HR=3.58 [1.71–7.51]). This question has been resolved in the a 

meta-analysis including 9,685 patients with acute coronary syndrome or PCI (Mega et al., 

2010b), showing that carriers of even one reduced-function CYP2C19 allele may have 

significantly increased risks of major adverse cardiovascular events, particularly stent 

thrombosis.  

Platelet response to clopidogrel is not fully explained by the CYP2C19 loss-of-function 

alleles. Other pharmacokinetic sources of inter-patient variability have been suggested, 

specifically  the effect of the 3435C>T polymorphism in the p-glycoprotein ABCB1 on 

clopidogrel absorption and metabolism (Hoffmeyer et al., 2000; Owen et al., 2005; Taubert et 

al., 2006). However, this issue remains controversial in the recent sub-analysis of TRITON–

TIMI 38 and PLATO trials considering ABCB1 genotypes and clinical outcomes of patients 

on clopidogrel (Mega et al., 2010a; Wallentin et al., 2010a). Most recently, a novel 

determinant of clopidogrel efficacy was proposed (Bouman et al., 2011), namely the estrase 

PON1, a key enzyme in the rate limiting step of clopidogrel bioactivation and that a coding 

Q192R PON1 polymorphism can affect plasma concentrations of active metabolite, 

clopidogrel inhibition and risk of stent thrombosis,. Large randomized replication studies 

are needed to confirm these interesting and new observations. In addition, few contrasting 

data are available on pharmacodynamic factors, particularly polymorphisms in genes 

encoding platelet glycoproteins involved in thienopyridines intestinal absorption and 

platelet receptors that serve as thienopyridines targets. Effects of polymorphisms in 
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glycoprotein GPIIIa, and platelet receptors P2Y12 and P2Y1 related to aspirin and 

clopidogrel response were evaluated in a preliminary study (Lev et al., 2007), finding no 

definitive associations between various polymorphisms and clopidogrel response assessed 

by platelet aggregation studies. Another study (Shuldiner et al., 2009) relating to clinical 

outcomes also did not find an association between the P2Y12 polymorphism and the risk of 

death, non-fatal MI, or stroke in patients treated with clopidogrel. 

9. Implementation of clopidogrel pharmacogenetics 

Early in 2010, the FDA added a boxed warning to prescribing information for clopidogrel, 

stating that persons with the low-rate metabolizing CYP2C19 variant might require dose 

adjustment or the use of another drug. After this FDA action, the American Heart 

Association and the American College of Cardiology issued a joint endorsement of CYP2C19 

genotyping for patients at moderate or high risk for cardiovascular events who are treated 

with clopidogrel (Holmes et al., 2010), this genetic test is now widely available in the US. 

Despite that, there are studies that challenge the clinical impact of polymorphisms on the 

effectiveness of clopidogrel. Most recently, the CHARISMA genomic sub-study reported at 

the TCT 2009 meeting http://www.theheart.org/article/1008623.do that while patients 

homozygous for the loss-of-function CYP2C19 allele appeared to have an increased risk of 

ischemia when compared with patients with the wild-type allele, they also had fewer 

bleeding events. Conflicting results of many different studies exemplify many unanswered 

questions regarding clinical significance of pharmacogenetics in antiplatelet drugs. Being 

able to predict the specific response of an individual patient based on his or her genetic code 

has yet to be defined, especially for clopidogrel. Despite the lack of clear guidance regarding 

how clinicians could utilize the pharmacogenetic information on clopidogrel, some clinical 

laboratories, especially in the US, now offer genetic screening for markers associated with 

response to antithrombotics including clopidogrel.  

10. New generation antithrombotic drugs 

Novel orally active antiplatelet agents are now available. Prasugrel, the third-generation 
thienopyridine, has been associated with greater active metabolite generation, superior 
inhibition of platelet aggregation and less response variability than clopidogrel (Gurbel & 
Tantry, 2008). In the TRITON-TIMI 38 trial of patients with acute coronary syndrome 
undergoing PCI, the prevalence of cardiovascular death, non-fatal MI or stroke was lower 
with prasugrel than with clopidogrel, although rates of bleeding were higher in the 
prasugrel group (Wiviott et al., 2007). A novel selective inhibitor of P2Y12-receptor, 
ticagrelor has been also evaluated against clopidogrel in patients with acute coronary 
syndrome in the PLATO trial (Wallentin et al., 2009). Ticagrelor was associated with 
significant reduction in cardiovascular death, MI and stroke, without any difference in the 
overall incidence of major bleeding, but with increase in major bleeding related to 
noncoronary-artery bypass graft.  

In October 2010, the FDA approved the oral anticoagulant dabigatran (Pradaxa; Boehringer 
Ingelheim), a direct thrombin inhibitor (DTI), for stroke prevention in patients with AF 
(SPAF). The clinical community is excited at the prospect of having an alternative for 
warfarin therapy, the current gold standard therapy for stroke prevention, a challenge that 
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has taken more than 50 years. SPAF is not the only indication for dabigatran and other new 
DTIs, ongoing trials are evaluating DTIs for the treatment of acute coronary syndromes and 
VTE after major orthopaedic surgery (Hughes, 2010). Initially, dabigatran will probably 
substitute warfarin in patients who have problems with INR management, investigators of 
the Phase III RE-LY trial comparing between dabigatran and warfarin effects in 18,113 
patients suggest that the rates of adverse events were similar for dabigatran and warfarin in 
patients with good INR control, whereas dabigatran was always superior to warfarin in 
patients with poor INR control (Wallentin et al., 2010b). Thus, successful entry of dabigatran 
may benefit from identification of warfarin dose outliers by genetic testing for CYP2C9 and 
VKORC1 markers and in the same way, the next generation DTIs, rivaroxaban and apixaban 
that are currently tested in the Phase III ROCKET-AF and ARISTOTLE trials, respectively 
(http://clinicaltrials.gov/).  

11. Conclusions 

Pharmacogenetics is one of the major components of personalized therapy. However, even 

though the conceptual basis for pharmacogenetics has existed for over half century and 

recent scientific and technological advancements in the field, and the FDA awareness of the 

necessity to integrate genomic data into regulatory review, the translation of 

pharmacogenetics into the clinic has been slow. The cardiovascular field and particularly the 

antithrombotic drug therapy have provided some excellent examples of clinical utility of 

pharmacogenetic approaches. The impact of VKORC1 and CYP2C9 variants on warfarin 

response, established the value of genetic variability to predict the appropriate warfarin 

dose for improving and easing the transition to a therapeutic INR level. In fact, the labeling 

for warfarin now includes recommendations for genetic testing. Nevertheless, the clinical 

application of this information has yet to become universal, in part due to ethical and 

confidentiality issues regarding genetic information, logistic issues with obtaining timely 

genotyping, and resolution of appropriate genetically-guided dosing algorithms for 

warfarin in various populations. Specifically to this last point, the validity of the existing 

genetically-guided dosing algorithms in ethnically heterogonous populations, such as in the 

US, has been seriously compromised by ethnic stratification of certain genetic warfarin 

dosing markers and inability to predict with equivalent degree of confidence in individual 

dose response. In addition, as warfarin pharmacogenetics is extensively affected by 

environmental interactions, differences in lifestyle, nutrition and traditional medical 

routines may have significant impact on how warfarin genetic testing is translated to clinical 

decision making in various population. Once again, large-scale prospective studies are 

needed to confirm the usefulness and pharmacoeconomic benefits of personalized 

genetically-guided treatment for warfarin on a population basis.  

Similar to the evolution of personalized medicine for the anticoagulant warfarin, the 
antiplatelet drug clopidogrel has also demonstrated strong potential for improving therapy 
by pharmacogenetic approach. For now, however, clopidogrel pharmacogenetics is even 
farther from obtaining widespread application than warfarin. There is a much smaller 
percentage of variability explained by the current paradigm and fewer prospective studies 
confirming the worthiness of genetic information for improving clinical outcomes. Likewise, 
any potential economic savings of this strategy have not been demonstrated. Most 
importantly, it is unclear how the genetic information on CYP2C19 can be utilized for 
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adjustment of the treatment regime, for example by increasing the dosing of clopidogrel or 
by substituting clopidogrel for the recently approved prasugrel or for the potentially soon to 
be available ticagrelor. The appropriate use of these strategies is difficult to assess in the 
absence of genetic information on clopidogrel alternatives, and incomplete understanding 
about other potential predictors, i.e. genetic, epigenetic and environmental modulators of 
response to antiplatelet agents. This problem is moreover accentuated by lack of reliable and 
validated assays for measuring platelet function with sensitivity, consistency, 
standardization and correlation with clinical outcomes, in order to tailor with confidence 
personalized antiplatelet therapy.  

There has been significant discussion in the scientific press (Collins, 2010; Varmus, 2010; 
Venter, 2010; Woodcock, 2010) about the slow pace of the application of genomics to 
clinical practice. All parties point to the need for increasingly large and complex studies to 
test pharmacogenomic paradigms in the clinical setting; economic disincentives for 
pharmaceutical industry to accept the implications of individualized drug response; and 
the slow pace of the incorporation of pharmacogenomics into the drug evaluation process. 
In line with this critique, the FDA has recently released several regulatory guidelines 
(Guidance for Industry: Pharmacogenomic Data Submission 2005 and Companion 
Guidance 2007) on integration of genomic data in the evaluation process of new drug 
applications. Finally, there is a need for concerted effort directed at the education of 
healthcare professionals as well as patients to understand, accept and utilize genomic 
information 

As time progresses, technology will continue to decrease the cost of whole-genome scans 
and other genetic tools, allowing more efficient and secure transfer of genetic information. 
Challenges that are associated with replication of study findings and evaluation of the 
clinical significance of genetic variants, underscore the importance of functional 
experiments to test their biological implications and to extend our understanding of drug 
mechanisms. These advances, along with development of logistical platforms for 
universal application of genetic information will allow realization of personalized 
medicine across all therapeutic areas, antithrombotic drug therapy. Finally, additional 
scientific, regulatory, and psychological factors must be addressed before 
pharmacogenomic tests will become a routine part of medicine. The FDA-mandated 
incorporation of pharmacogenomic information in drug labeling will remain an important 
step in the acceptance of pharmacogenomics in clinical practice. Perhaps equally 
important will be the willingness of physicians to reexamine suboptimal pharmacologic 
management programs.  
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