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1. Introduction 

Baculoviruses are a large group of viruses pathogenic to arthropods, primarily insects from 
the order Lepidoptera and also insects in the orders Hymenoptera and Diptera (Moscardi 
1999; Herniou & Jehle, 2007). Baculoviruses have been used to control insect pests on 
agricultural crops and forests around the world (Moscardi, 1999; Szewczk et al., 2006, 2009; 
Erlandson 2008). Efforts have been ongoing for the last two decades to develop strains of 
baculoviruses with greater potency or other attributes to decrease the cost of their use 
through a lower cost of production or application. Early efforts focused on the insertion of 
foreign genes into the genomes of baculoviruses that would increase viral killing speed for 
use to control agricultural insect pests (Black et al., 1997; Bonning & Hammock, 1996). More 
recently, research efforts have focused on viral genes that are involved in the initial and 
early processes of infection and host factors that impede successful infection (Rohrmann, 
2011). The enhancins are proteins produced by some baculoviruses that are involved in one 
of the earliest events of host infection. This article provides a review of baculovirus 
enhancins and their role in the earliest phases of viral infection. 

2. Lepidopteran specific baculoviruses  

The Baculoviridae are divided into four genera: the Alphabaculovirus (lepidopteran-specific 
nucleopolyhedroviruses, NPV), Betabaculovirus (lepidopteran specific Granuloviruses, GV), 
Gammabaculovirus (hymenopteran-specific NPV), and Deltabaculovirus (dipteran-specific 
NPV) (Jehle et al., 2006). Baculoviruses are arthropod-specific viruses with rod-shaped 
nucleocapsids ranging in size from 30-60 nm x 250-300 nm. Most baculoviruses produce two 
types of virus particles, the occlusion-derived virion (ODV) and the budded virion (BV). 
ODV are enclosed in a paracrystalline protein matrix, termed the occlusion body (OB) 
produced by NPVs and the granule produced by GVs, which are composed primarily of the 
proteins polyhedrin and granulin, respectively. The OB/granule provides the embedded 
ODV protection from environmental elements such UV light, rain, etc. The BV is produced 
in the early stages of viral replication and spreads the infection throughout the susceptible 
cells within the host (Rohrmann, 2011). The NPVs produce OBs that range in size from 0.15 
to 3 µm in size and contain many virions. The GVs generate smaller ovoid shaped granules 
of 0.13 – 0.5 µm that contain a single virion (Ackermann & Smirnoff, 1983). Baculovirus 
genomes are circular double-stranded DNA molecules ranging in length from about 80 -180 
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kbp and contain from approximately 90 to 185 open reading frames (ORFs). All baculoviruses 
sequenced to date contain unique and common ORFs. More than 800 orthologous gene groups 
have been identified as a consequence of speciation events during viral evolution (Jehle, et. al., 
2006). Baculovirus genomes undergo a high rate of mutation as a consequence of gene 
duplication and loss, homologous recombination, and gene transfer from other viruses, 
bacteria, and eukaryotic genomes. Sequence analysis of NPV and GV genomes revealed that 
the NPVs and GVs contain many gene homologs, and 29 core genes are conserved in all 
baculoviruses sequenced to date (Herniou et al., 2003; Jehle et al., 2006; Herniou & Jehle, 2007). 
Several groups of genes are conserved in some but not all NPVs and GVs. One of these groups 
is termed auxiliary genes, which include enhancin genes. These genes are not essential for viral 
DNA replication but provide a selective advantage to a virus (Miller, 1997).  

3. Viral pathogenesis 

GVs and NPVs initiate infection when a susceptible host ingests viral OBs present on host 

plants. Within the alkaline environment of the larval midgut, OBs dissolve, thereby 

releasing ODV. ODV must first traverse a physical structure termed a peritrophic matrix 

(PM), which is composed of proteins, mucopolysaccharides, and chitin (Pritchett et al., 1984; 

Hegedus, et al., 2009). The PM provides a barrier to gut cells from bacteria, viruses, fungi, 

and physical damage from ingested plant material (Lehane, 1997; Terra, 2001). The PM is in 

a constant state of regeneration from epithelial cells as the larvae feeds. The movement of 

food material through the insect gut causes loss of the PM.  

ODV then gains entry into midgut cells by a type of fusion process (Granados, 1980; 

Granados & Lawler, 1981) that is not defined. The type NPV, Autographa californica multiple 

NPV (AcMNPV), initiates the infection cycle by infecting primarily columnar epithelial cells 

within the midgut and to a much lesser extent regenerative epithelial cells in Trichoplusia ni 

(Keddie et al., 1989) or Spodoptera exigua larvae (Flipsen et al., 1995). Several factors are 

involved during the initial act of infection that includes ODV binding to midgut cells at cell 

receptors and viral entry into the cells. All sequenced baculoviruses contain genes that code 

for per os infectivity factors (PIFs) that are associated with ODVs but not BV (Faulkner et al., 

1997; Kikhno et al., 2002; Fang et al., 2006; Harrison et al., 2010; Fang et al., 2009). The pif 

genes include p74-pif, and pif genes 1-5, Ac119, Ac 22, Ac115, Ac96, and Ac148, respectively. 

Deletion of any of the pif genes from a viral genome significantly decreases but does not 

eliminate per os infectivity (d’Alencon et al., 2004; Crouch et al., 2007). The PIFs, with the 

exception of PIF3, are thought to be involved in binding or interacting with the midgut cells 

that leads to infection (Ohkawa, et al., 2005; Li et al., 2007; Peng et al., 2010; Horton & 

Burand, 1993). Another gene present in some GVs and NPVs, the enhancin gene, codes for a 

protein that also impacts viral potency during per os infection as described in the next 

section. 

Upon entry into midgut cells, the nucleocapsids are actively transported to nuclear pores in 

a process that uses actin polymerization (Ohkawa et al., 2010). Viral DNA is then released 

into the cell nucleus and viral replication ensues (Rohrmann, 2011). During the early phase 

of viral replication, BV are produced that bud from midgut cells and infect tracheal 

epidermal cells, which penetrate the basal lamina (Volkman, 2007). Infection spreads via the 

tracheal system and haemocytes until many different cell types are infected (Engelhard et 
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al., 1994). During the later phase of viral replication, ODV are produced and packaged 

within OBs. Upon the host’s death, liquefaction occurs, releasing OBs into the environment 

that can lead to infection of another host. 

4. Early studies on the “synergistic factor” in Granuloviruses 

Early studies with GVs identified a factor in the Pseudaletia unipuncta (Psun) GV that 
increased the infectivity of PsunNPV in NPV/GV mixed infections (Tanada, 1959). Early P. 
unipuncta instars were highly susceptible to PsunNPV and PsunGV, whereas the later 
instars (4-6) were increasingly less susceptible. In contrast, when larvae were infected per os 
with both NPV and GV viruses, they were highly susceptible. Feeding of larvae first with 
PsunNPV, followed by PsunGV did not generate synergy, whereas synergy was observed 
when the larvae were first infected with PsunGV followed by PsunNPV indicating the 
synergistic factor was associated with PsunGV. The results of heat-inactivation experiments 
indicated that a component within the GV ODV envelope or the granule was responsible for 
the synergism (Tanada, 1959). The enhancing factor was named the synergistic factor (SF), 
and was found to be a protein component of the GV capsule (Hara et al., 1976; Tanada et al., 
1973), comprising about 5% of the capsule protein components (Yamamoto & Tanada, 1978). 
When purified SF was added to PsunNPV ODV it exhibited a strong affinity for viral 
envelopes, and with about 8 molecules of SF bound to each enveloped virion the infectivity 
of the ODV were significantly enhanced (Yamamoto & Tanada, 1980). A synonymous factor, 
(viral enhancing factor, VEF) was found in Trichoplusia ni GV (TnGV) and Xestia c-nigrum 
GV (XecnGV) granules, which enhanced the infectivity of AcNPV, and Xestia c-nigrum NPV 
(XecnNPV), respectively (Derksen & Granados, 1988; Gallo et al., 1991; Goto et al., 1990).  

Initial studies on the function of enhancins suggested that the site of SF action is the cellular 
membrane of the midgut cell microvilli (Tanada et al., 1975; Tanada et al., 1980), and these 
cells contain specific binding sites for enhancins (Uchima et al., 1988). Electron microscopy 
was used to visualize and count attached virions on midgut epithelium in P. unipuncta 
larvae. Electron micrographs of midguts treated with PsunNPV and SF exhibited 40 times 
more nucleocapsids attached or within microvilli compared to midguts treated only with 
PsunNPV (Tanada et al., 1975). In addition, antibody studies also localized the site of SF 
binding to midgut cell membranes (Tanada et al., 1980). Competition binding studies with 
Concanavalin A and castor bean lectin were found to inhibit binding of SF to midgut cell 
membranes, suggesting that SF binding was to specific receptors (Uchima et al., 1988).  

Subsequent studies by Granados and colleagues demonstrated that the enhancin from TnGV 
degraded major glycoproteins of 123, 194, and 253 kDa within the PM (Derksen and 
Granados, 1988). In addition, the PMs of virus treated larvae were fragile compared to 
controls suggesting a physical weakening of the PM structure had occurred. Purified VEF 
from TnGV was found to significantly increase infectivity of AcMNPV in T. ni larvae in a 
linear dose-dependent manner. The major effect of VEF treatment appeared to be the 
disruption of the PM, which is the likely basis for increased NPV potency (Gallo et al., 1991).  

4.1 Identification and analysis of baculovirus enhancin genes 

The first gene encoding a VEF was identified in TnGV and sequenced (Hashimoto et al., 1991). 
Subsequent studies identified enhancin genes in several GVs and a few NPVs as listed in Table 
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1. Enhancin genes have been identified in approximately 30% of NPVs and GVs sequenced to 
date. These genes are more common in GVs, present in about 46% of the genomes analyzed to 
date vs. approximately 24% of NPVs (Table 1). Several GVs and NPVs contain multiple 
enhancin genes, and the XecnGV contains the most at four. In addition to baculoviruses, 
enhancin genes have been identified in the genomes of microorganisms including Bacillus cereus 
(Ivanova et al., 2003), Bacillus anthracis (Read et al., 2003), Bacillus thuringiensis (accession no. 
NC 005957), Yersinia pestis (Parkhill et al., 2001), Salmonella enterica subsp. enterica serovar 
Javiana strain GA_MM04042433 (accession no. NZ_ABEH02000001, Clostridium perfringens D 
strain JGS1721 (accession no. ZP_02954459), Aspergillus oryzae RIB40 (accession no. 
XM_001817293), Enterobacter aerogenes KCTC 2190 (accession no. NC_015663), and Listeria 
ivanovii subspecies ivanovii PAM 55 (accession no. NC_016011). 

 

Virus Host 
# Enhancin

Genes Present
Accession 
Numberc 

AcMNPV Autographa californica __ NC_001623 
AdhoNPV Adoxophyes honmai __ NC_004690 
AdorGV Adoxophyes orana __ NC_005038 
AgipMNPV Agrotis ipsilon 1 NC_011345 
AgseGV Agrotis segetum 1 NC_005839 
AgseNPV Agrotis segetum 3 NC_007921 
AgMNPV Anticarsia gemmatalis __ NC_008520 
AnpeNPV Antheracea pernyi __ NC_008035 
BmNPV Bombyx mori __ NC_001962 
ChchNPV Chrysodeixis chalcites __ NC_007151 
ChocGV Choristoneura occidentalis __ NC_008168 
CfMNPV Choristoneura fumiferana 1 NC_004778 
CfDefNPV Choristoneura fumiferana __ NC_005137 
CfGVa Choristoneura fumiferana 1 AF319939 
ClbiNPV Clanis bilineata __ NC_008293 
CpGV Cydia pomonella __ NC_002816 
CuniNPV Culex nigripalpus __ NC_003084 
CrleGV Cryptophlebia leucotreta __ AY_009987 
EcobNPV Ecotroplis obliqua __ NC_008586 
EppoNPV Epiphyas postvittana __ NC_003083 
EupsNPV Euproctis pseudoconspersa 1 NC_012693 
HearGV Helicoverpa armigera 4 NC_010240 
HearMNPV Helicoverpa armigera 1 NC_011615 
HearSNPV Helicoverpa armigera __ NC_002654 
HycuNPV Hyphantria cunea __ NC_007767 
HzSNPV Helicoverpa zea __ NC_003349 
LdMNPV Lymantria dispar 2 NC_001973 
LyxyMNPV Lymantria xylina 2 NC_013953 
LeseNPV Leucanua separata __ NC_008348 
MacoNPV-A Mamestra configurata 1 NC_003529 
MacoNPV-B Mamestra configurata 1 NC_004117 
MaviNPV Maruca vitrata __ NC_008725 
NeabNPV Neodiprion abietis __ NC_008252 
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NeleNPV Neodiprion lecontei __ NC_005906 
NeseNPV Neodiprion sertifer __ NC_005905 
OpMNPV Orgyia pseudotsugata __ NC_001875 
OrleNPV Orgyia leucostigma __ NC_010276 
PhopGV Phthorimaea operculella __ NC_004062 
PlxyMNPV-CL3 Plutella xylostella __ DQ_457003 
PlxyGV Plutella xylostella __ NC_002593 
PsunGV Pseudaletia unipuncta 3a NC_013772 
RoMNPV Rachiplusia ou __ NC_004323 
SeMNPV Spodoptera exigua __ NC_002169 
SfMNPV Spodoptera frugiperda __ NC_009011 
SpltGV Spodoptera litura __ NC_009503 
SpltMNPV Spodoptera litura __ NC_003102 
TnSNPV Trichoplusia ni __ NC_007383 
TnGV Trichoplusia ni 1b D12617 
XcGV Xestia c-nigrum 4 NC_002331 

The genus and species of the host organism from which the virus was isolated were used to name the 
virus using either the first letter of the host genus and species, or the first two letters. NPV stands for 
nucleopolyhedrovirus, GV for granulovirus, M for multiply enveloped ODV, and S for singly 
enveloped ODV. 
a PsunGV does not contain a homologue of HearGV VEF-2 and XecnGV VEF-2 genes. The sequence of 
the PsunGV VEF-1 sequenced by Roelvink et al., (1995) matches the sequence of Psun VEF-3 reported in 
the genomic sequence. 
b The sequence listed for is for only the enhancin gene, the genome of this virus has not been sequenced. 
cReferences for the accession numbers are AcMNPV, Ayres et al., 1994; AdhoNPV, Nakai et al., 2003; 
AdorGV, Wormleaton et al., 2003; AgipMNPV, Harrison, 2009; AgseMNPV, Jakubowska et al., 2006; 
AgMNPV, Oliveira et al., 2006; AnpeMNPV, Fan et al., 2007; BmNPV, Gomi et al., 1999; ChchNPV, van 
Oers et al., 2005; ChocGV, Escasa et al., 2006; CfMNV, de Jong et al., 2005; CfDefNPV, Lauzon et al., 
2005; ClbiNPV, Zhu, S., et al., 2009; CpGV, Luque et al., 2001; CuniNPV, Afonso et al., 2001; CrleGV, 
Lange & Jehle, 2003; EcobNPV, Ma et al., 2007; EppoNPV, Hyink et al., 2002; EupsNPV, Tang et al., 
2009; HearGV, Harrison & Popham, 2008; HearSNPV G4, Chen et al., 2001; HycuNPV, Ikeda et al., 2006; 
HzSMPV, Chen et al., 2002; LdMNPV, Kuzio et al., 1999; LyxyMNPV, Nai et al., 2010; LeseNPV, Xiao & 
Qi, 2007; MacoNPV-A, Li, Q., etal., 2002; MacoNPV-B, Li, L., etal., 2002; MaviNPV, Chen et al., 2008; 
NeabNPV, Duffy, et al., 2006; NeleNPV, Lauzon, et al., 2004; NeseNPV, Garcia-Maruniak, et al., 2004; 
OpMNPV, Ahrens, et al., 1997; PlxyGV, Hashimoto, et al., 2000; PlxyMNPV-CL3, Harrison & Lynn, 
2007; RoMNPV, Harrison & Bonning, 2003; SeMNPV, Ijkel et al., 1999; SfMNPV, Harrison et al., 2008; 
SpltGV, Wang et al., 2008; SpltMNPV, Pang et al., 2001; TnSNPV, Willis et al., 2005; XcGV, Goto et al., 
1998. Sequences only submitted to GenBank: AgseGV, CfGV, HearMNPV, OrleNPV, PhopGV, PsunGV. 

Table 1. Sequenced Baculovirus Genomes and Genbank Accession Numbers 

Comparison of the LdMNPV-VEF-1 enhancin amino acid sequence with sequences in the 
BLOCKS database (version 9.0, December 1995 [Henikoff & Henikoff, 1991]) revealed the 
presence of a signature pattern characteristic of a zinc-binding domain found within 
metalloproteases (Jongeneel et al., 1989; Murphy et al., 1991). The signature pattern, 
HEXXH, is sufficient to group a protein into the metalloprotease superfamily. Most 
baculovirus enhancins have this conserved metalloprotease zinc-binding domain (residues 
241 to 246 for the LdMNPV-VEF-1) (Table 2). For this type of enzyme, the zinc ion is 
chelated by the two histidine residues in this sequence and by a third residue, typically a 
histidine, cysteine, or aspartic or glutamic acid residue, located anywhere from 20 to 120 aa 
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a The conserved HEXXH sequence is highlighted in turquoise, the non-conserved corresponding 
sequence in a few enhancins is highlighted in yellow, and aspartic and glutamic residues 20 or more 
amino acids downstream are highlighted in red and green, respectively. 

Table 2. Alignment of Baculovirus Enhancin Proteins with COBALT (NCBI)a  
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downstream of the HEXXH sequence (Häse & Finkelstein, 1993; Jiang & Bond, 1992). There 
are several aspartic and glutamic acid residues between 20 and 120 aa from the HEXXH 
sequence that are present  in baculovirus enhancins, any of which could function as a third 
zinc-binding ligand in the enhancin proteins (Table 2). In the metalloproteases, the glutamic 
acid residue within the HEXXH sequence is the catalytic base, which polarizes a water 
molecule involved in the nucleophilic attack of the peptide bond to be cleaved. XecnGV-
VEF-1, HearGV-VEF-1, PsunGV-VEF-1 contain a glutamine residue in place of the glutamic 
acid within the HEXXH (HQXXH) consensus, in XecnGV-VEF-4, HearGV-VEF-4, PsunGV-
VEF-4 a QXXDG sequence is in place of the consensus sequence, and AgseGV contains a 
HVMGH sequence in place of the consensus sequence (Table 2). The alterations in the zinc 
binding domain of these enhancins could have made these proteins non-functional. If so, a 
virus with a mutated non-functional enhancin gene could gain selective advantage through 
acquisition of a functional enhancin gene. These events offer a basis for the presence of 
multiple enhancin genes within viral genomes. A functional analysis of the enhancins in 
XecnGV-VEF-1, HearGV-VEF-1, PsunGV-VEF-1, XecnGV-VEF-4, HearGV-VEF-4, PsunGV-
VEF-4, and AgseGV has not been performed. 

A comparison of the number of amino acids in baculovirus enhancins and the proteins that 
have the most and least amino acid identities are listed in Table 3. Baculovirus enhancins 
exhibit a great deal of heterogeneity. For example, LdNPV-VEF-1 is 89% identical to 
LyxyMNPV-VEF-1. In contrast, LdNPV-VEF-1 is only 16% identical to MacoNPV-A (Table 
3). The size of baculovirus enhancins is from 758 amino acids for CfMNPV to 1004 amino 
acids for AgseGV.  

A phylogenetic analysis of all currently known baculoviruses was performed using the 

phylogenetic tree function of CLUSTAL-W, and the tree is shown in Figure 1. All of the GV 

enhancins, with the exception of AgseGV, form a group, all of the NPV enhancins form a 

group, and AgseGV is within its own group (Fig 1). Three subgroups are within the GV 

group; XecnGV-VEF-2 – PsunGV-VEF-1, HearGV-VEF-3 – TnGV, and XecnGV – Psun-VEF-

4. Two primary groups are present within the NPV enhancin group; LdMNPV-VEF-1 – 

LdMNPV-VEF-2, and CfMNPV – MacoNPV-A. The high level of heterogeneity exhibited by 

the baculovirus enhancins may suggest that these genes arose in viral genomes from 

independent sources.  

The presence of enhancin genes in bacteria suggests a possible means for enhancin gene 
exchange between microorganisms. The B. cereus group contains the closely related 
organisms B. cereus, an opportunistic pathogen of humans; B. anthracis, a mammalian 
pathogen; and B. thuringiensis, an insect pathogen. The presence of enhancin genes in B. 
cereus and B. anthracis led to the suggestion that these organisms evolved from an ancestor 
of the B. cereus group that was an opportunistic insect pathogen (Ivanova et al., 2003; Read 
et al., 2003). The subsequent finding of an enhancin gene in B. thuringiensis provides further 
support for this hypothesis. If the B. cereus ancestor resided in the guts of insects that were 
NPV hosts, there may have been an opportunity for an exchange of genetic material 
between these bacteria and NPVs. The enhancin in Y. pestis, the causative agent of the 
disease referred to as plague, may aid its colonization of the flea. The Y. pestis enhancin gene 
is flanked by a tRNA gene and transposase fragments, which may suggest that this bacteria 
obtained its enhancin gene via horizontal transfer. However, a recent study found that 
expression of bacterial enhancins in insect cells caused cytotoxicity, and they did not 
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enhance viral infectivity (Galloway et al., 2005). These results may suggest that bacterial and 
baculovirus enhancins have evolved different functions. 

 

Viral Enhancin # of Amino 
Acids 

Viral Enhancin with the 
Greatest Amino Acid Identity, 
% Identity 

Viral Enhancin with the 
Least Amino Acid 
Identity, % Identity 

LdMNPV-VEF-1 782 LyxyMNPV-VEF-1, 89% MacoNPV-A, 16% 

LyxyMNPV-VEF-1 782 LdMNPV-VEF-1, 89% AgseNPV-VRF-2, 17% 

EupsNPV 802 LyxyMNPV-VEF-2, 34% MacoNPV-A, 13% 

LyxyMNPV-VEF-2 788 LdMNPV-VEF-2, 94% MacoNPV-A, 12% 

LdMNPV-VEF-2 788 LyxyMNPV-VEF-2, 94% MacoNPV-B, 12% 

XecnGV-VEF-2 867 HearGV-VEF-2, 96% MacoNPV-B, 
HearMNPV,  
AgipMNPV, 13% 

HearGV-VEF-2 865 XecnGV-VEF-2, 96% AgseNPV-VEF-2 
AgipMNPV, 13% 

HearGV-VEF-3 902 XecnGV-VEF-3, 86% HearMNPV, 15% 

PsunGV-VEF-3 901 TnGV, CfGV, 98% AgseNPV-VEF-2, 12% 

TnGV 901 PsunGV-VEF-3, CfGV, 98% AgseNPV-VEF-2, 12% 

CfGV 901 PsunGV-VEF-3, TnGV, 98% AgipMNPV, 14% 

XecnGV-VEF-3 898 HearGV-VEF-3, 86% AgipMNPV, 15% 

XecnGV-VEF-4 856 HearGV-VEF-4, 95% AgseNPV-VEF-2, 
AgipMNPV, 11% 

HearGV-VEF-4 856 XecnGV-VEF-4, 95% AgseNPV-VEF-2, 11% 

PsunGV-VEF-4 857 XecnGV-VEF-1, 23% AgseNPV-VEF-1, 11% 

XecnGV-VEF-1 824 HearGV-VEF-1, 96% AgipMNPV, 10% 

HearGV-VEF-1 823 Xecn-VEF-1, 98% AgipMNPV, 10% 

CfMNPV 758 AgseNPV-VEF-2, 19% PsunGV-VEF-1, 16% 

PsunGV-VEF-1 828 AgseGV, 21% AgipMNPV, 12% 

AgseGV 1004 PsunGV, 21% HearMNPV, 13% 

AgseNPV-VEF-1 877 AgseNPV-VEF-2, 43% PsunGV-VEF-4, 11% 

MacoNPV-B 848 HearMNPV, 99% LdMNPV-VEF-2, 12% 

HearMNPV 848 MacoNPV-B, 99% AgseGV,  
XecnGV-VEF-2, 13% 

AgseNPV-VEF-2 883 AgipMNPV, 53% Xecn-VEF-4, HearGV-
VEF-4, 11% 

AgipMNPV 897 AgseNPV-VEF-2, 53% Xecn-VEF-1,  
HearGV-VEF-1, 10% 

MacoNPV-A 847 HearNPV, 81% LyxyMNPV-VEF-2, 12% 

Table 3. Number of Amino Acids in Baculovirus Enhancins and Identity of the Enhancin 
Most and Least Similar. 
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4.2 Function of baculovirus enhancins 

Studies on proteins within TnGV granules identified a 98 kDa protein that enhanced 
AcMNPV potency in bioassays (Gijzen et al., 1995). The enhancin from TnGV granules 
was purified by gel filtration and ion exchange chromatography and was found to be a 
metalloprotease based on activity inhibition studies using metal chelators (Lepore et al., 
1996). In addition, the enhancin gene from TnGV was expressed by a recombinant 
AcMNPV containing this gene, the enhancin protein was purified, and was found to 
enhance the infectivity of AcMNPV in larval bioassays, thereby confirming that the 
enhancin gene codes for the enhancing factor in TnGV granules (Lepore et al., 1996). 

 

Fig. 1. Phylogenetic tree of NPV and GV enhancins. The distances from the nodes are shown 
on the right of the figure.  
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Studies with isolated PMs from T. ni and P. unipuncta larvae found that PMs treated with 

purified TnGV enhancin were significantly more permeable to AcMNPV compared to 

control PMs. These results provide evidence that the PM is a barrier to virus movement 

across the PM and that TnGV enhancin facilitates infection by altering the permeability of 

the PM (Peng et al., 1999). Wang and Granados (1997) found that the target substrate for GV 

enhancins is insect intestinal mucin, a glycosylated protein associated with the PM. 

Degradation of intestinal mucin increased access of virions to the midgut epithelial cells, 

increasing susceptibility of the host insect to viral infection (Wang & Granados, 2000). This is 

likely the basis for the early observations of enhancement of NPV infections in vivo when co-

administered with GV granules and purified enhancin. Based on these findings, and the 

finding the enhancins constitute 5% of the protein in GV granules, there is substantial 

evidence supporting the hypothesis that GV enhancins facilitate GV virus movement 

through the PM.  

However, earlier studies by Tanada and colleagues generated evidence that GV enhancins 

bind to larval midgut cells at specific sites, and they hypothesized that the enhancin 

protein serves as a receptor for some NPVs (Tanada, 1985). They found that significantly 

more virus particles were attached to or already in midgut microvilli in insects treated 

with enhancin plus PsunNPV compared to insects without enhancin, even though 

polyhedra and ODV were found in abundance next to microvilli in the control insects. In 

addition, enhancin was found to be associated with midgut cell microvilli when purified 

protein was administered per os (Tanada et al., 1980), and P. unipuncta larval midgut cells 

were found to contain specific binding sites for GV enhancins that enhance the infection 

process of NPVs (Uchima et al., 1988). Also, several investigations found that GV 

enhancins increased infection of NPVs in cell culture systems (Hukuhara & Zhu, 1989; 

Kozuma & Hukuhara, 1994; Tanada, 1985).  

Studies on the function of baculovirus enhancins have been within the context of 

heterologous systems using GV enhancins/granules to investigate their impact on the 

potency of NPVs administered per os, and the infectivity of NPV BV in cell culture 

systems. After identification and characterization of the TnGV gene encoding the 

enhancin protein by Granados and colleagues, studies focused on enhancin biochemical 

properties and impacts on the PM. However, a direct impact of GV enhancin on GV 

potency through deletion of the gene from the GV genome has not been demonstrated. 

Studies on the function of LdMNPV enhancins described below were the first studies 

performed within a homologous system. 

4.3 Analysis of enhancin function(s) in the LdMNPV 

The LdMNPV was the first NPV found to contain an enhancin gene (Bischoff & Slavicek, 

1991), and upon sequencing the viral genome, a second enhancin gene was identified (Kuzio 

et al., 1999). Enhancin 1 and 2 gene transcripts are expressed at late times after infection from 

a consensus baculovirus late promoter (Bischoff & Slavicek, 1991; Popham et al., 2001). To 

investigate the function of the LdMNPV enhancin 1 gene a recombinant LdMNPV virus was 

constructed that lacked a functional enhancin 1 gene (E1cat). Potency analysis through L. 

dispar larval bioassays revealed that the enhancin 1 gene minus viral strain was 
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approximately 2-3 fold less potent than wild-type (WT) viruses, suggesting that the 

LdMNPV enhancin affects viral potency (Bischoff & Slavicek, 1997). The effect of the second 

LdMNPV enhancin gene alone and in conjunction with the enhancin 1 gene on viral potency 

was investigated through bioassay using two recombinant viruses, one with a deletion in 

the enhancin 2 gene (E2del) and a second with deletion mutations in both enhancin genes 

(E1delE2del) (Popham et al., 2001). The enhancin gene viral constructs were verified by 

Southern analysis and were shown not to produce enhancin gene transcripts by Northern 

analysis. The E2del virus exhibited an average decrease in viral potency of 1.8 fold 

compared to wild-type virus. In the same bioassays, the recombinant virus E1cat, which 

does not produce an enhancin1 gene transcript, exhibited an average decrease in viral 

potency of 2.3 fold compared to control virus. The E1delE2del virus exhibited an average 

decrease in viral potency of 12 fold compared to wild-type virus, indicating that the two 

genes confer a non-additive compensatory enhancement of viral efficacy (Popham et al., 

2001). Collectively, these results suggest that both LdMNPV enhancin genes contribute to 

viral potency, that each enhancin protein can partially compensate for the lack of the other 

protein, and that both enhancin genes are necessary for wild-type viral potency. Detergent 

dissociation studies and immuno-electron microscopy were used to localize LdMNPV 

enhancins in viral structures (Slavicek & Popham, 2005). Polyclonal antibodies specific to 

LdMNPV enhancin 1 and enhancin 2 identified unique proteins of 84 and 90 kDa, 

respectively, at 48 h post infection (p.i.) in infected cell extracts prepared from 0 to 96 h p.i. 

The 84- and 90-kDa proteins are close to the predicted sizes of Enhancin 1 (89.2) and 

Enhancin 2 (88.4), and their appearance at 48 h p.i. occurred at the same time that enhancin 1 

and 2 gene transcripts were first detected in earlier studies (Bischoff & Slavicek, 1997; 

Popham et al., 2001). Enhancin 1 and 2 were found in polyhedra and were further localized 

to ODV. The amounts of Enhancin 1 and 2 isolated from polyhedra and from ODV isolated 

from the same number of polyhedra were approximately the same, suggesting that most, if 

not all, Enhancin 1 and 2 present in polyhedra were located within ODV. Enhancin 1 and 2 

were found not to be components of BV. Treatment of ODV with detergents indicated that 

Enhancin 1 and 2 were present in ODV envelopes, and that the Enhancins may have an ionic 

bond with the nucleocapsid through positively charged amino acids. Immunogold labeling 

of polyhedron sections localized the Enhancins to ODV envelopes, either at the outside edge 

or within the envelope. The location of LdNPV enhancins within ODV envelopes (Slavicek 

and Popham, 2005) would be consistent with the hypothesis of a role in binding to midgut 

cells. A general PM degradative function of GV enhancin is consistent with their location 

and amount within the GV granule. However, this does not preclude a duel function of 

binding to and facilitating entry into midgut cells. Such a duel role for GV enhancin has 

never been tested within a homologous context. As noted earlier, the presence of LdMNPV 

enhancins within ODV envelopes provides a position for the proteins to interact directly 

with midgut cells as well as on the PM as ODV traverses this host barrier.  

To determine if the LdMNPV enhancin’s sole function was degradation of the PM, a 
fluorescent brightener was used to eliminate the PM, and the impact on the potency of 
recombinant virus lacking both enhancin genes was determined (Hoover et al., 2010). 
Removal of the PM should eliminate the reduced potency of the recombinant virus lacking 
both enhancin genes compared to wild-type virus. The potency of the enhancin gene double 
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deletion virus was about 14-fold less potent compared to wild-type virus in brightener 
treated larvae. These results suggest that the LdNPV enhancin genes have a function that 
impacts viral potency that does not involve degradation of the PM. The findings that the 
two enhancin proteins can partially compensate for the lack of the other (Popham et. al., 
2001), their location in the ODV envelope (Slavicek & Popham, 2005), and the reduced 
potency of enhancin gene deletion viruses in the absence of the PM support the hypothesis 
that one or both of the enhancins are involved in a function that impacts viral potency, such 
as binding to midgut epithelial cells in addition to disruption of the PM. Further studies are 
needed to address this possibility.  

4.4 Alpha-helix transmembrane domain analysis of NPV and GV enhancins 

Analyses of LdMNPV Enhancin 1 and 2 for the presence of transmembrane alpha-helices by 

the DAS method (http://www.sbc.su.se/_miklos/DAS/), the PRED-TMR Algorithm 

(http://o2.db.uoa.gr/PRED-TMR), TMHMM (www .cbs.dtu.dk/services/TMHMM/), and 

SOSUI (http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0.html) all predict the presence of a 

transmembrane alpha-helix in LdMNPV Enhancin 1 in the amino acid region from about 

positions 738 to 761 and in Enhancin 2 in the amino acid region from about positions 747 to 

771 (Table 4) (Slavicek & Popham, 2005). The TMHMM method further predicts that amino 

acids of Enhancin 1 from positions 1 to 737 and of Enhancin 2 from positions 1 to 746 are 

located on the outside of the membrane structure, residues 738 to 760 (Enhancin 1) and 747 

to 769 (Enhancin 2) span the membrane, and amino acids 761 to 782 (Enhancin 1) and 770 to 

788 (Enhancin 2) are located on the inside of the membrane structure (i.e., next to the 

nucleocapsid). These predictions suggest that the carboxyl-terminal regions of Enhancin 1 

and 2 are anchored within the ODV envelope, and that the majority of the proteins extend 

beyond the envelope surface. An interesting correlation is that many of the gold particles 

were found at the outside edge of ODV envelopes after immunogold labeling, which is 

consistent with the Enhancin 1 and 2 epitopes (regions 279 to 298 and 506 to 525, 

respectively) being located on the outside of ODV envelopes. If this orientation were 

present, the LdMNPV enhancins would be positioned to interact with the peritrophic 

membrane within the host midgut. It is interesting that the regions from positions 761 to 782 

of Enhancin 1 and 770 to 788 of Enhancin 2 each contain six basic amino acids, which may 

bind the enhancins to the nucleocapsids (Table 5). 

Analysis of the NPV enhancins with TMHMM, PRED-TMR2, DAS and SOSUI 

transmembrane protein structure prediction programs predicted the presence of alpha-helix 

transmembrane domains near the carboxyl terminus in all NPV enhancins (Table 4). In 

contrast, none of the GV enhancins were predicted to contain transmembrane protein 

structures, and the programs classified them as soluble proteins. The lack of GV enhancin 

transmembrane domains and classification of GV enhancins as soluble proteins are 

consistent with their localization as components of granules. All of the NPV enhancins 

contain from 2 to 9 basic amino acid residues between the end of the transmembrane region 

and the carboxyl terminus (Table 5). The CfNPV enhancin contained the least (2) and 

AgipMNPV contained the most (9) basic residues. All of the basic residues in this region in 

MacoNPV-A, HearMNPV, and Maco-B were lysine residues and the other NPV enhancins 

contained arginine and lysine residues, lysine and histidine residues, or all three (Table 5). 
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Amino Acids Constituting the Predicted Alpha-Helix 

Transmembrane Domain by the Respective Prediction Program 

Viral Enhancin TMHMM PRED-TMR2 DAS SOSUI 

LdMNPV-VEF-1 738-760 744-761 738-761 738-760 

LyxyMNPV-VEF-

1 
740-762 746-763 739-763 739-761 

EupsNPV 761-783 763-779 761-782 762-784 

LyxyMNPV-VEF-

2 
747-769 750-768 748-771 749-771 

LdMNPV-VEF-2 747-769 750-768 748-771 749-771 

CfMNPV 719-741 720-740 718-741 719-741 

AgseNPV-VEF-1 819-841 822-841 816-843 817-839 

MacoNPV-B 806-828 805-824 803-823 803-825 

HearMNPV 806-828 805-824 803-827 803-825 

AgseNPV-VEF-2 827-849 825-844 822-849 827-849 

AgipMNPV 827-849 827-846 823-852 828-850 

MacoNPV-A 804-826 804-823 803-826 803-825 

XecnGV-VEF-2 --- --- --- --- 

HearGV-VEF-2 --- --- --- --- 

HearGV-VEF-3 --- --- --- --- 

PsunGV-VEF-3 --- --- --- --- 

TnGV --- --- --- --- 

CfGV --- --- --- --- 

XecnGV-VEF-3 --- --- --- --- 

XecnGV-VEF-4 --- --- --- --- 

HearGV-VEF-4 --- --- --- --- 

PsunGV-VEF-4 --- --- --- --- 

XecnGV-VEF-1 --- --- --- --- 

HearGV-VEF-1 --- --- --- --- 

PsunGV-VEF-1 --- --- --- --- 

AgseGV --- --- --- --- 

Table 4. Analysis of NPV and GV Enhancins for Transmembrane Alpha-helices and 
Carboxyl Terminal Basic Amino Acids 
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Viral Enhancin 

Amino Acid End of 

Transmembrane 

Domain 

Downstream Sequencea 

LdMNPV-VEF-1 761 VNRRGRQSPKAAERAPPLQRV 

LyxyMNPV-VEF-1 763 VNQRGRQNPKAAEHAPLQHS 

EupsNPV 779 KLVYSKTTNITESTPLMLDRQQT 

LyxyMNPV-VEF-2 768 IATIARRAKRDDARPPSSIKA 

LdMNPV-VEF-2 768 TIARRAKRDDARPPSVIKA 

CfMNPV 740 KNMATPNTSHNLAPNIS 

AgseNPV-VEF-1 841 
LKVTRAQETAPLTPIPAISAPIASAPTQTRRRRK

IIE 

MacoNPV-B 824 PNAIETIIKEKPKTNIKSIK 

HearMNPV 824 IKIASPSKKQVITKEKPKPVIKSIK 

AgseNPV-VEF-2 844 
VKFLVGANKCAIAETIQAPPPPGKTITTRRPTR

VTPITTA 

AgipMNPV 846 
IKLIVSPNCVVYQTSPSLPPPPAASARTRTARN

VTSRRPTRGVINRSPTPTR 

MacoNPV-A 823 SPSKKQVITKEKPKPVIKSIK 

a. Arginine residues are highlighted in turquoise, histidine residues in green, and lysine residues in 
yellow. 

Table 5. Location of Basic Amino Acids Downstream of the Alpha-helix Transmembrane 
Domain 

4.5 Applications of baculovirus enhancins for insect pest control 

Researchers have been working to develop means of using baculovirus enhancin genes to 

increase the efficacy of insect control efforts. The impact on potency of AcMNPV by TnGV 

enhancin was indirectly investigated by combining cell culture cells infected with a 

recombinant virus containing the TnGV enhancin gene. The potency of AcMNPV and SeNPV 

were 21-fold and 10-fold greater, respectively when the cell culture cells infected with the 

enhancin expressing AcNPV recombinant were present (Hayakawa et al. 2000). More 

recently, a recombinant AcMNPV was generated that expressed the TnGV enhancin gene. 

Polyhedra from the enhancin expressing virus were found to be approximately 2-fold more 

potent compared to wild-type AcMNPV polyhedra (Del Rincon-Castro & Ibarra, 2005). 

Insertion of the MacoA enhancin gene into AcMNPV increased the potency of the 

recombinant virus approximately 4-fold (Qianjun et al., 2003). The TnGV enhancin gene was 

also placed into the genome of tobacco and found to impact viral potency. Larvae feeding 

on diet containing dried tobacco leaves expressing TnGV enhancin exhibited a 10-fold 

enhancement of AcMNPV infection (Hayakawa et al., 2000). TnGV enhancin was found to 

increase the toxicity of B. thuringiensis (Berliner) in larval bioassays with T. ni, H. zea, H. 

virescens, S. exigua, P. includes, and A. gemmatalis (Granados et al., 2001). 
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5. Conclusions 

The location of NPV enhancins within ODV envelopes is likely a conserved characteristic of 
all NPV enhancins, in contrast to GV enhancins being located within granules. This 
difference suggests that the NPVs and GVs utilize distinct approaches to degradation of the 
PM. Results to date indicate that GVs release a large amount of enhancin into the larval 
midgut, which then degrades the PM in a non-targeted random manner. In contrast, the 
NPVs may utilize enhancins located in ODV envelopes to “tunnel” through the PM to gain 
access to larval midgut cells. The presence of transmembrane domains in the carboxyl 
terminus of all NPV enhancins known to date suggests that the localization of LdMNPV 
enhancins to ODV envelopes is a conserved feature of NPV enhancins. Whether this is a 
conserved characteristic will require analyses of the locations of enhancins in additional 
NPVs. The finding that deletion of LdMNPV enhancins negatively impacts viral potency in 
the absence of the PM supports the hypothesis that the LdMNPV enhancins have a function 
that impacts viral potency that is distinct from degradation of the PM. This could support 
earlier hypothesis suggesting that GV enhancins increase NPV potency in heterogonous 
systems through ODV binding to midgut epithelial cells. The use of NPV and GV enhancins 
to increase the potency of NPVs lacking enhancins and impact on NPV potency when 
expressed in plants indicates that enhancins can be used to increase insecticidal activity of 
NPVs and may be useful for commercial pest control applications. 
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