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Green's Functions of Matching Equations: A 
Unifying Approach for Low-level Vision 

Problems

José R. A. Torreão, João L. Fernandes, Marcos S. Amaral  
& Leonardo Beltrão 

Universidade Federal Fluminense 
Brazil

1. Introduction     

Green's functions are a traditional technique for solving inhomogeneous differential 
equations which has found several applications in pure and applied science, as, for instance, 
in Electrodynamics or Quantum Mechanics (Hassani, 2002). Given a one-dimensional linear 

differential operator, x , and a set of boundary conditions, the solution to the 

inhomogeneous differential equation  )x(g)x(fx = can be expressed as  

00D 0 dx)x(g)x,x(G)x(f =  (1) 

where D is the domain of interest, and where the operator )x,x(G 0 , called the Green's 

function, is the solution to the equation  

)x-x()x,x(G 00x =
 (2) 

under the same boundary conditions, with )x-x( 0 denoting Dirac's delta function. 

Operating on both sides of  (1) with x , and making use of equation (2), we obtain 

)x(gdx)x(g)x-x(dx)x(g)]x,x(G[)x(f 0D 000D 00xx ===  (3) 

where the sieving property of the delta function has been used, what proves that the 
function f(x), given by (1), is indeed the solution sought. 

It should also be noted that, if )x,x(H 0  is another integral operator, satisfying 

0)x,x(H 0x =
 (4) 

the complex kernel )x,x()iH+G(=)x,x(K 00  can be formed, such that 

=
D 000 dx)x(g)x,x(K)x(f  (5) 

is also a solution to the original differential equation, i.e., it satisfies )x(g)x(fx = .

Source: Vision Systems: Segmentation and Pattern Recognition, ISBN 987-3-902613-05-9,
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Recently, the use of Green's functions of image matching equations has been proposed as a 
suitable means for approaching several visual computing problems, including shape from 
shading (Torreão, 2001; Torreão, 2003; Torreão & Fernandes, 2004), edge detection (Torreão 
& Amaral, 2002 and 2006), motion simulation (Ferreira Jr. et al., 2004), and video 
interpolation (Ferreira Jr. et al., 2005). 

Image matching equations have been used in computer vision and image processing for 
modeling such processes as stereoscopy (Barnard, 1986) and optical flow (Horn & Schunck, 

1981). For instance, if 1I and 2I are two images of  a dynamic scene, captured at consecutive 

times by a static camera, the optical flow constraint can be expressed as the intensity 
conservation condition  

)y,x(I=)V+y,U+x(I 12  (6) 

where U(x,y) and V(x,y) are the optical flow components along directions x and y, 
respectively. The goal is then to use such image matching condition for estimating U and V, 
what is generally done by first expanding equation (6) in a Taylor-series up to first order in 
the flow, and using it along with other constraints (that would express, for instance, the 
smoothness of the flow components), in order to allow the solution of such ill-posed 
problem.
In the Green's function approach, on the other hand, a different use is made of the matching 
equation: assuming that the flow field is known (e.g., a uniform or an affine flow), equation 

(6) is solved for the matching image 2I , given 1I . For instance, assuming uniform flow 

along the direction arctan= (i.e., U(x,y) = u and V(x,y) = v, for both u and v constants, 

with u/v= ), and taking a second-order Taylor-series expansion, the matching equation 

becomes  

12
2

2
2

2

II
x

I
u

x

I

2

u
=+

∂

∂
+

∂

∂2
 (7) 

with )x+y,x(I=I ii . The solution to the above can be expressed as 

00010D u2 dx)xy,x(I)x-x(G)xy,x(I +=+  (8) 

where )x-x(G 0u  is the Green's function to equation (7),  i.e., it is the solution to that 

equation when a delta function is substituted for 1I on its right-hand side. If we want 

bounded solutions over an infinite domain ),(D ∞−∞= , uG will take the form (Torreão, 

2001)

=
u

x-x
-exp

u

x-x
sin

u

2
)x-x(G 00

0u  (9) 

for 0x>x , with 0=Gu , otherwise. It will thus be a causal, shift-invariant operator. 
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Different kinds of Green's functions will result from different flow assumptions. If, instead 

of the uniform flow, we considered a one-dimensional affine model, with xu+u=)x(U 10 ,

for constant 0u and 1u and with )x(U=)x(V , the matching equation would become  

12
2

102
2

22
10 II

x

I
)xuu(

x

I

2

)xuu(
=+

∂

∂
++

∂

∂+
 (10) 

whose Green's function, again if we require bounded solutions over an unbounded domain, 
will be (Ferreira Jr. et al., 2004) 

=
U0

U

U0

U

U0
2
1

0
)1(

U
x-x

x-x
logsin

x-x

x-x

)x-x(u

2
)x,x(G  (11) 

for 0x>x , with 0=)x,x(G 0
)1(

U , otherwise. In equation (11), the parameter Ux is defined as 

10U u/u-x = , and corresponds to the fixed point of the affine transformation, since we have 

0=)x(U U . The parameters α and β are given as 

−+=

+−=

4

u
u1

u

1

2

1

u

1

2
1

1
1

1
 (12) 

The Green's function, in this case, is a shift-variant operator which remains bounded over a 

domain ),x(D U ∞⊂ , so long as we take 2<u<0 1 . Over finite domains, this solution is 

valid for 222u22-2 1 +<< .

Still another form of Green's function results from considering the matching equation under 
the guise

12
2

102
2

2
0 II

x

I
)xuu(

x

I

2

u
=+

∂

∂
++

∂

∂2
 (13) 

which is a variant of the affine matching condition, identical to equation (10) up to first 

order in 0u . The bounded Green's function for the above, over a domain ),x(D U ∞⊂ , can 

be approximated, when 0U x,x|x| >> , as (Torreão & Fernandes, 2004)  

−=
2

2
U0

2
U

02
U

2
U

0
)2(

U
2

)x-(x-)x-(x
-exp)xx(

|x|
sin

|x|2
)x,x(G  (14) 

for 0x>x , with 0=)x,x(G 0
)2(

U , otherwise.  It can be easily verified that, similarly to our first 

affine form, 
)1(

UG , the filter 
)2(

UG reduces to the uniform Green's function, 
0uG , in the limit of 

0u1 → , as should be expected, where .|x|/u U
2

0 =

All the Green's functions considered can be interpreted as point spread functions which 
generate motion through a linear model: when filtering an input image, they induce a 
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displacement of the image features, accompanied by a loss of high frequencies which can be 
interpreted as motion blur. The potential of this for motion synthesis in computer graphics 

is evident, and has been extensively explored, based on the filter 
)1(

UG (Ferreira  Jr.  et al., 

2004 and 2005).  
Here, we will be mainly concerned with the computer vision applications of the approach, 

which have been based on the forms uG and
)2(

UG . Such applications also stem from the 

motion induction capabilities of these Green's functions. For instance, given a single input 
image, a second image can be generated which simulates the photometric stereo pair to the 
input, representing the same scene under displaced illumination. This has been used as the 
basis to the Green's function shape from shading (Torreão, 2001), which extends, to single-
image reconstruction, a two-image photometric-stereo approach (Torreão & Fernandes, 
1998). Similarly, a depiction of the scene under a displaced point of view can also be 
simulated from a given image, what has led to the Green's function photometric motion 
(Torreão & Fernandes, 2004), also extending, to the single-input case, a multi-image process 
(Torreão  et al., 2007).  
Signal differentiation is another computer-vision/image-process application where the 
Green's functions of matching equations have found use (Torreão & Amaral, 2002 and 2006). 
This comes along naturally, when we remember that the first-order derivative of a signal 
can be approximated through the difference of displaced versions of it. Finally, we will here 
introduce a new application area for our Green's functions, by showing that, through their 
means, displaced versions of binocular image pairs can be generated whose local degree of 
matching yields a reliable measure of stereoscopic disparity. 
The remainder of this chapter is organized as follows: in Section 2 and Section 3, we review 
the Green's function approaches to signal differentiation and to shape from shading, both 

based on the uniform-matching Green's function, uG ; in Section 4, we review the Green's 

function photometric-motion process, based on the affine Green's filter, 
)2(

UG (which, for 

simplicity, will henceforth be referred simply as UG ), and, in Section 5, we introduce the 

use of the same filter for stereoscopic disparity estimation. Our final remarks close the 
chapter in Section 6.  

2. Signal Differentiation through Green's Functions 

The Green's function approach to signal differentiation is based on the following rationale: If 

)x(I′ is the derivative of a signal )x(I , it can be expressed as  

u2

)u-x(I-)ux(I
lim)x(I

0u

+
=′

→
 (15) 

According to the Green's function approach summarized above, an estimate of the signal 

)u-x(I , let us call it )x(I- , can be obtained as (see equation (8)) 

∞

∞
=≡

- 000u- dx)x(I)x-x(G)u-x(I)x(I  (16) 
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where uG (see Fig. 1) is the uniform-matching Green's function, as presented in (9). The 

identity in equation (16), valid up to second order in u, results from inverting the matching 

relation )x(I=)u+x(I- , which is a special case of equation (6).  

-0.2

0

0.2

0.4

0.6

-2.5 0 2.5 5

x/u

G
u
(x
)

Fig. 1. Green’s function )x(Gu , as a function of x/u. 

Similarly, a signal )x(I+ , which is an estimate of I(x + u), can be obtained as 

∞

∞+ =+≡
- 000u dx)x)I(x-x(G)ux(I)x(I  (17) 

where it can be easily verified that the filter )x-x(G 0u  will be the Green's function of a 

matching equation of the form )x(I=)u-x(I+ .

Using relations (16) and (17) in equation (15), and applying the commutative property of the 
convolution, there results the derivative estimate 

[ ] 00- 0u0u
0u

dx)x-x(I)x(G-)-x(G
u2

1
lim)x(I

∞

∞→
=′  (18) 
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and we have thus arrived at a linear operator, )]x(G-)(-x[G
u2

1
=)x(D uuu , which, in the 

limit of u → 0, becomes the impulse response of a differentiator. )x(Du  turns out to be a 

special case of Deriche's well-known edge-detector (Deriche, 1987) 

xsin|)x|-exp(-=)x(d
 (19) 

for u/1== .

A more general form for our differential operator can be found if we allow for scale factors 
in the matching equations. For instance, we could consider the relations 

)x(I=)u
x

(I±  (20) 

to obtain the derivative estimate 

00- 0u0u
0u

dx)x-x(I)]x(G-)-x(G[
u2

1
lim)x(I

∞

∞→
=′  (21) 

thus arriving at 

)]x(G-)(-x[G
u2

1
=)x(D uuu  (22) 

as a generalized version of our differentiator. Multiscale derivative estimates can then be 
obtained through linear combinations such as 

)x(Ia)x(I nest ′=′  (23) 

where the a are real-valued constants, satisfying 1a = . For instance, we may consider 

just two terms in the above expansion, to get 

)a1(

)x(Ia)x(I
)x(I

1
est

+

′+′
=′  (24) 

From equations (18) and (21), we thus see that, in such case, our derivative estimate will be 
obtained by convolving the input signal with the operator (see Fig. 2)   

F(x)]--x)(F[
u2

1
=)x(D

 (25) 

where F(x), for x > 0, is given by 

+=
u

x
sin

u

x
-expK

u

x
sin

u

x
-expA)x(F  (26) 
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with 2)u)(a+1(

a
=A  and a/=K 2 .
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)

Fig. 2.  Filter D(x), as a function of x/u. 

In (Torreão & Amaral, 2006), a study was carried out which determined the values for a and 

η leading to maximum overall performance by the filter D(x), as measured through the (ΣΛ)

SRC index introduced by Canny, where Σ, Λ and SRC denote, respectively, the detection, 

localization, and single-response measures (Canny, 1986). With a=1.1 and η=3.5, a (ΣΛ) SRC 
of 3.547 was achieved, beating the performance of alternative approaches, such as Sarkar 
and Boyer's filter, whose best mark is 3.388 (Sarkar & Boyer, 1991). Another advantage of the 
operator D(x), as also proven in (Torreão & Amaral, 2006), is that it allows simple recursive 
implementations, being realized as an infinite impulse response filter with only two poles 
and a single zero. 
Fig. 3 shows examples of the use of operator D(x) for edge detection. In such 2D 
applications, D(x) was employed in the direction perpendicular to the edges sought, while a 
projection function - chosen here as the integral of D(x) - was used in the direction parallel to 
the edges. Non-maxima supression and hysteresis thresholding have also been employed, in 
the usual fashion (Canny, 1986). 
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(a)

(b) (c)
Fig. 3.  Example of the use of operator D(x) for  edge detection. (a) : input image. (b) and (c) : 
edges obtained for u = 0.05 and u = 1.0. 

3. Green's Function Shape from Shading 

Shape from shading (SFS) and photometric stereo (PS) are 3D shape estimation processes 
that take shading images as inputs - that is to say, they work with textureless images where 
a smooth gradient of intensities is observed, resulting solely from the orientation of the 
observed surfaces. SFS estimates surface orientation from a single shading image, while PS 
works with two or more monocular shading inputs, acquired under different illuminations. 
Both processes have been traditionally based on the so-called image irradiance equation, 
which relates the intensity at each image point to the surface gradient at the corresponding 
location in the scene, via the reflectance map function (Zhang et al., 1999), as 

)q,p(R=)y,x(I  (27) 

where

y

Z
qand,

x

Z
p

∂

∂
=

∂

∂
=  (28) 

are the gradient components of the observed surface, Z(x,y), and where R is the reflectance 
map. 
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In (Torreão & Fernandes, 1998), an approach to photometric stereo was introduced, called 
the disparity-based photometric stereo (DBPS), whereby a pair of PS images are matched, 
similarly as a stereoscopic pair (Barnard, 1986), to yield a disparity map from which the 
shape of the observed surfaces can be recovered. Such disparity map results from the 
displacement of the irradiance pattern over the imaged surface, due to the change in 
illumination direction, a displacement that can be generally modeled as a non-uniform 
rotation, as proven in (Torreão, 2003). 
DBPS is based on a pair of equations: a linear image irradiance equation, and a matching 
(optical flow) equation, that take the form  

∂

∂
+

∂

∂
=

++=

y

I
v

x

I
uI

qkpkkI

22

210

 (29) 

where 21 I-II ≡ is the difference of the input images, and where (u,v) denotes the optical 

flow, or disparity field. 

Equating the two expressions for ∆I above, there results a differential equation on Z, whose 
approximate solution can be found as  

)1(k

)yx(k
-

k

uI
Z

2
1

0

1

2

+

+
=  (30) 

so long as the disparity component u is found by matching the input images along a 

direction such that k/ku/v 12 == , a constant. 

As proven in (Torreão, 2001), the DBPS approach can be extended to the single-input case, 
with the so-called Green's function shape from shading (GSFS). Here, the idea is to assume 
that the disparity field is uniform, and to solve the matching equation - considered up to 

second order in u, such as in (7) - for the matching image, 2I , via Green's function. It has 

been shown that, in such case, the estimated depth map takes the form 

1

2

k

Iu
Z =  (31) 

with

2uuuu22 I)cHHbGaG(II ∗+∗++=  (32) 

where a, b and c here are constants, the operation ∗ denotes a convolution, 1u2 IGI ∗=  is 

the matching pair to the input image 1I , and uH is the homogeneous integral operator  

−=
u

x-x
exp

u

x-x
cos

u

2
)x-x(H 00

0u  (33) 

for 0xx >  , with 0Hu = , otherwise (see Fig. 4).  
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Fig. 4. Filter )x(Hu , as a function of x/u. 

As can be easily verified, uH satisfies the homogeneous form of equation (7), i.e.,

0HHuH
2

u
uuu

2

=+′+′′  (34) 

Besides the matching constant u, which must be chosen a priori, the single free parameter in 

equation (31) is 1k , and this can be estimated from the input data, as described in (Torreão, 

1999). For this purpose, we take into consideration the fact that the displacement of the 
irradiance pattern over the scene, due to the change in illumination (it should be kept in 
mind that we are simulating a photometric stereo situation, via the Green's function) can be 
modeled as a non-uniform rotation. This allows the introduction of a least-squares structure-

from-motion formulation that yields .k1 Fig. 5 shows examples of shape estimation via 

GSFS. 
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(a) (b)

(c)                                                                  (d) 
Fig. 5.  Examples of shape estimation via GSFS. (a) and (b) : input images. (c) and (d) : 
estimated depth maps. 

4. Green's Function Photometric Motion 

Photometric motion is a shape estimation process introduced by Pentland, based on his 
observation that, for surfaces in rotation relative to the camera, the photometric effects of the 
motion (i.e., the intensity change of a moving point) can prove more relevant than the 
geometric effects, due to projective distortion (Pentland, 1991). In his formulation, Pentland 
considered a quadratic expansion of the reflectance map, supposed symmetric and 
separable, and he also assumed that regions of approximately linear motion could be 
identified, allowing the registration of corresponding points in successive frames. Under 
such conditions, Pentland found that the intensity difference of registered points could be 
described by a linear reflectance map, and he thus used his linear shape from shading 
algorithm (Pentland, 1990) to obtain shape estimates of the imaged scene.  

An alternative formulation of photometric motion has been recently introduced in (Torreão 
et al., 2007), along similar lines as followed for the disparity-based photometric stereo. A 
distinctive feature of this formulation is that of being based on the intensity change, due to 
the motion, at a fixed location in the image plane, and not, as in Pentland's approach, at a 
given point on the moving surface. This has the advantage of not requiring warping for the 
registration of corresponding points in the image sequence. 
Similarly as DBPS, our novel approach to photometric motion relies on two expressions for 
the intensity change, due to the motion, at a given point in the image plane, one of them a 
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matching (optical flow) equation, and the other involving photometric (reflectance map) 
considerations.  
Assuming a uniformly rotating surface, with angular velocity components A and B, along 
the x and y directions, such that  

AZ-
dt

dy
vand,BZ

dt

dx
u ====  (35) 

are the optical flow components, and also considering a linear image irradiance equation of 

the form qkpkkI 210 ++= , with u/vB/Ak/k 12 =−= , similarly as in DBPS, we arrive at 

the expression 

++∂= )yx(
Z

uk
)k-I(uI 1

0  (36) 

for the intensity difference, 21 I-II =  , of successive frames in the image sequence.  In the 

above equation, we have used 

yx ∂

∂
+

∂

∂
≡∂  (37) 

where stands for the ratio v/u.  

Now, again as in DBPS, we must couple equation (36) with an image matching equation, in 
order to find a closed-form expression for the depth map Z(x,y). The appropriate matching 
equation is here found to describe an affine optical flow field, taking the form 

I
1

yx
)u(-uI

2
∂

+

+
∂=  (38) 

Equating (36) and (38), we find a diferential equation on Z, whose solution is given by 

)yx(
u)kI(

u)1(k
)y,x(Z

0

2
1

+
+∂−

+
−=  (39) 

where is an arbitrary constant, provided that the term in u2∂  is neglected. 

Through the Green's function approach, the above-described photometric motion 
formulation (whose results can be appreciated in (Torreão et al., 2007)) can be extended to 
the single-input case. In order to do this, we require a Green's function that will relate the 
matching image to the input image according to equation (38). Since that is a 1D expression, 
we may, without loss of generality, take the matching direction as x, to obtain 

x

I
)xuu(III 2

1021
∂

∂
−=−≡  (40) 

where 1I is the input image, 2I is the image derived from it through the Green's function, 

and 0u and 1u are two constants representing, respectively, the disparity map and its 
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derivative at x = 0 (in the general case, these will mean uu0 = and uu1 ∂= ). By comparing 

equation (40) to equation (13), we find that, up to first order in 0u , our photometric-motion 

Green's function will take the form of UG in equation (14) (see Fig. 6).  
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Fig. 6. Green’s function )x,x(G 0U , for 0x0 = , 1xU = and .1u0 =

Using this to filter the input image, we obtain its matching pair 2I , which, substituted for I 

in equation (39), yields the shape estimate Z(x,y). Figure 7 illustrates results of this 
approach.
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(b)

                                                (c)                                                            (d) 
Fig. 7.  Examples of shape estimation via Green's Function Photometric Motion. (a) and (b) : 
input images. (c) and (d) : estimated depth maps. 

5. Green's Function Stereoscopy 

In a binocular vision system, scene features project at different positions in the two cameras, 
giving rise to the so-called binocular disparities, which constitute the primary cue for stereo 
vision (Barnard, 1986). Assuming a horizontal imaging configuration, a pair of left and right 
images which are projections of the same 3D scene should be related as 

)y,x(I)y,dx(I rl =+
 (41) 

where d ≡ d(x,y) here denotes the disparity map. The above is simply a special case of the 
matching equation (6), and, based on this, we can propose a Green's function approach to 
stereoscopic disparity estimation: Given the pair of binocular images, we can filter each of 
them through the appropriate Green's function, to induce different rightwards and 
leftwards shifts, aiming at the elimination of their intrinsic binocular disparities. By 
evaluating the degree of matching between the shifted inputs, for instance by computing the 
squared magnitude of their difference, we can then obtain an estimate of the disparity 
information encoded by the original stereo pair. 
We have implemented such approach using the affine Green's filter of equation (14), 

keeping its σ parameter fixed, and varying Ux , in order to obtain different image shifts. Our 

preliminary results have proven encouraging, as shown by Figure 8 below. 
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                           (a)                                              (b)                                                 (c) 

    
                           (d)                                              (e)                                                 (f) 

Fig. 8.  Green's function approach to stereoscopic disparity estimation. (a) and (b): random-
dot stereogram pair. (d) and (e) : real-world stereogram. (c) and (f) : estimated disparity 
maps. 

6. Conclusion 

We have reviewed the computer vision applications of Green's functions of image matching 
equations. Green's functions of both uniform- and affine-matching second-order differential 
equations have been considered, and we have illustrated their use for the computer vision 
problems of edge detection, monocular shape estimation, and stereoscopy. The Green's 
filters considered are essentially point-spread functions which have proven able to model 
the image-plane projection of a broad class of motions, along with their associated blur 
effects (Ferreira Jr. et al., 2004). As shown here, such motion modeling capability makes 
them suitable for a unifying approach to several low-level vision processes, whose full 
consequences still remain to be explored. This work has been supported by CNPq-Brasil. 
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