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1. Introduction 

Proteins are important macromolecules that exhibit thermodynamic and kinetic properties 
that are highly tuned to facilitate biological function within limited ranges of environmental 
conditions. Despite having a wealth of understanding of the interactions that affect protein 
stability [Dill, 1990; Pace, et al. 2004], such as the hydrophobic effect, hydrogen bonding, 
packing, solvation and electrostatic effects: Predicting thermodynamic properties of proteins 
is difficult because these interactions simultaneously work together within the molecular 
structure comprising of heterogeneous microenvironments that change dynamically as the 
conformational state of the protein changes. Consequently, a protein is truly a complex system 
[Bar-Yam, 1997] where thermodynamic and other emergent physical properties are sensitive 
to small perturbations in protein structure or its environment. It remains an open problem to 
develop models that can accurately predict protein stability, ligand-protein binding 
affinities and allosteric response, all of which are critical to the function of a protein [Petsko 
& Ringe, 2004; Klepeis, et al. 2004; Bray & Duke, 2004]. 

1.1 Available computational approaches 

A rigorous brute force method that can in principle computationally predict thermodynamic 
properties of proteins is through all-atom molecular dynamics (MD) simulation in explicit 
solvent [Lindorff-Larsen, et al. 2009]. In this approach, the equations of motions for all atoms 
must be integrated over femtosecond time-steps out to timescales extending to hours or 
more. Then the emergent properties governing how a protein functions must be extracted 
from the massive amount of atomic coordinates contained in the MD trajectory. Invoking 
the ergodic hypothesis to determine thermodynamic averages of physical quantities by time 
averaging over many such long trajectories makes this approach painstakingly slow, 
especially when one would like to scan over large numbers of possible what-if scenarios for 
the purpose of finding conditions that yield a desired “engineered” response, such as 
identifying specific mutations, ligands or solvent composition. Unfortunately, it is not yet 
possible to reduce statistical errors by employing MD simulations to a point where they are 
negligible, especially in the context of high-throughput applications.  

Despite practical limitations in sampling, MD has proven indispensible for gaining insight 
into protein function over limited timescales [Gunsteren, et al. 2006]. Furthermore, a coarse-
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grained MD approach with implicit solvent is faster, and multiscale modelling can be fast 
while achieving good accuracy [Nielsen, et al. 2010]. While multiscale MD is promising, 
substantial computer resources are required that preclude high-throughput applications, 
including studies that systematically vary temperature, pressure, pH, and concentration of 
co-solvents. Therefore, it is not yet feasible in engineering design applications to calculate 
free energy and other thermodynamic properties of proteins from MD simulations.  

There are alternative approaches that represent the fold of a protein in terms of an Ising-like 
model involving discrete “spin” variables assigned to residues [Hilser & Freire, 1996; 
Muñoz 2001; Bakk & Hoye 2002; Zamparo & Pelizzola, 2006]. By discretizing macrostates, 
conformational ensembles that include native, unfolded and partially unfolded states can be 
generated efficiently [Jacobs, 2010]. Moreover, calculating thermodynamic properties is 
feasible as a result of the approximations used to reduce degrees of freedom (DOF). One such 
critical approximation common to Ising-like models is that the three-dimensional native 
structure is used as a template. Spin variables decorate the template to partition the protein at 
the residue level into native-like (spin up) and disordered (spin down) regions. For N 
residues, the 2N possible spin configurations retain only topological significance because 
geometrical information beyond the native state structure is not considered. The models are 
simple enough that for practical purposes exact thermodynamic properties (of the model) 
can be calculated. However, because non-native interactions are not accessible, the ensemble 
of conformational states generated (expressed by microscopic “spin” configurations) is not 
complete physically. Consequently, Ising-like model predictions can be made rapidly, they 
are precise, but accuracy becomes questionable because the models tend to be oversimplified. 

1.2 Identifying a fundamental problem 

Most Ising-like models that describe protein stability are based on the concept of free energy 

decomposition (FED), where the free energy of a system is partitioned into parts by assigning 
enthalpy and entropy contributions to subsystems. Assuming transferability, a ledger is 
created to account for the gain or loss of enthalpy and entropy relative to a reference state. 
The naïve method is to sum over all enthalpy and entropy contributions to arrive at the total 
free energy of the protein in a specific macrostate. This approach is extremely fast, and it is 
accurate when all subsystems are essentially independent of one another. Unfortunately, 
errors occur when DOF within subsystems couple. Since cooperative behaviour is typically 
found in proteins, the assumption of additivity generally fails [Mark & van Gunsteren, 1994; 
Dill, 1997], causing inaccurate predictions and/or model parameters to be non-transferable.  

The application of FED and assumption of additivity is commonly employed to interpret 
single site mutations and ligand binding affinities. One reason why it is not obvious that the 
assumption of additivity is flawed is because non-transferability of model parameters also 
derives from a lack of completeness in modelling interactions, and, Ising-like models are 
notoriously incomplete. Nevertheless, the fundamental problem is in treating subsystems as 
independent, which is tantamount to assuming all internal DOF are independent, and this 
leads to a dramatic overestimate of conformational entropy in the native-state relative to the 
unfolded state. Fortunately, this problem can be largely overcome by keeping track of the 
correlations between DOF using concepts of network-rigidity (also called graph-rigidity). 
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1.3 The distance constraint model 

The challenge of accurately predicting protein stability lies in developing a model that can 
account for all essential types of interactions while demanding the model is computationally 
tractable for high-throughput applications. Toward this goal, I describe a Distance Constraint 
Model (DCM) that is an Ising-like model that employs a FED, but the assumption of 
additivity is not used. The total free energy is calculated through the process of Free Energy 
Reconstitution (FER) to account for coupling of DOF between subsystems. The critical 
component of the FER is to employ network-rigidity as a long-range mechanical interaction 
to govern the non-additive nature of conformational entropy.  

The DCM has been employed in various forms (differences in model details and methods to 
solve the DCM) to describe the helix-coil transition [Jacobs, et al. 2003; Jacobs & Wood, 2004; 
Lee, et al. 2004; Vorov, et al. 2009; Wood, et al. 2011], the hairpin-coil transition [Jacobs & 
Fairchild, 2007a] and protein stability [Livesay, et al. 2004; Jacobs & Dallakayan, 2005; 
Jacobs, et al. 2006a; Vorov, et al. 2011]. Moreover, the DCM predicts substructures within a 
protein that are rigid or flexible, and identifies sets of atoms that are co-rigid or co-flexible 
within a correlated motion. Many studies on proteins using a minimal DCM (mDCM) have 
elucidated stability/flexibility relationships important to function [Livesay & Jacobs, 2006; 
Livesay, et al. 2008; Mottonen, et al. 2009; Verma, et al. 2010] including the study of allostery 
[Mottonen, et al. 2010]. The DCM provides a good estimate for conformational entropy in 
simple loop systems compared to exact calculations [Vorov, et al. 2008]. This body of work 
has been reviewed previously [Jacobs, 2006b; Jacobs, et al. 2012]. The success of the DCM 
across disparate systems indicates that it is well suited for high-throughput applications that 
include macromolecular design, large-scale comparative analysis and drug discovery. 

1.3.1 Advantages of the DCM and its limitations 

The DCM offers several advantages over other models for protein stability, listed in order of 
importance: 1) Network-rigidity is employed to account for the coupling of DOF between 
subsystems for better estimates of conformational entropy, thereby restoring the utility of a 
FED. 2) Structural characteristics are linked to thermodynamic properties by associating 
mechanical constraints to enthalpy-entropy compensation mechanisms. 3) Molecular 
structure is represented at the all-atom level. 4) The DCM is not restricted to use template 
structures, although use of templates allows rapid calculation of the partition function. 5) 
Relationships between flexibility and stability are quantified, which gives insight into the 
mechanisms of protein function [Luque, et al. 2002]. 6) The DCM can be solved efficiently in 
multiple ways. 7) The DCM is a general approach that is not restricted to proteins.  

Limitations of the DCM include: 1) Calculation of conformational entropy is approximate. 
Errors are introduced when the geometrical problem is simplified to a topological one 
(explained below), and because loop corrections are neglected. 2) Long-range electrostatic 
interactions are not considered. To acknowledge these limitations, the DCM is formulated as 
an empirical spin-model. 3) Moreover, in the mDCM, mean-field approximations are used to 
replace many essential enthalpy-entropy compensation mechanisms that are not explicitly 
modelled, especially in regards to solvation effects. Thus, effective parameters are required 
to compensate for mDCM inadequacies, suggesting that non-transferability in parameters 
observed across diverse proteins largely derives from discretionary oversimplifications.  
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1.3.2 Generalization of the DCM 

Despite several studies indicating the mDCM is useful for predicting flexibility and stability 
of proteins, the merits and limitations of the DCM paradigm remain to be assessed. Many 
limitations can be substantially reduced by generalizing the form of the DCM to provide a 
more accurate estimate for conformational entropy without much more computational cost. 
With the goal of establishing an accurate high-throughput empirical approach, adding terms 
to model solvation effects offers the least amount of effort for the greatest improvement in 
accuracy, parameter transferability and retaining rapid calculations. Here, I will redevelop 
the DCM in the context of interfacial thermodynamics, which has not been done before. 

The DCM has four key elements each of which will be discussed separately. First, network-
rigidity is explicitly considered as a long-range mechanical interaction to account for the 
non-additive property of conformational entropy. Second, the FED provides a complete set 
of elementary subsystems and interaction types that are uniquely identified based on the 
three dimensional structure of the protein and its macrostate. Third, order parameters are 
used to define the macrostate of a protein that include the composition of protein-solvent 
interactions and the number of native-like intramolecular interactions. Forth, applying the 
FER to each macrostate allows the free energy landscape (FEL) to be calculated.  

2. Linking network-rigidity to conformational entropy 

As the amplitude of motion of a flexible molecular structure increases, the conformational 
entropy will increase accordingly. By ascribing an entropic measure to distance constraints, 
the DCM posits a quantitative link between network-rigidity and conformational entropy 
[Jacobs, et al. 2003]. This link requires assigning and characterizing tolerances to constraints.  

2.1 Draconian view of network-rigidity 

A draconian view of network-rigidity in proteins is that some interactions can be modelled 
by placing a distance constraint between certain pairs of atoms, while the distances between 
all other pairs of atoms are not fixed. Given a network of distance constraints, the program 
FIRST (Floppy Inclusion and Rigid Substructure Topography) gives a detailed mechanical 
analysis of protein structure [Jacobs, et. al. 2001] that includes rigid cluster decomposition 
(RCD). A RCD defines all rigid substructures where the distance between all pairs of atoms 
is fixed within a substructure. As such, a protein is modelled as a collection of rigid bodies, 
where conformational change is through relative motions between rigid substructures.  

The RCD depends on the set of distance constraints modelling various types of interactions. 
Covalent bonds are always modelled as distance constraints, while other interactions may or 
may not contribute to distance constraints. For example, the hydrogen bond (H-bond) has a 
wide variation of strength. In FIRST, a dilution analysis is employed to represent a H-bond 
as 5 distance constraints when its energy is lower than some cut-off energy. By lowering this 
cut-off, more H-bonds are identified as weak, which do not contribute distance constraints. 
As such, a protein will undergo a mechanical transition from being mostly a rigid structure 
with flexible pockets (all H-bonds contribute to distance constraints whether weak or 
strong) to a globally floppy structure interconnecting many small rigid clusters (only the 
strongest H-bonds contribute distance constraints). This dilution idea [Jacobs, et al. 1999] 
was later interpreted as a kinetic mechanism for protein unfolding [Rader, et al. 2002].     
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The notion of a rigid substructure is an idealization. For example, FIRST often identifies a 
long alpha-helix as a rigid substructure, but an alpha-helix actually bends and twists (just 
like a metal bar can do!). Nevertheless, the RCD is useful to understand long-time scales, 
where small amplitude conformational deviations in substructures within a protein are 
neglected, such as the compression, elongation, bending or twisting of an alpha-helix. The 
rapid calculations for the RCD by FIRST (requiring tiny fractions of a second) has proved to 
be useful in making comparative studies across protein families, and to elucidate common 
structural features regarding flexibility important to function [Hespenheide, et al. 2002; 
Rader, et al. 2004; Fuxreiter, et al. 2005; Costa, et al. 2006; Radestock & Gohlke 2008; 
Mamonova et al. 2008; Rader, 2010; Heal, et al. 2011; Radestock & Gohlke 2011]. It has also 
been shown there is a statistically significant correlation between the propagation of rigidity 
between two mutation sites within a protein to non-additive effects in free energy cycles 
describing double mutant studies [Istomin, et al. 2008].  

If all weak interactions are allowed to contribute to distance constraints, FIRST will predict a 
completely rigid protein, failing to be of any use. Instead, excluded volume effects due to 
van der Waals interactions are included in geometrical simulation that allows rigid clusters 
to wiggle about without violating any distance constraint, or without atoms passing through 
one another. FRODA (Framework Rigidity Optimized Dynamics Algorithm) is one method 
[Wells, et al. 2005; Farrell, et al. 2010], among others [Lei, et al. 2004; Thomas, et al. 2007; 
Jimenez-Roldan, et al. 2011; Yao, et al. 2012] that uses FIRST to identify a native RCD that is 
preserved during the simulation. FRODA efficiently explores the native state ensemble of 
conformations [Jacobs, 2010; David & Jacobs 2011]. The main limitation is that the native 
state structure defines the distance constraints, and once set, they never break. This athermal 
mechanical description of a protein cannot account for non-native contacts, making large-
scale conformational change between different conformational states impossible if native-
contacts in either state must be broken along the pathway. However, pathways between 
conformational states can be achieved by using a common collection of distance constraints 
between native conformations [Farrell, et al. 2010]. 

2.2 Liberated view of network-rigidity 

The draconian view suffers from three awkward problems. There is no prescription for (1) 
how to determine the proper number of distance constraints to model an interaction, and for 
(2) when an interaction will contribute distance constraints. Also, (3) the selection threshold 
that determines whether distance constraints are placed in the network causes artificial 
discontinuities. A discontinuity is illustrated by two nearly identical H-bonds having a small 
energy difference slightly above and lower than the cut-off energy. The H-bond with higher 
energy is modelled as infinitely weak (not present) while the other is infinitely strong!  

By assigning tolerances to configuration variables, the accessible range for each variable can 
be quantified. The distinction between a DOF and a constraint is reflected in the process of 
before and after a tolerance is assigned. That is, a variable acts as a DOF before its tolerance is 
assigned. Once the range of a variable is restricted, it acts as a generic distance constraint. 
Applying graph-rigidity algorithms determine if a generic distance constraint is redundant 
or independent. A redundant distance constraint has zero tolerance because its length is 
determined by independent constraints. The length of independent distance constraints can 
vary within their tolerances. After all variables are analysed, a system of N  atoms is 
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generically rigid (having 0 internal DOF) consisting of 3 6N   independent distance 
constraints all with finite tolerances that quantify the accessible geometrical embedding of 
the constraint topology. In other words, for a given constraint topology there will be an 
entire ensemble of geometrical realizations that are consistent with the accessible tolerances. 
The conformational entropy is then related to the logarithm of this geometrical degeneracy. 

In this view, the three awkward problems mentioned above are eliminated. A system of N 
atoms consists of 3 6N   internal DOF. Similarly, a subsystem with n  atoms for 3n   has 
3 6n   internal DOF, and for 2n   has 1 internal DOF. A proper description of a subsystem 
should only be in terms of independent configuration variables that need to be assigned 
tolerances. Therefore, the number of contributing constraints for a subsystem of n  atoms is 
just equal to the number of its internal DOF.  For example, regarding a H-bond as a 3 atom 
subsystem (the donor, hydrogen and acceptor) requires 3 internal DOF to specify its 
configuration. Thus, a H-bond will contribute 3 generic distance constraints whenever it 
forms, and it will randomly form or break based on a probability that is appropriate for the 
system to be in thermodynamic equilibrium, which removes arbitrary thresholds.  

2.2.1 Illustration: A two dimensional quadrilateral 

To illustrate the points discussed above, consider 4 particles confined to a plane as shown in 
Fig. 1A. Quenched central-force interactions are between particles (1,2), (2,3), (3,4) and (4,1) 
with respective relative distances: 12 , 23 , 34 and 41 . The word “quenched” indicates that 
the interaction is always present within the network. Fluctuating interactions can also form 
between particles (1,3) and (2,4) with respective distances 13 , 24 . Quenched torsion-force 
interactions are between particles (4,1,2), (1,2,3), (2,3,4) and (3,4,1) with respective angles 1 , 

2 , 3 , 4 . The potential energy for the central (c), fluctuating (f) and torsion (t) interactions 

are given as: 
2

c c
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


  where cE , fE , k
tE  

are reference energies, g is a scaled spring constant, cL , fL ,   are configuration 

variable tolerances, a  and b  are equilibrium lengths, k is an equilibrium angle, and the 

index, k , labels bins that partition the angle range. Four cases are compared below that 
differ only in g and b , each assigned two distinct values with common parameters held 

fixed. Common parameters are set to: cE = -20 kcal/mol, fE = -5 kcal/mol, 1 3 5
t t tE E E  = 2 

kcal/mol, 2 4
t tE E = 0, 1a  Å, cL = 0.04 Å, fL = 0.09 Å,  = 15° and k  = 1, 2, 3, 4, 5 to 

define five bins for the respective angle ranges (15°, 45°), (45°, 75°), (75°, 105°), (105°, 135°), 
(135°, 165°) and for corresponding k = 30°, 60°, 90°, 120°, 150°.  

The four cases to be considered are: g = 8 kcal/mol or 0, and 2b  Å or 1.5321 Å. For the 
harmonic potential where g = 8 kcal/mol; the quadrilateral defines an elastic network. A flat 
potential ( g = 0) has a constant energy as lengths or angles vary within a tolerance, but an 
infinite energy outside the tolerance. A sketch of how much the quadrilateral can deform for 
a flat potential is shown in Fig. 1B. Shaded regions define accessible geometries for each 
angular range (5 rows) and distinct constraint topology (4 columns) due to the fluctuating 
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Fig. 1. (A) Definition of the quadrilateral network. (B) The accessible range of motion for 
each coarse-grained configuration is shown in grey. The middle two columns show how the 
more limited range of motion along a diagonal interaction compared to the range allowed 
by the torsion-forces is the determining factor restricting the motion. The symbols (, L, X) 
indicate which configurations are (very probable, improbable, inaccessible). The index, , is 
used to label all accessible configurations. In the example considered here, the inaccessible 
configurations essentially have infinite energy, but in a more refined model they could have 
a finite energy. (C) Treating interactions as independent, the probability density, ( )  , for the 
length of a distance constraint is plotted for central-, fluctuating- and torsion-interactions, 
where the lower and upper graphs correspond to the cases: g = 8 kcal/mol and g = 0. 
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interaction along the diagonals. Fluctuating interactions break and form to reflect hidden 
DOF in the system not modelled. For example, a fluctuating interaction along a diagonal of 
the quadrilateral could model a H-bond that may appear or not depending on the details of 
the electronic structure of the donor, hydrogen and acceptor atoms.  

2.2.2 Free energy decomposition and reconstitution 

The configuration integral, 5
2 3 3 4 4exp( )Q V dx dx dy dx dy      is calculated where V  

is the potential energy of the system in the –th coarse-grained configuration, 1( )RT  , 

where R  is the ideal gas constant, T  is absolute temperature, and 0.002  Å is a length 
scale factor (in classical statistical mechanics entropy is defined up to an arbitrary constant). 
Since rigid body DOF are not of interest, the quadrilateral is translated and rotated so that 
particle 1 is at the origin while particle 2 is along the x-axis, requiring a five dimensional 
integral. From Q , the total internal free energy is given as ln( )F RT Q   , thermal energy 

is U V  , and entropy is R  , where ( )U F      is the total pure entropy. Similarly, 

the FED defines  , , ,x x x xQ F U   for each interaction type when treated as an independent 

subsystem. For the quadrilateral: 1 2 3 4 5, , , , , ,x c f t t t t t  denotes central-, fluctuating-, and 

torsion interactions for bin 1,2,3,4,5 respectively. Taking care to maintain the spatial length 

scale, 1 exp( )cc VQ d     , 1 exp( )f fVQ d     , and 1 exp( ) d
k k dt VQ d       where a 

Jacobian is inserted to convert from an angle to a length measure using an approximation 
that constrains 12 23 34 41 a       . Consequently, a slight underestimate of the entropy 

is incurred because the angle is actually defined without imposing these length constraints. 
The probability density, ( )  , for finding the distance between a pair of particles (the plot is 

for T=400K) for a particular interaction is shown in Fig. 1C, which is given by the Boltzmann 
factor normalized by the corresponding partition function.  

For each interaction type, x , the thermal energy, xU , and pure entropy, x , are plotted in 

Fig. 2A and Fig. 2B respectively for a flat potential energy, and in Fig. 2C and Fig. 2D for a 
harmonic potential energy. Notice that x  decreases when the peak width in the probability 

density, ( )  , decreases as shown in Fig. 1C.  Interestingly, transforming from an angle to a 

length variable to describe torsion interactions causes kt  to decrease as the angle increases 

(larger k) because a smaller length variation results from the same angular deviation. This 
difference is important when network rigidity is used to calculate conformational entropy. 

For an additive FER: The free energy for the –th configuration is: 4 2 2
1 1 5ln( )c t tF RT Q Q Q  , 

4 2 2
2 2 4ln( )c t tF RT Q Q Q  , 4 4

3 3ln( )c tF RT Q Q  , 4 2F F , 5 1F F , 4 4
6 7 3ln( )f c tF F RT Q Q Q    and 

2 4 4
8 3ln( )f c tF RT Q Q Q  . Recall that a product of partition functions corresponds to adding the 

free energies over independent subsystems. Thus, in the additive approach, the total free 
energy of a configuration is simply a sum over all free energy components, such as 

1 1 54 2 2c t tF F F F    or 8 32 4 4
f c tF F F F   .  
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Fig. 2. The legend (middle-top) applies to all four graphs. For a flat potential: (A) Thermal 
energy has no temperature dependence. Note 1 3 5t t tU U U   and 2 4t tU U . (B) The pure 
entropy also has no temperature dependence. For a harmonic potential: (C) Thermal energy 
has temperature dependence according to the equipartition theorem, but this cannot be seen 
using the energy scale of graph-A. Therefore, only 2tU  is shown on a magnified scale. (D) 
The pure entropy monotonically increases, but it has a limiting plateau of the flat potential. 
Note that graph-D uses the same vertical axis as graph-B to assist in direct comparisons.   

To proceed further, a more general indexing is needed to label specific interactions. For the 
quadrilateral network, there are four torsion-force, two fluctuating and four central-force 
interactions. Let j=1,2,3,4 label the angle variables 1 2 3 4, , ,    . Let j=5,6 label the fluctuating 
interactions between particles (1,3) and (2,4). Let j=7,8,9,10 label the central-force interactions 
between particles (1,2), (2,3), (3,4) and (4,1). The j index identifies a particular interaction 
within a configuration that is labelled by the  index. In application to proteins, the  index 
labels a particular accessible coarse-grained geometry that a subsystem can explore. Thus, 
the index-pair, j , is a general indexing scheme used to uniquely label energy and entropy 
contributions. In this example, each j  maps to the x  index, where 1 2 3 4 5, , , , , ,x c f t t t t t .   

For a non-additive FER: The free energy of configuration,  , is given as: 

 cnf vibF U U T R       (1) 

where cnfU is the lowest possible energy of the selected basin, and vibU  describes the energy 
associated with vibrations within the basin. Furthermore, the conformational entropy, R  , 

A

B 

C 

D 
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is associated with any continuous deformation that is able to take place within a basin over a 
constant (or nearly constant) energy surface.  The three functions are explicitly given as: 

 
{ }

j
cnf

j
j

U n E     
{ }

vib
jj j

j
U n q E       

{ }
jjj

j
n q     (2)  

where the non-additive contributions can be identified by the terms containing the jq  
variables. The jE define reference energies, j define pure entropies as plotted in Figs. 2B 
and 2D, and, jE   define the difference between thermal and reference energies. For a flat 
potential energy, jE  = 0, and for the harmonic potential with g = 8 kcal/mol, the 
equipartition theorem applies, which yields 2

1
jE RT  . Quantities for individual 

interactions, such as jE , j and jE   are to be worked out in advance and stored in 
lookup tables to define the FED. The variable jn  can equal (1 or 0) when the j-th interaction 
is (present or not present) in the –th configuration. For quenched interactions, jn = 1  . 
The variable jq can equal (1 or 0) when the j-th interaction is represented by (an independent 
or redundant) distance constraint. It is important to notice that the assignment of which 
distance constraints are independent or redundant is not unique. Therefore,   will also not 
be unique! However, because distance constraints with smaller tolerances restrict motion 
more than those with greater tolerances (see Fig. 1B and view the middle two columns), the 
lowest value that can be obtained for   yields the best estimate for the net conformational 
entropy in the basin. Therefore, jq are determined by augmenting a preferential rule to the 
graph-rigidity algorithm that manifest as building the network by placing one distance 
constraint at a time in the order defined by the sorted set of j from smallest to largest. 

As can be seen from Fig. 2B and Fig. 2D, the rank ordering of pure entropies from smallest to 
largest values when considering all interaction types does not depend on temperature. The 
same rank ordering is obtained whether flat or harmonic potentials are considered. The 
values for jn , jq  and corresponding j x   labels are listed in Table 1 to enable explicit 
hand calculation of F . Note that an additive FER is obtained by setting all jq = 1, so that all 
interactions are considered independent, despite being inconsistent with network rigidity. 
Regardless of the FER employed, the free energy of the system with n  fluctuating 
interactions present is given by: ( ) ln[ ( )]F n RT Z n  , where 5

1(0)Z Q   , 6 7(1)Z Q Q  , 

8(2)Z Q  and of course exp( )Q F   . The ( )F n  are calculated in three different ways: 
(1) Exact answers are obtained by numerically performing the 5 dimensional configuration 
integral for each Q , and approximate answers are obtained by employing an (2) additive 
and (3) non-additive FER. In Fig. 3, ( )F n  are plotted for the four cases g = 8 or 0 kcal/mol, 
and 2b   or 1.5321 Å. Table 2 summarizes the relative errors for the additive and non-
additive FER predictions for the thermal energy and entropy of the system separately.  

Comparing to the exact answers using Fig. 3 and Table 2, it is seen that the predictions of the 
non-additive FER are good for the harmonic and flat potential energy cases when b= 2 a. 
This is because the geometry of the fluctuating-interaction is commensurate with the torsion-
interaction. Conversely, when b=1.5321a, the predictions breakdown because geometrical 
frustration between these two interactions cause large strain energy in the network. The 
additive and non-additive FER procedures are now juxtaposed. The results for this simple 
quadrilateral network example highlight the key concepts that are applied to proteins.  
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j= 1 2 3 4 5 6 7-10 
 ( , )n q - x  ( , )n q - x  ( , )n q - x  ( , )n q - x  ( , )n q - x  ( , )n q - x  ( , )n q - x  

1 (1,0) - 1t  (1,1) - 5t  (1,0) - 1t  (1,0) - 5t  (0,0) (0,0) (1,1) - c  
2 (1,0) - 2t  (1,1) - 4t  (1,0) - 2t  (1,0) - 4t  (0,0) (0,0) (1,1) - c  
3 (1,1) - 3t  (1,0) - 3t  (1,0) - 3t  (1,0) - 3t  (0,0) (0,0) (1,1) - c  
4 (1,1) - 4t  (1,0) - 2t  (1,0) - 4t  (1,0) - 2t  (0,0) (0,0) (1,1) - c  
5 (1,1) - 5t  (1,0) - 1t  (1,0) - 5t  (1,0) - 1t  (0,0) (0,0) (1,1) - c  
6 (1,0) - 3t  (1,0) - 3t  (1,0) - 3t  (1,0) - 3t  (1,1) - f  (0,0) (1,1) - c  

7 (1,0) - 3t  (1,0) - 3t  (1,0) - 3t  (1,0) - 3t  (0,0) (1,1) - f  (1,1) - c  

8 (1,0) - 3t  (1,0) - 3t  (1,0) - 3t  (1,0) - 3t  (1,1) - f  (1,0) - f  (1,1) - c  

Table 1. The variables jn , jq  and corresponding x - indices are specified for all allowed 
configurations (for =1-8) and interactions (for j=1-10). The j  pair-index for the jn  and 

jq variables is suppressed. Note that jq  can be determined by first placing the four x=c 
type of interactions in the network. Once the very next constraint is added, it will reduce 
one more DOF to make the network rigid. Therefore, the total number of independent 
distance constraints is 5 for all configurations, which can be checked by inspection.  

 
Fig. 3. The legend (left column and between middle rows) applies to all 12 graphs. The rows 
from top to bottom correspond to 2b   Å for harmonic and flat potential energies, and 
then for b=1.5321 Å again for harmonic and flat potential energies. The columns show the 
free energy, ( )F n , for n=0, 1, 2 fluctuating interactions present in the system. Note that the 
predicted and exact free energies for the 2b  Å cases are nearly on top of one another.  
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Specs: b= 2 a b=1.5321a 

g # fip a-E-%e a-S-%e p-E-%e p-S-%e a-E-%e a-S-%e p-E-%e p-S-%e 

8 0 -1.8 77.8 0.0 -0.5 -1.8 77.8 0.0 -0.5 

8 1 1.6 112.8 0.0 0.4 -7.6 112.9 -9.4 0.4 

8 2 1.9 147.3 0.0 2.3 -39.9 213.0 -42.5 29.5 
          

0 0 0.0 72.1 0.0 -3.0 0.0 72.1 0.0 -3.0 

0 1 0.0 101.0 0.0 -1.7 9.4 122.3 9.4 8.7 

0 2 0.0 129.4 0.0 -1.0 0.0 226.7 0.0 40.9 

Table 2. The relative percent errors (denoted as %e) are given for energies (denoted as E–) 
and entropies (denoted as S–) for the additive FER (denoted as a–) and the non-additive FER 
prediction (denoted as p–) for when the system has 0, 1, 2 fluctuating interactions present 
(denoted as # fip) for g   8 kcal/mol and 0 on the top and bottom three rows respectively. 
Also the ( 2ab   and 1.5321b a ) cases are shown on the (left and right) sides of the table. 
These percent errors apply to T=300K, and reflect typical values at all other temperatures. 

The additive approach is completely wrong for predicting conformational entropy because it 
predicts conformational entropy of a network increases as more constraining interactions 
appear. Thus: The conformational entropy of a protein in its native state will always be predicted to 
be greater than that of the unfolded protein when using an additive model. Although energy 
estimates from the additive FED are good, there are two sources of errors that occur for 
harmonic potentials (not for flat potentials). Part of this discrepancy is directly caused by 
over counting thermal energy contributions (i.e. 2

1 RT ) for all quadratic DOF, rather than 
just the independent ones. This problem is more severe with respect to entropy estimates, 
and these errors cause relative statistical weighting of the various configurations in the 
ensemble to error, thereby indirectly leading to errors in average energies.  

A non-additive FED naturally models energy-entropy compensation mechanisms that link 
atomic structure characteristics to thermodynamic response. As interactions form within a 
protein, such as from H-bonds or packing, more constraints are placed on conformational 
motions, leading to a decrease in conformational flexibility and entropy. In particular, if an 
energetically favourable interaction forms in an otherwise flexible region, it will constrain 
motions and decrease conformational entropy. However, if the interaction forms within an 
otherwise rigid region, no entropic cost is incurred because the constraint that is imposed is 
redundant. This effect is the underlying source of non-additivity. Thus, network rigidity is 
an interaction between entropic contributions that provides a simple mechanism for groups 
of interactions that constrain conformational flexibility to form and break cooperatively.  

Errors appear in the non-additive FER primarily due to three reasons: (1) The Jacobian that 
should be part of the reconstitution of free energy components to account for how subsystems 

interface geometrically is ignored by assuming independent constraints are orthogonal. For 
example, the very skewed configurations shown in Fig. 1B have smaller conformational 
entropy than the configurations with all k approximately 90 degrees. The coarse-graining 
into restricted angular bins was required to capture this difference. (2) The energy landscape of 
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a subsystem cannot change as it interacts with other subsystems. The two harmonic potential 
energy examples violate this assumption, but this approximation fails badly for a frustrated 
network. (3) Information is lost by coarse-graining structure into local configurations (identified 
by the  index). For example, when 1.5321b a  the flawed prediction in energy (~ 10% 
relative error as listed in Table 2) occurs because when just one fluctuating-interaction is 
present it can stretch between multiple configurations. In addition, the building blocks are 
not commensurate, leading to strain energy. When both fluctuating interactions are present 
in the system, only the problem of strain energy remains. 

Partitioning local structure into finer coarse-grained bins to define accessible configurations 
with more restricted range of motion systematically diminishes all three sources of error. A 
high degree of accuracy can be obtained by finely coarse-graining the energy landscape 
(such as a harmonic well) by a large number of flat energy tiers differing by tiny increments 
(say 0.01 kcal/mol). As the quantities  , , ,x x x xQ F U   are further refined for each interaction 
type, x , this will create more binning labels that comprise the FED. Although defeating the 
objective of rapidly calculating absolute free energies, it is important to note that errors can 
be reduced to low levels in principle. Also important is that the computational cost for the 
non-additive FER scales linearly with respect to the number of atoms in the network, N , 
with a pre-factor that is proportional to the number of coarse-grained bins used. Since exact 
integration scales as 3N  , consideration of a sophisticated FED may be worth the effort. 

The errors caused by large strain energies in frustrated configurations can be identified and 
removed from the ensemble in applications to proteins based on the empirical justification 
that proteins exhibit folding funnels because they are minimally frustrated [Onuchic & 
Wolynes, 2004]. In practice, this is accomplished by considering only native contacts with 
respect to a specified template structure that is obtained experimentally (say from X-ray 
crystallography) or from a model structure that is fully relaxed.  This leads to a FED scheme 
that classifies protein structure in terms of a finite number of local energy basins such as 
accessible backbone conformations within a Ramachandran plot and sidechain rotamers for 
residues. Moreover, a variety of different types of H-bonds can be classified. The complete 
classification of local structure defines the set of all possible subsystems that can appear 
within a protein. Then, the minimum of the potential energy of a basin is used to obtain the 
conformational part of the free energy, with the free energy contributions from modes of 
vibration augmented. Consequently, the xU  and x  parameters for the various basins are 
temperature independent. Notice that for the quadrilateral example, the temperature 
dependence in xU  and x  appears because of the harmonic potential energy, as seen in Fig. 
2C and 2D. Thus, the free energy of a subsystem is separated into conformational and 
vibrational parts, such that ( )cnfnet vib

x x x xF F F    where x  is the frequency of oscillation. 
Only when x RT   does the equipartition theorem apply. More generally, ( )vib

x xF   is 
empirically modelled as the free energy of a quantum harmonic oscillator with natural 
frequency, x . An observation that can be seen by comparing the harmonic and flat 
potential energy example cases is that the free energy contributions from vibration originate 
only from independent modes. A subsystem (in three dimensions) with n  atoms for 3n   
has 3 6n   independent modes of vibration, and one independent mode when 2n  .  At 
this point, an empirical interfacial thermodynamic model can be developed. 
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3. Interfacial thermodynamics model for protein stability 

The previous section showed how to reconstitute conformational free energy for a given 
constraint topology or framework using network rigidity. The staring information is that all 
energy and entropy components for accessible subsystems are stored in lookup tables. The 
focus was on internal DOF of the system. Now the affect of solvent on a protein will be 
included. Solvent DOF are external to the protein and need not be kept track of because they 
are part of a reservoir. Therefore, treating all free energy components from a reservoir as 
additive is consistent with a thermodynamic hypothesis. The problem that is at hand now is 
to determine the partition function of a protein, which takes the generic form: 

 
{ } { }

exp exp ( )( )cnfslv vib slv vib
j j j j j j

j j
Z Q Q Q Q n E RTq q F             

   
   
   
   
   
   

         (3) 

The index, , defines an accessible configuration that is generated from a template structure 
decorated with Ising-like spin variables to specify the local environment of each residue. 
Through coupling, the template decoration helps define a mechanical framework, which is 
specified by energy basins, labelled by , and its member distance constraints labelled by j, 
across all subsystems. The placement of distance constraints is specified by the jn values. 
Topological information about the mechanical framework that is contained in  serves as 
input to a graph-rigidity analysis that yields the jq values. Because the number of distance 
constraints and modes of vibration are equal within a subsystem, the j index is reused to 
label modes1. In Eq. (3) involving random variables, it is understood that whenever jn =0, so 
does jq =0, since if a distance constraint is not present, it cannot be independent. The jq  in 
the last term are necessary because the free energy of vibration is reconstituted by adding 
only independent modes of vibration. The term, slvQ , takes on a form similar to many FED 
schemes commonly employed in the literature that relate transfer free energies to estimate 
changes in free energy of residues and other designated chemical groups based on whether 
they are exposed or buried in the protein through solvent exposed surface area.  

3.1 Free Energy Decomposition (FED) 

The FED accounts for enthalpy2 and entropy contributions from solvent, conformation 
and vibration. The geometry of a protein is defined by one or more template structure(s). 
Given any template structure, all its atoms are partitioned into contiguous groups of 
atoms that are classified and parameterized by the FED. As such, each atom within a 
system must map to one and only one molecular constituent, which also serves as a primary 
subsystem. Molecular constituents in proteins define the residues, as illustrated in  
Fig. 4.  

                                                 
1 Each mode of vibration can be represented by a distinct set of distance constraints to better capture the 
local atomic motions within a subsystem, but this requires another sub-index for distance constraint 
labeling that is suppressed for this discussion.  
2 Enthalpy is considered to be a function of pressure using standard pressure as a reference point, about 
which a Taylor expansion is employed. At standard conditions, the terms enthalpy and energy are 
considered synonymous in this discussion.  
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The FED considered here consists of 1) residues, 2) covalent bonds that link residue pairs, 3) 
H-bonds and 4) hydration interactions that together constitute a constraint network, and, 
the additive contributions consist of 5) residue solvation and 6) hydrophobic interactions 
that together model solvent effects. To account for protonation states on titratable residues, 

an additional solvent dependent partition function, ionQ , must be inserted in Eq. (3), but this 

is not discussed here because it introduces technical complexity without offering anything 
more conceptually. Packing interactions are implicitly included. Because the FED can divide 
a system up in different ways, and because of the empirical assignments, different effects 
can be lumped together in various terms. Here packing effects are included in the residue 
states that are identified as native-like or disordered, corresponding to good or poor atomic 
packing with respect to the strain free template. With exception of long-range electrostatic 
interactions, and electing to work with a fixed protonation state, the six listed types of 
contributions encompass all essential enthalpy-entropy compensation mechanisms.  
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Fig. 4. A schematic of a protein template structure is shown consisting of 16 residues. Each 
residue defines a subsystem that includes all atoms from its backbone and sidechain. The 
model can include a sufficient number of probable low energy basins for each residue type 
covering the most frequently occurring conformations identified in the Ramachandran plot 
and the sidechain rotamers. The degree of coverage depends on the level of coarse graining, 
which ultimately controls the accuracy of the model and speed of the calculations.   

3.2 The free energy functional 

Solving Eq. (3) poses insurmountable challenges. Therefore, Eq. (3) is reformulated as a free 

energy functional (FEF) that can be efficiently solved numerically using self-consistent mean 
field theory. The FEF in generic form is written in a format that is germane to the concept of 
a FED, where various types of contributions can be identified.  

  hph hydres shb etc res lnk ihb etc
FEF vibslv slv slv cnf cnf cnf cnfslv cnf

G G G G G G G G G G G 
 
 

           (4) 
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Terms are grouped together to reflect contributions that involve solvent, conformation and 
vibration. Terms involving solvent effects (subscripted by slv) are: res

slvG  for residue solvation; 
hph
slvG  for the hydrophobic effect, shb

slvG  for solvent-protein H-bonds, and etc
slvG  indicates the 

model can be extended if needed, such as including a ion
slvG  contribution.  Similarly, terms 

involving the conformation contributions (subscripted by cnf) are: res
cnfG  for the set of primary 

subsystems where residues define molecular constituents; lnk
cnfG  for peptide bonds linking 

residues together along the backbone and crosslinking disulphide bonds when present; ihb
cnfG  

for intramolecular H-bonds within the protein; hyd
cnfG  for conformational constraints that are 

externally imposed on the protein structure due to solvent molecules --- often described as 
forming a clathrate-structure, and etc

cnfG  indicates that the model can be extended if needed, 
such as modelling packing interactions explicitly.   

The FEF is expressed in terms of a set of a priori unknown probability functions describing 
the microstates of the protein. The exact nature of what the microstates are will depend on 
the FED. In addition to the various FED terms that make up the FEF, order parameters are 
employed to define the macrostate of a protein that reflect sub-ensembles of microstates. By 
minimizing the FEF under the global constraints imposed by the order parameters, a free 
energy landscape (FEL) is calculated. The first step is to define the FED based on microscopic 
mechanisms deemed important to model, which naturally leads to defining variables and 
their associated probability functions. The second step is to define the order parameters that 
will be used to define the FEL. The third step is to solve the FEF. How to solve the FEF will 
be explained below in a specific context of the FED. The task at hand now is to define the 
FED in terms of enthalpy-entropy compensation mechanisms essential to protein stability.  

3.2.1 Solvent related enthalpy-entropy compensation mechanisms   

Residue solvation: A residue can be buried (b) in the core of a protein without solvent contact, 
or it can be exposed to solvent. When exposed, the solvent molecules surrounding the residue 
might be mobile (m) or structured clathrate (c). Each residue is assigned a solvation state, s , 
to characterize its local environment, where { , , }s b m c . Residue solvation together with the 
given template structure is used to specify a microstate of the protein. The ensemble of all 
accessible solvent states for a given template with n residues consists of 3n  configurations. 
The solvent state decorates the template structure. For example, Fig. 5 illustrates a decoration 
of the template structure shown in Fig. 4 by one such solvent state configuration. 

Let rsp  be the probability that residue, r, is in solvation state, s. Then res
slvG  is given by: 

    
1

lnres slv slv slv
slv rs rs o rs rs rs

n

r s

G v P P TR TR p p 


        (5) 

where the parameters, ( , )slv slv
rs rs  , give the (energy, entropy) contributions for residue, r, in 

solvation state, s, which are scaled by solvent accessible surface area as determined from the 
template. The parameters, slv

rsv , are first order Taylor expansion coefficients for the solvation 
enthalpy with respect to pressure, P . For purposes of simplicity, the parameters are treated 
as constant over the temperature range of interest. Moreover, by limiting the calculations to 
the reference pressure, oP P , the slv

rsv  parameters are not needed. The model parameters 
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can be expanded in terms of pressure and co-solvent concentrations. Notice that with the 
exception of the extra slv

rsRT  term, the form of Eq. (5) is the standard expression for the 
free energy of a system comprised of independent subsystems, where the mixing entropy is 
accounted for in the last term. At this point, each residue is able to independently explore 
three solvation states in thermodynamic equilibrium. However, as more terms are added to 
the FEF, these states will become coupled in the same way spin-spin coupling occurs in Ising 
or Potts models. In the FED considered here, the set of functions { rsp } will form the basis for 
completely representing the FEF as an Ising-like model with generalized spin-spin coupling 
terms. The coupling terms that are described next account for interactions at the interface 
between subsystems, which are the molecular constituents defined by the residues.   

 
Fig. 5. A schematic of a protein template that is decorated by specifying one of three possible 
solvation states for each residue. Buried means that some part of a residue is not in contact 
with solvent. The contributions of free energy, enthalpy and entropy in the buried state are 
proportional to the solvent accessible surface area of the residue. Exposed solvation states 
have maximum solvent accessible surface area. The difference in these quantities between 
buried and exposed states will be less for corner residues {4,7,10,13} compared to the other 
surface residues {3,5,6,8,9,11,12,14}. A maximum difference occurs for core residues 
{1,2,15,16}, which can become exposed to solvent due to solvent penetration. Recall the 
template defines a fixed topology, but not a fixed geometry. This type of coarse-grained 
description of solvation is common to Ising-like models.  

Hydrophobic interaction: The change in free energy to transfer water from an interface that 
separates neighboring molecular constituents into bulk solvent is how the hydrophobic effect 

is modeled in the FEF.  This interface term is illustrated in Fig. 6A. Then hph
slvG  is given by: 

 1 2 1 2 1 2
1 2

, , , ,
1 1

n
hph hph hph

r r r r r b r bslv

n

r r

G TR p p 
 

      (6) 
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where 1 2 1 2, ,
hph hphwat
r r r rn  , 1 2 1 2, ,

hph hphwat
r r r rn   and 1 2,

wat
r rn  is an estimate for the number of water 

molecules that could reside at the interfacial surface between residues 1r  and 2r  based on 
the geometry of the template structure. Note that 1 2,

wat
r rn  is the interfacial surface area divided 

by the specific area covered by a single water molecule. The parameters, ( , )hph hph  , 
represent the (energy, entropy) contributions to the free energy for transferring one water 
molecule from a generic non-polar reference environment to bulk solvent.  

An interesting property of Eq. (6) is that the accumulated strength of the hydrophobic effect 
is proportional to the total surface area of the buried-buried interfaces that snake through a 
protein. The nature of these interfaces depends on the solvation state of the protein. Also a 
significant part of the overall strength of the hydrophobic effect is due to the chemical nature 
of the bulk solvent (i.e. affecting chemical potential), which is reflected in the parameters 
( , )hph hph   by expressing them as functions of co-solvent concentrations. In aqueous solution a 
thermodynamic force is generated to expel water from the core of a globular protein, 
thereby resisting water penetration. The hydrophobic effect competes against the desire for 
residues of all types (hydrophobic or polar) to be solvated. The nuanced details of the 
solvation properties of each residue type combined with where residues are located in the 
template structure determines the amount of “dry” or “wet” interfacial surface area, and 
this directly relates to water penetration pathways associated with partial unfolding events.  

H฀bonds

aqueous environment intramolecular
H฀bond H฀bond

solvent

intramolecular H฀bond

(A)

(B)
(C)

(D)
solvent

only

buried environment

 
Fig. 6. (A) Schematic of a water molecule transferring from a non-polar environment to bulk 
solvent. (B) Intramolecular H-bonds (red line) identified in the template are present when 
both residues are buried (yellow block). Triangles represent residues and indicate a relative 
orientation. (C) Neighboring pair of residues in buried and exposed-mobile (green block) 
states is shown. When mobile solvent surrounds an exposed residue; a fluctuating 
intramolecular H-bond (red line) can form between it and a buried residue, or a fluctuating 
solvent-protein H-bond can form (short red arrow) between the buried residue and solvent. 
(D) An exposed residue surrounded by clathrate water (blue block) prevents a H-bond to 
form between it and a neighbouring buried residue because the immobile water molecules 
cannot properly rearrange, and thereby shields the residue from intramolecular H-bonding. 

H-
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Solvent-protein H-bond: H-bonds appear in the FEF in both the solvation and conformational 
parts of the FED. When a H-bond forms between two neighboring residues in a template 
structure, the model must account for nine cases corresponding to each of the residues being 
in one of its three possible solvation states. First, the intramolecular H-bond will be present 
when both residues are buried, making it impossible for another H-bond to form between 
solvent and to that particular buried region of the protein. If both residues are exposed, the 
question about solvent-protein H-bonding to these residues is irrelevant because the residue 
solvation free energy fully accounts for theses interactions. The cases that generate a solvent-
protein H-bond are when one residue is exposed to solvent, while its neighboring residue is 
buried. The discontinuity in local environment creates a surface term at a wet-dry interface 
between the two subsystems. In particular, the intramolecular H-bond can remain in tact, or 
be replaced by a solvent-protein H-bond that forms between solvent and the buried residue.  

In all, Fig. 6B, 6C and 6D summarizes 7 cases. The three cases that involve intramolecular H-
bonding will be addressed below when considering the conformational part of the FED. 
However, because two cases are coupled dealing with fluctuations between solvent-protein 
and intramolecular H-bonds (see Fig. 6C), another probability function must be introduced 
to determine if a solvent-protein H-bond or an intramolecular H-bond will form when both 
options are accessible. Let ihb

hp  be the probability that the h-th intramolecular H-bond (ihb) 
identified in the template structure is present. Although it is not difficult to associate the h-
index of an identified intramolecular H-bond to its residues that provide donor and acceptor 
atoms, it does require cumbersome notation to explicitly show this correspondence. Therefore, 
in formulas that involve the h-index and two residue indices ( 1r and 2r ) this correspondence 

is implied. Then, as another interface term in the FEF, shb
slvG  is given by:  

    ln( ) (1 )ln(1 )shb shb shb ihb ihb ihb ihb
slv shb

h
h h h hG TR N RT p p p p        (7) 

 shb
shb h

h

N p where     1 2 1 2 1 2 1 2, , , , , , , , 1shb ihb
h r b r c r c r b r b r m r m r b hp p p p p p p p p p      (8) 

In Eq. (7) the parameters ( , )shb shb  characterize the energy and entropy contributions from 
solvent-protein H-bonds. These parameters should be dependent on local structural details of 
the solvent and protein, but the model is based on an implicit solvent. Including myriad 
structural details would be intractable, but as effective parameters, they depend only on the 
chemical nature of the bulk solvent. Thus, all that matters is the total number of H-bonds 
between solvent and the protein, given by shbN . This average is over the ensemble of 
microstates that represent all fluctuations taking place between intramolecular H-bonds and 
solvent-protein H-bonds. Therefore, the second term is the mixing entropy associated with 
intramolecular H-bonds forming and breaking. The average number of H-bonds in Eq. (8) is 
expressed as a simple sum over the probability of finding a solvent-protein H-bond, which 
is then expanded out in detail corresponding to the four terms shown in Fig. 6C.  

3.2.2 Entropy spectrum for molecular constituents and interfacial subsystems  

As outlined in section 2, subsystems are coarse-grained into configurations corresponding to 
low energy basins, each with the same number of distance constraints but with particular 
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characteristics. The number of distance constraints is just enough for the subsystem to be 
isostatically rigid, meaning no distance constraint is redundant when the subsystem is 
isolated.  Suppose subsystems 1 and 2 with n1 and n2 atoms are connected together to form a 
larger rigid system with (n1 + n2) atoms through an interaction at their interface involving n 
atoms from each subsystem. This interfacial interaction is modelled using 3(2n) – 6 distance 
constraints3 so it too is isostatic when isolated. Within the combined system, there will be 
3(n1 + n2) – 6 independent distance constraints. However, the two subsystems together with 
the interfacial interaction produce 3(n1 + 2n + n2) – 18 constraints, leading to 6n – 12 
redundant constraints in the combined system. Therefore, interfacial subsystems will generally 
create redundant constraints as molecular constituents are coupled through interactions. 
Interestingly, peptide bonds along the backbone that join residues together do not generate 
redundant constraints. Thus, a random coil (no crosslinks) has no redundant constraints. 

A complete entropy assignment to all distance constraints can be made for each basin by 
performing a local all-atom sampling using a quasi-harmonic approximation. This means 
that absolute entropies are estimated from the Schlitter entropy formula based on the 
covariance matrix of atomic fluctuations (Andricioaei & Karplus, 2001) that is obtained from 
an all-atom MD simulation using an accurate molecular mechanics force field. Afterwards, 
by considering contributions from all accessible basins, the intrinsic free energy of a 
subsystem can be reconstituted. This method applies to residues (Wang, et al. 2011) and all 
interfacial subsystems. While it is important that a robust procedure to determine entropy and 
energy parameters for the conformational part of the FED has been established, for my 
discussions here it suffices to know that the parameters concretely exist with entropy values 
on an absolute scale! Furthermore, it is possible to model each mode of vibration within an 
energy basin of a subsystem using a specific distribution of distance constraints. However, a 
surprisingly simple description can be made without invoking any details about how the 
distance constraints are distributed.  

For the purpose of explaining the interfacial thermodynamics paradigm, network rigidity 
will be described in terms of Maxwell constraint counting (Whitely, 2005). Maxwell constraint 
counting (MCC) is a mean field approximation to graph-rigidity. As shown previously, the 
application of MCC to solve the mDCM yields results that capture the correct qualitative 
thermodynamic response in beta-hairpins (Jacobs & Fairchild, 2007a), alpha-helices (Vorov, 
et al. 2009) and proteins (Vorov, et al. 2011). The advantage of using MCC is that concepts 
can be calculated easily without obfuscation because all topological details about how the 
constraints are distributed in the network are ignored. The only specification required is that 
a subsystem with n atoms has 3n – 6 distance constraints, each assigned an entropy value of 

j  for j=1 to n, such that 1j j   . This ordered set of values from lowest to greatest 

defines an entropy spectrum for a subsystem. All of the different types of subsystems that 
make up the conformational part of the FED are now described. 

3.2.3 Conformation related enthalpy-entropy compensation mechanisms   

Molecular constituents: Residues are molecular constituents that define subsystems involving 
a certain number of atoms. Each residue, r, in a specific energy basin, , has its own entropy 
                                                 
3 The special case n=1 is not considered in this discussion because no subsystem is employed that 
contains less than 3 atoms.  
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spectrum. While it is possible to have a detailed description of each residue by using a large 
number of energy basins, an Ising-like model similar to the mDCM is described here, where 
each residue is classified as native-like or disordered. A conditional dependence as to whether 
a residue is native-like (=n) or disordered (=d) is tied to its solvation state. If a residue is 
exposed to solvent, it is modelled as disordered. However, a buried residue can be native-
like or disordered. Native-like implies the local geometry of a residue will be similar to the 
template structure, and disordered implies poor atomic packing that is reflected by higher 
energy and entropy. Respecting conditional dependences on solvation, res

cnfG  is given by: 

 

 

   

1

1

(1 ) (1 )

ln (1 )ln 1

R
cnf cnf nat

rdj rb rb rrd rdj
r j

res
cnf

R
cnfcnf nat nat nat nat nat

rn rnj rnj r r r r r rb
r j

TR q p p p

G

TR q p TR p p p p p

 

 





  
      

    
                 

 

 
 (9) 

In Eq. (9) the top term contributes when residue, r, is exposed with probability (1 )rbp or 

when it is buried and disordered with probability, (1 )
nat

rb rp p . The energy contribution is 
cnf
rd and the maximum possible entropy contribution is given by cnf

rdjj
R  when all distance 

constraints are independent (i.e. 1rdjq  ). The set of pure entropies, { }cnf
rdj , define the 

entropy spectrum for residue, r, when it is in the disordered state, d. Once residue, r, couples 
to other residues within the protein, some of its distance constraints may become redundant. 
Recall redundant constraints do not contribute to conformational entropy. Therefore, rdjq  is 

the probability that distance constraint, j, in residue, r, and in its disordered state, d, is 
independent.  The probability for residue, r, to be native-like when it is buried, is given as 

nat
rp . Similarly, the bottom term in Eq. (9) contributes cnf

rn  energy and cnf
rnj rnjj

R q   is the 

net entropy when the residue is buried and native-like with probability, nat

r rbp p . The native-

like entropy spectrum is given by { }cnf
rnj , and rnjq  is the probability that distance constraint, 

j, in residue, r, and in its native-state, n, is independent. The last term involving the square 
brackets is the mixing entropy for the buried residue, r, to be either native-like or buried.  

Taken together, res
cnfG  supports the following possibilities: A large number of buried 

residues that are mostly disordered correspond to a collapsed state driven by the 
hydrophobic effect. As more native-like residues form, but with high variance, the protein 
will transition to a molten globular state with fluctuating secondary structure. When the 
majority of buried residues are native-like, the protein will be in its native-state with some 
degree of flexibility. Thus, all common known phases can be described by the accessible 
microenvironments.  

Covalent bond linkers: When a covalent bond links two residues, it involves two atoms in 
each of the two residues. Therefore, the covalent bonds are modelled as an interfacial 
subsystem containing 4 atoms connected by 6 distance constraints. The parameterization 
of the distance constraints for a covalent bond with a flexible dihedral angle such as a 
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disulphide bond, or a peptide bond with a fixed dihedral angle within a trans or cis basin 
will have distinct energy and entropy parameters. Since chemical reactions involving the 
breaking or forming of a covalent bond is not considered here, these interactions are 
quenched. Moreover, only one energy basin for each type of covalent bond is considered 
here. Then, lnk

cnfG  is given by: 

 
1

K
cnf cnflnk

cnf kjk kj
k j

G TR q 


 
  
 
 

   (10) 

Here cnf

k is the energy, { }cnf
kj is the entropy spectrum, and, cnf

kjq  is the probability that the j-

th distance constraint for the k-th covalent bond in the protein is independent. It is worth 
noting that for peptide bonds, the entropy spectrum will consist of such low entropy values 
that a graph-rigidity analysis augmented by the preferential rule of placing lowest entropy 
distance constraints first, yields cnf

kjq = 1 always. In this case, a constant contribution will 

always come from peptide bonds, rendering its affect on thermodynamic response. As such, 
the parameters for peptide bonds are unnecessary to specify. In contrast, for a rotatable 
covalent bond, usually 5 out of 6 distance constraints can be “frozen” out. However, the 
sixth distance constraint characterizes tolerances in the torsion-angle. Note that even using 
one energy basin to model a rotatable covalent bond can affect thermodynamic response 
because depending on other distance constraints in the network, the 6

cnf

kq  probability need 

not be 1 always, and thus not frozen out. For more accuracy, more than one basin can be 
considered of course, which would also provide variation in the energy if the energy basins 
correspond to frequent and rare angular ranges.  

Intramolecular H-bonds: An intramolecular H-bond (IHB) identified in the template structure 
between residues 1r  and 2r  (labeled by the h-index) will be present when both residues are 

buried. When one residue is buried and the other is exposed to mobile solvent there is a 
probability ihb

hp  for this IHB to be present, otherwise it will be broken as shown in Fig. 6C. 

When both residues are buried as shown in Fig. 6B, there are four cases to consider because 
each buried residue may be native-like or disordered. Consolidating the four cases into two 
leads to either both residues are native-like, which defines a native IHB, otherwise a 
disordered IHB forms. The h-th native IHB will have energy, cnf

hHB , and entropy spectrum, 

{ }cnf
hHBj , characteristic of the local geometry of the template structure. When one or both of 

the residues are disordered, the native geometry is disrupted, creating a disordered IHB. 
Therefore, it is natural to define two basins: A basin reflecting properties specific to the 
native geometry of the h-th IHB, and a basin with common properties for all disordered 

IHB. A disordered IHB is modeled with an energy, cnf
dHB , and entropy spectrum, { }cnf

dHBj , 

independent of location in the template. Since a H-bond has 3 atoms (donor, hydrogen 
acceptor) and there are 3n-6 distance constraints, all IHB subsystems will have j=1,2,3. 
Taking the conditional dependencies into account, ihb

cnfG  is given by: 
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  

 
(11) 

The form of Eq. (11) follows a general pattern that applies to all conformational interactions. 
That is, there is a probability for the interaction to be present, possibly in a specific state, and 
under this local condition modelled by a particular basin, it contributes energy that adds to 
the system. Moreover, the conformational entropy that it contributes is non-additive due to 
network rigidity, which is used to calculate the probabilities for distance constraints to be 
independent. In the top term of Eq. (11), the hnjq  and hdjq  give the probabilities for the h-th 

IHB in the native and disordered basins respectively. Notice that the hdjq  in the lower term 

is the same as in the top term. When Eq. (11) is considered together with Eq. (7) and Eq. (8), 
we see the protein structure must balance enthalpy-entropy compensation in the hydrogen 
bond network of the protein versus forming H-bonds to solvent.  

Hydration interaction: The hydration interaction is introduced to model the affect of aqueous 
solvent on a residue when it is exposed to a clathrate environment. In this case, the water 
molecules surrounding a residue form a rigid motif that manifests itself as a mechanical clamp 
on the residue. Many distinct molecular configurations can lead to a rigid motif. As such, a 
large number of basins are needed to fully characterise the structure of water molecules 
around a residue. However, this detailed information is difficult to obtain, and considering 
the level of coarse-graining that has been made in regards to residue solvation, and to the 
native-like and disordered classifications of a residue with respect to a template structure, it 
is appropriate to employ a single basin. Following the general pattern, hyd

cnfG  is given by:  

 ,
1

R
hyd

hyd rcj r ccnf
r j

G TR q p


 
  
 
 
  (12) 

In Eq. (12) the energy term is not included because it is already accounted for in the clathrate 
solvation energy parameter. The additive part of the solvation entropy parameter accounts 
for the solvent DOF having a reduction in conformational entropy. But mechanical clamping 
from the clathrate structure reduces conformational flexibility and entropy of the residue. 
This clamping is modelled by 3n-6 distance constraints to ensure the residue of n atoms is 
isostaticly rigid. A degenerate conformational entropy parameter is given by hyd , and rcjq  
gives the probability for the j-th distance constraint to be independent, where the c-subscript 
denotes clathrate. A reduction in conformational entropy at low temperatures is a critical 
mechanism to understanding cold denaturation, as shown in previous work [Jacobs & 
Wood, 2004]. Technically, this clamping effect could also be present for an exposed-mobile 
environment, and using the same modelling scheme but with different parameters would 
allow for different types of clamping depending on the details of the local water structure. 
Again, as found previously, breaking up this complicated many body interaction of water 
molecules on the protein into two simple states (mobile verses clathrate) proves sufficient.   
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Network rigidity: The non-additive reconstitution of total conformational entropy involving 
all entropy components is a critical aspect of the FEF. First note that the labelling scheme for 
component entropies across various interaction types is quite cumbersome, although useful 
for distinguishing their roles. In regards to network rigidity calculations, it is convenient to 
define a parallel indexing scheme. Let c be the pure entropy of distance constraint, c, which 
runs from 1 to C to account for all accessible interactions. Note that the total number of 
distance constraints in a protein is not equal to C. Rather, if all identified subsystems were 
present simultaneously, which is not physically possible, C is the sum of the numbers of 
distance constraints in all subsystems defined by the template structure. The labelling of all 
these accessible entropies fall in sorted order such that 1c c   . That is, { c } will play the 
role of an entropy spectrum for a template structure, but not all levels can be occupied.  

As part of a general pattern, there is a probability for an interfacial subsystem to be present, 
and tracing over a chain of conditions as products of probabilities translates to an occupation 

probability, cp , for an individual distance constraint. Similarly, cq , is the probability that a 
distance constraint is independent given it is present. With this generic labelling scheme, the 
network rigidity part of the FEF is compactly stated by the following three formulas:  

 
1

C

c c
c

N p


  
1

3 6
C

c c c
c

I q p n


     
1

C

c c c
c

q p


  (13) 

The average number of constraints within a protein is cN , which will generally be greater 
than the 3n – 6 DOF required to position all atoms in a protein. The minimum value that cN  
can be is 3n – 6 corresponding to a protein in an ideal random coil state without any 
disulphide bonds (i.e. only residues and peptide bonds). Starting from a random coil, as 
intramolecular H-bonds crosslink the backbone, the number of constraints will increase. Yet 
the total number of independent constraints, cI , that are present in the protein is conserved 
across all accessible constraint topologies to maintain a rigid protein. The condition of a rigid 
protein is required because it means that everything that can be specified is specified within 
tolerances. This property reflects the completeness of the FED. With the liberated view of 
rigidity, R  provides a lowest upper bound estimate for the total conformational entropy.  

3.2.4 Vibrational contributions  

The contribution to the FEF from vibG  would be straightforward once the frequency is known 
for all 3n – 6 modes. Unfortunately, determining vibrational frequencies for the entire 
protein is a task that must be avoided to retain computational efficiency in the interfacial 
thermodynamics model. Therefore, the frequency spectrum is modelled empirically to 
capture two important features. Vibrational mode frequencies will (increase, decrease) as 
redundant distance constraints are (added, removed) to a network as it (stiffens, softens). 
Furthermore, the lowest frequency decreases as the size of the system increases. Assuming a 
vibrational frequency can be defined for each c-index, vibG  is given by: 

  
1

ln 1 exp
C

vib c c c
c

G RT q p  


       (14) 
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To account for the first feature, the entropy spectrum for the system is employed to define a 
frequency spectrum where max min /c c     to reflect the generic property that frequency 
is inversely proportional to pure entropy. This relation would be sufficient if the entire 
protein was employed as the sole constituent, but the pure entropy spectrum is comprised 
from many small subsystems resulting in a range for c  not reaching sufficiently low 
frequency. By generalizing the Debye model [Kittel, 1996] for vibrations in a crystalline 
solid, system size dependence can be better accounted for. In the Debye model, the 
frequency spectrum is given as: minm m   for mode m, where max min (3 6)n    is the 
maximum frequency possible assuming a linear dispersion, and knowing the total number of 
vibrational modes in the system. Inverting these relationships leads to 

max /(3 6)m m n   . Combining both of these general aspects to model the frequency 
spectrum yields the empirical model:  

 1min
max

3 5

(3 6)

c

b b
b

c
c

n q p

n

  


 
   

 



 (15) 

In Eq. (15), the right-most fraction parallels the Debye model, where the numerator defines 
an effective mode number that ranges from 1 to 3n – 6. Mode (3n – 6) corresponds to c=1, or the 
lowest c-index present in the network. As the mode index decreases with increasing c-index, 
the frequency of vibration lowers in the same way as the Debye model. The front scale factor 

min / c   (i.e. min 1  ) modifies the dispersion, which is required to span a disparate 
range of vibrational frequencies typical of proteins. Consequently, as more redundant 
constraints appear in the network, the lowest frequency mode will be reached sooner on the 
entropy ladder (smaller c-index) so that the lowest lying vibrational frequencies shift higher 
without affecting high frequencies. The spectrum for a protein in a random coil will reach 
the lowest possible frequency. Note that upon protein-ligand binding, frequency shifts that 
take place due to changes in the constraint network and size of the system are roughly 
accounted for.  

4. Self-consistent constraint theory 

The essence of constraint theory applied to an interfacial thermodynamics model is to 
determine how a system responds under certain global conditions that are consistent with 
microscopic heterogenous environments. The previous section constructed a FEF to describe 
protein stability by building up a hefty collection of free energy terms representing specific 
enthalpy-entropy mechanisms. This process lead to conjuring up the probability functions 
{ rsp , ihb

hp , nat
rp , cp , cq } that will be determined self-consistently when solving the FEF. In 

doing so, it is critically important that heterogeneous micoenvironments throughout the protein 
are taken into account. An efficient way to solve the FEF is to introduce a number of 
constitutive equations to transform the functional into a variational problem in parametric 
form that allows certain global constraints to be imposed. Specifically, a trial function with a 
number of variables is substituted into the functional to reduce the problem to finding the 
minimum of a function. These variables correspond to Lagrange multipliers that control the 
values of selected order parameters. Actually, this method builds upon a previous method 
used to solve the mDCM (Jacobs & Dallakayan, 2005), but there are critical differences.  
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First, I highlight key points about the initial method (Jacobs, 2006b) for solving the mDCM. 
Occupation probabilities { cp } are calculated using Lagrange multipliers to enforce the 
amount of intramolecular H-bonds and native-like character within a protein. Given { cp }, a 
constraint network is randomly generated, and a rigidity algorithm is applied with the 
preferential entropy rule to identify the distance constraints as independent ( 1cq  ) or 
redundant ( 0cq  ). After collecting sN  random samples, an estimate is given as c cq q  . By 
focusing on distance constraints, all the formulas in Eq. (13) apply, and sN  should be at 
least 200 to obtain a useful estimate for conformational entropy, R .  The employed trial 
function for cp  does not depend on whether a distance constraint is independent or not. For 
this information, cp  must be a function of cq . In this latter case, the calculation scheme 
would then be to assume 1cq  , calculate cp , determine c cq q   from sampling, then 
recalculate cp , and iterate this process until the latest values of cp  are nearly equal to the 
previous values of cp  within some tolerance to obtain self-consistency.  

To simply implement this self-consistent approach using averaging does not work because 
convergence will not occur when the precision in cq  is low. To ensure convergence, sN  
should be at least 500,000, suggesting a self-consistent calculation is not tractable! Recently, a 
new algorithm to calculate average network rigidity properties as a probability flow problem 
describing independent DOF and where DOF absorb onto constraints has been successfully 
developed [Gonzalez, et al. 2011a, Gonzalez, et al. 2011b]. Now cq  is calculated to within 
numerical precision, making the self-consistent calculation feasible. Also different from the 
mDCM: The FEF described above has almost all conformational subsystems that involve 
distance constraints coupled to the solvation states of residues, as well as other interfacial 
surface terms between the residues that reflect local microenvironments. Tracking these 
additional details goes far beyond the mean field treatment invoked in the mDCM. 
Consequently, a very different set of order parameters need to be considered. 

4.1 Order parameters and the free energy landscape  

The free energy of a protein is numerically calculated while subjected to global constraints 
imposed by order parameters that define a specific macrostate. Scanning over the entire 
range of order parameters produces the FEL. Since a protein is of finite size, the minimum 
free energy is not the only point on the FEL of interest. Rather, the entire FEL is of interest 
because it maps out all the low-lying basins and saddles. The natural variables of the FEF 
that describe microstates dictate the form of the macrostates, and this determines what order 
parameters need to be considered. The solvent environment of the residues and whether 
they are native-like when buried is the only information needed to completely define the 
microstate of a protein. Therefore, order parameters B , M  and N  are introduced to specify 
the macrostate of a protein, giving the total number of residues that are respectively Buried, 
exposed to Mobile solvent and Native-like. Note that the number of residues in the exposed 
clathrate state4, H , is not an independent variable, since the total number of residues, R , is 
given by: R B M H   . Furthermore, there is a restriction on N , such that 0 N B  . As 
such, the FEL is expressed as ( , , | , )G B M N T   where the triple dots are a reminder that in 

                                                 
4 The more natural symbol of C is already used, and the symbol H better reflects the idea of a local 
hydration shell. 
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addition to temperature, pressure and pH can be directly considered, although not here, 
and, many parameters in the FEF depend on solvent composition.  

4.2 Hierarchical application of global constraints  

The macrostate ( , , )B M N  is associated with the following three constraint equations:  

 ,
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r b
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N p p
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Instead of solving these three equations simultaneously, the calculations are simplified by 
assuming B can be solved for first, then M , and finally N . To reflect this hierarchical chain, 
the constitutive equations for the probability functions are expressed in terms of conditional 
probabilities when necessary. Let exp( )slv slv slv

rs rs rsZ      and B , M  and N be the 

Lagrange multipliers for the B , M  and N  order parameters respectively. With 

, , ,1r c r b r mp p p   , the constitutive equations for ,r bp and ,r mp  are given as: 
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The Lagrange multipliers B  and M  are coupled to propensity functions ( )r  and ( )r  
respectively. Propensity functions characterize physical and/or chemical properties relevant 
to their conjugate order parameters in the local environment surrounding residue r, based 
on the template structure. The local propensity for being buried is ( )r , defined as the 
number of nearest neighbour contacts to residue, r. The greater number of nearest 
neighbours a residue has in the template structure, the greater resistance to solvent 
penetration irrespective of its intrinsic solvation character quantified by the slv

rsZ  factors. For 
( )r , it is set to 1, so that no differentiation is made between clathrate and mobile exposed 

microenvironments. The template structure is used to define local microenvironments that 
individual residues will experience. By adjusting the Lagrange multipliers, the total number 
of residues buried and exposed to mobile solvent is controlled (at least on average). Note 
that fluctuations are accounted for in the FEF through the mixing entropy terms. 
Constraining a protein to macrostate ( , , )B M N  corresponds to selecting a sub-ensemble of 
microstates that share the common property that the total numbers of buried and exposed to 
mobile residues are B  and M . It is seen from Eq. (17) that the calculation for ,r bp  based on 
the global constraint B  is independent of M  and N . Then the result for ,r bp  hierarchically 
feeds into the next level of calculation for ,r mp  involving the global constraint M . 

The next hierarchical step is to calculate nat
rp  with N  fixed.  The two constitutive equations 

that come into play are: 

 
exp( )

exp( ) exp( )

cnfcnf
rn rnj rnj Njnat

r cnf cnf cnfcnf
rn rnj rnj N rdjrd rdjj j

q
p

q q

  

    

  


     


 

 (18) 
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exp( )

exp( ) exp( )

cnf cnf
hdjdHB dHBjjihb

h cnf cnf shb shb
hdjdHB dHBjj

q
p

q

 

   

 


    




 (19) 

The form of Eq. (18) is that it has a Boltzmann factor for a native-like state in the numerator, 
divided by the sum of Boltzmann factors for the native-like and disordered states. This ratio 
gives the probability that residue, r, will be in the native-state. The Boltzmann factor for the 
native-like state contains the Lagrange multiplier, N , to enforce the number of native-like 
residues in the system to be, N , in accordance with Eq. (16). The form of Eq. (19) is similar, 
except the numerator is the Boltzmann factor for a disordered IHB, and the denominator is 
the sum of Boltzmann factors for a disordered IHB and a protein-solvent H-bond. These two 
possibilities compete head to head, but there is no additional Lagrange multiplier, as this 
process is not tied to an order parameter.  

It is clear from Eqs. (18 and 19) that knowing the probability certain distance constraints in 
the constraint network are independent is necessary. However, these q-values are initially 
unknown, and therefore, an iterative self-consistent calculation must be invoked. Note that 
the probability for a distance constraint to be present is equal to the probability for the basin 
that it is a member of to be present in the network. For example, all distance constraints 
used to model the conformational part of the free energy for residue, r, when it is native-like 
is equal to nat

rp . Conversely, the probability of )(1 nat
rp  is assigned to all the distance 

constraints for this residue when it is in a disordered state.  

The occupation probabilities, cp , is 1 for quenched constraints, or it is straightforward to get 
the probabilities from { rsp , ihb

hp , nat
rp } once they are known. There is, of course, a chicken and 

egg problem because cq  is determined after cp  is known, but cq  must be known before 
ihb
hp  and nat

rp  can be calculated. The procedure is to guess the initial values of cq , calculate 

cp , apply a rigidity analysis to obtain cq  and then recalculate cp . Iterate this process until 
the values for both cp  and cq  converges. Note that these equations converge to the unique 
solution independent of initial guess. The type of guesses tried include, for each c-index cq  
set to 1, set to 0, or set to a value between 0 and 1, or independently assign a random 
number between [0,1]. Notice that cq  and cp  imply one-dimensional arrays for c=1 to C. In 
fact, any variable that has one index or more than one index implies an array of values. It is 
worth mentioning here that convergence is reached typically within 15 iterations using the 
new rigidity algorithm [Gonzalez, et al. 2011a]. However, MCC yields qualitatively similar 
results, and as described next, captures the essential features about the role of rigidity.  

4.3 The entropy spectrum and maxwell constraint counting  

The entropy spectrum for an example set of subsystems that can be found within a protein is 
schematically shown in Fig. 7. Applying MCC with the preferential entropy rule is 
equivalent to filling the available levels of the entropy spectrum of the system starting from 
the bottom until the system becomes isostatically rigid. All the distance constraints that are 
placed in the network before the protein has the minimum number of constraints to become 
isostatically rigid are considered independent. As more distance constraints are added to the 
network, they are all redundant.  This global and uniform transition point between where 

www.intechopen.com



 
An Interfacial Thermodynamics Model for Protein Stability 

 

119 

the constraints are independent and redundant defines the Maxwell level. This means, that 
1cq  for 1 Lc M  and 0cq  for LM c C  and 0 1cq  at Lc M . Let Mq be the value 

of cq at the Maxwell level. Then the self-consistent calculations described above amounts to 
finding a solution in the form of a step function, where the only unknown is where the step 
is located on the entropy spectrum of the system.  

#

system

composition

N DN D

rigid
residue

flexible
residue

N D

#

H฀bond
#

clamplinker

union
of all
entropy
spectrums

Maxwell

level

entropy spectrums

 
Fig. 7. Schematic of how the entropy spectrums associated with subsystems combine into a 
single entropy spectrum for the entire system. Green vertical arrows pointing to the # sign 
indicate that the number of interactions depend on the decorated microstate. The “clamp” 
interaction derives from clathrate water. The horizontal dark red double arrow indicates a 
certain number of interactions can be native like (N) or disordered (D), and their respective 
entropy spectrums are shown. Each residue has a unique entropy spectrum. Residues with 
(smaller, larger) entropy values are more (rigid, flexible). The protein sequence defining the 
residue composition is represented as the large horizontal blue double arrows. The system 
entropy spectrum is characterized by the variables (pc, qc). From Eq. (20) distance constraints 
with entropy less than the Maxwell level are independent, and this level slides up and down 
the spectrum depending on numbers and types of interactions present in the system.  

For a given specification of cp  the Maxwell level is determined by solving the equation:   

 
1

1

3 6
L L

L

c
c

M M

M

n p D q




    (20) 
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In Eq. (20) the variable 
LMD  is the degeneracy for the number of distance constraints having 

the same entropy value at the Maxwell level.  Notice that Eq. (20) reflects the step nature of 

cq . Despite the simplicity of the global constraint expressed in Eq. (20), the self-consistent 
solution results in a dramatic impact on the thermodynamic response of the system. This is 
because in general every constraint in the network is competing against all other constraints 
that are present in the network. What changes is the number of distance constraints that 
appear within the protein for different macrostates. As more constraints are added to the 
network, the entropy drops.  

4.4 Response of local environments to global demands   

The type of intramolecular interactions and their locations within a protein depends on the 
solvation state of the residues and local environments encoded by the amino acid sequence 
and template structure. For example, using the fold architecture shown in Fig. 4, and for the 
solvation decoration shown in Fig. 5, a hydrophobic homo-polymer (HH), a heterogeneous 
protein (HP) and a polar homo-polymer (PH) are shown in Fig. 8.  

 

Fig. 8. Schematic illustration of three sequences with the same architecture and solvent 
decoration. Hydrophobic residues (squares) do not participate in H-bonding. H-bonding is 
only allowed between polar residues (circles) that are nearest or next nearest neighbours not 
linked by covalent bonds. Because of the solvent decoration there is only one hydrophobic 
interaction, shown as a dark blue diamond. Non-fluctuating intra-H-bonds are shown as 
solid red lines, and red dashed lines indicate fluctuations between intra- and solvent-protein 
H-bonds.  From left to right the three panels show the HH, HP and PH cases, respectively 
exhibiting (no, limited, many) intramolecular H-bonds for this solvation microstate. The 
hydrophobic interactions are identical across the three sequences because they only depend 
on the transfer of water from buried regions to bulk solvent, which is the same in all cases.  

In water, HH will form a collapsed state much like an oil droplet. PH will be soluble and 
will resemble a random coil because few crosslinks form. HP can potentially produce a rich 
phase diagram. In the next section, stability curves for all three of these toy polymers will be 
shown based on model parameters that were adjusted to produce heat and cold 
denaturation in HP for the purpose to facilitate general discussions. The same parameters 
are used for all three cases, and they are in a physically reasonable range. However, the toy 
models are not structurally realistic, therefore, the parameter values (not given here) are not 
important. Rather, the critical issue at hand is developing a tractable paradigm that can 
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accurately model the complexity of all the coupled interactions within/on a protein, and do 
this in a computationally efficient way.  

Self-consistent constraint theory applied to the FEF determines the microenvironments that 
emerge as most probable. Although Eq. (3) and Eq. (4) at face value appear to be additive, the 
myriad coupling between interactions will cause two interactions of identical type placed in 
different microenvironments and/or under different solvent and thermodynamic conditions 
to respond differently. In particular, the coupling through network rigidity renormalizes the 
conformational entropic contributions (via the cq values), and this strongly affects where 
and how solvent penetrates the protein; thus changing the properties of local environments, 
which impacts the constraint network. For example, a cluster of H-bonds can form a strong 
nucleation barrier causing a localized buried region to be highly resistant to solvent 
penetration compared to a similar buried region without a H-bond cluster. Consequently, 
non-additive response derives from a chemicophysical feedback loop. This is captured in the process 

of minimizing the free energy to determine the optimal constraint topology and solvent 
decoration under the specified thermodynamic and solvent conditions for a given template 
structure while satisfying Eq. (16) and Eq. (20) for a particular macrostate ( , , )B M N .  

4.5 The Gibbs triangle  

The algorithm that is applied to solve the FEF takes the following steps.  

1. Scan over the temperature, T, and other thermodynamic and solvent conditions. 
2. Calculate ,r bp  while the variable B  is looped over. 

3. For given B : Calculate ,r mp  and ,r cp  while the variable M  is looped over. 

4. For given B  and M :  
a. Self consistently solve for all cp  and cq  while the variable N  is looped over. 

b. Finalize calculation for all probability functions: { rsp , ihb
hp , nat

rp , cp , cq }. 
c. Calculate the free energy: ( , , | , )G B M N T  .  

5. Finish all nested loops over N , M and B . 

A high dimensional FEL is obtained once the algorithm finishes. In the example considered 
here, the FEL is four dimensional, consisting of temperature and the three order parameters, 
( , , )B M N . When the free energy value is included to perform an exploration of the FEL, a 
five-dimensional space is required! Basins for stable and metastable states and free energy 
barriers between these states can be identified. Within a basin, information about flexibility 
and its relationship to stability can be obtained. However, protein stability can largely be 
understood in terms of its solvation properties. Therefore, it proves convenient to construct 
a two-dimensional version of the FEL specified only by ( , )B M  to describe how a protein is 
solvated. At fixed T , this construction is given as: 

 2 2( , ) ln( )G B M RT Z      2
0

, exp ( , , )
B

N

Z B M G B M N


   (21) 

The free energy 2( , | )G B M T  describes the stability of a protein based on a macrostate that 
characterizes the solvation property of the protein. For fixed T , it is convenient to look at a 
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phase diagram in terms of how much the protein is buried or exposed to solvent in different 
forms. Because of the constraint that 1 ( ) /B M H R   , a Gibbs triangle is employed so that 
all solvation states can be viewed simultaneously in terms of percentages, as shown in Fig. 9.  

 
Fig. 9. The Gibbs triangle serves as the base of a three-dimensional FEL that looks like a 
wedge when viewed at fixed temperature and using the B , M  and N order parameters. 
That is, 0N  on the bottom horizontal line when 0B  , and the tip of the wedge is at 

1B  .  

Three stable basins will generically appear in the Gibbs triangle. At low temperatures, it is 
possible that a free energy minimum will appear when the percent of clathrate structure is 
dominant. At intermediate temperatures, the number of buried residues in the protein will 
be dominant, but they can be native-like or disordered. Therefore, a protein may be in either 
the molten globular5 or native-fold states. At high temperatures, a molten globular state may 
remain, or further unfold to allow a majority of residues to become exposed to solvent. Next, 
the free energy of three representative macrostates is plotted as a function of temperature. 
Structural phase transitions corresponding to changing free energy basins are like first order 
transitions, because they occur when stability curves for different states cross one another. 

5. Stability curves: Heat and cold denaturation 

The stability curves for the toy polymer cases (HH, HP, PH) shown in Fig. 8 are calculated 
for three macrostates in the Gibbs triangle that correspond to a dominant characteristic of 

                                                 
5 The degree to which a protein is native-like versus disordered is lost during the process of summing 
over the native-like order parameter in Eq. (21). However, this information is known from the original 
3D free energy landscape. 
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clathrate, buried or mobile, and these curves are plotted in Fig. 10 A, B, C respectively. In 
fact, the particular decoration shown in Fig. 8 has a much higher free energy than the 
lowest free energy state, and is for practical purposes a state of measure zero. 
Nevertheless, the FEF determines the statistical weights for all macrostates in the high 
dimensional FEL, and the high free energy states around saddles are important in 
describing transition states.   

As expected, the HH case shows that the buried state is the most stable form over the 
entire temperature range, and thus there is no phase transition. For the PH case, the 
structure is always exposed to solvent, but it is interesting to note that there can be a 
structural phase transition in a protein between low and high temperature without it 
involving a compact folded structure. This result suggests there is a difference between 
structural properties in the conformational ensembles of a cold- and heat-denatured 
polymer. Interestingly, the HP case exhibits both cold and heat denaturation. In all 
likelihood, a protein of this size (16 residues) would not exhibit a phase transition, 
however, the parameters were optimized to make this situation occur for the HP case. 
Although the same set of parameters is used for the HH and PH cases, the competing 
enthalpy-entropy compensation mechanisms within a heterogenous protein (modelled by 
HP) make it possible for such a rich phase diagram. 

The phenomenon of cold denaturation often does not occur because the temperature at 
which it would take place is too low to be observed. Osmolytes can be used to modify bulk 
solvent properties to control where the crossing points of the triangle shown in Fig. 10B 
occur. It is seen in Fig. 10D that the total entropy of a protein increases as a function of 
temperature. Fig. 10E shows that the order parameter for clathrate solvation content is a 
monotonically decreasing function of temperature, so that at higher temperatures a 
greater competition between buried and exposed-mobile states occur. Other order 
parameters can be easily calculated, such as the number of intramolecular H-bonds or 
hydrophobic contacts, which are shown in Fig. 10F as tracking one another. Although not 
shown here, tracking the native contact order parameter allows one to determine if a 
compact structure is native-like or that of a molten globular. In general, detailed 
information about solvent penetration and mechanical response of a protein is predicted 
at fine resolution, and this interplay is very important to protein function [Purkiss, et al. 
2001], and these relationships have been more recently been probed experimentally 
[Kamerzell, et al. 2008; Pais, et al. 2009].  

5.1 Conformational ensembles in the native and denatured states  

Experiments indicate that native structure persist in the denatured states of proteins at low 
temperature [Shan, et al. 2010] and high temperature in the molten globular state [Shortle, 
1999]. Established many years ago, the converse is true: There is appreciable solvent 
penetration into the native state [Woodward, et al. 1982], while buried secondary structure 
regions can be very resistant to solvent penetration [DeFlores & Tokmakoff, 2006]. These 
experimental results suggest to me that using template structures is justified, although this 
is not to say non-native contacts are negligible. For these cases, multiple templates should be 
used and these other templates can be computationally generated. 
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Fig. 10. Left column: The stability curves are shown for macrostates corresponding to a 
majority of residues that are clathrate (black), buried (red) and mobile (green). In all cases 
the majority contributor is 88%, and the two minority contributors are each 6%. Thus, the 
macrostates selected are located at the apex of each corner in the Gibbs triangle. In A, B, C, 
results are given for HH, HP and PH respectively. Right column: For the HP case only, D) 
shows the heat capacity and entropy, and E & F show the temperature dependence on five 
different types of order parameters that respectively correspond to the residue solvation 
states (clathrate, buried, mobile) and numbers of H-bonds and hydrophobic contacts. 
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5.2 Phenomenological modeling of protein stability  

The standard thermodynamic analysis for protein stability assumes two states describe an 
unfolded (U) and folded (F) structure. The mechanism of protein unfolding is hidden in the 
temperature dependence of U FG G G   . Specifically, G  is a concave quadratic function 
of temperature with two solutions for ( ) 0G T   that yields CT T  for cold denaturation 
and HT T  for heat denaturation. However, the fact that two transition temperatures exist at 
all implies a minimum of two order parameters are required to describe the phenomena. 
The order parameters characterize the emergent behaviour of microscopic properties, which 
inspired the idea of modelling residue solvation states as three possible states. In a similar 
way, the molten globular state is distinct from the native state with respect to the degree of 
disorder, which inspired applying the native-like order parameter to define the FEL. Three 
independent order parameters appear to me as the minimum number of descriptors to 
describe protein stability consisting of the exposed unfolded state at low temperature, the 
compact native and molten globular states, and, the exposed unfolded state with little to no 
residual secondary structure at high temperature. The results presented in Fig. 10 produced 
three distinct states6, indicating the ensemble of conformations of the unfolded state is 
structurally distinct at low and high temperatures, as demonstrated by the PH example in 
Fig. 10C. However, the controversial clathrate mechanism is invoked and it appears essential. 

5.3 Clathrate mechanism for cold denaturation: Fiction or reality?  

Models often invoke the clathrate mechanism to describe cold denaturation [Hansen, et al. 
1998; Widom, et al. 2003]. The notion of this mechanism is based on interpretations of indirect 
measurements, which has been scrutinized [Graziano, 2004; Lopez, et al. 2009; Oshima, et al. 
2009]. However, the critical review on protein hydration dynamics in solution [Halle, 2004] 
appears to me to dispel paradoxes that result from the controversy. Although the name 
clathrate may or may not be misleading, the interfacial thermodynamics model is based on 
general principles of statistical mechanics, which does not depend on a name. All that 
matters is the affect on the protein from solvent. The interfacial thermodynamics model 
accounts for native-like and disordered structure, and solvent penetration due to structural 
deformations. The model requires a partition function for the ensemble of water 
configurations around a residue, and an empirical contact term representing the affect on 
the protein’s flexibility. This partition function is surely difficult to calculate from first 
principles, but a partition function can always be partitioned (hence the name) into a sum of 
terms. Dividing all configurations into two groups that classify the solvent in contact with a 
residue based on whether there is a small or large reduction in flexibility, no matter how 
small the difference may be is a valid mathematical exercise that does not change the physics 
because no Boltzmann factors are dropped.  

The exact partition function, Z , is written as: c mZ Z Z   where cZ  sums over all terms that 
reduces the flexibility in the residue more than the terms summed in mZ , no matter how 
small of a difference there may be. Therefore, mZ  describes a more-mobile water-residue 

                                                 
6 Actually four distinct states are possible: Unfolded at low or high temperature, a native-like fold and a 
molten globular.  
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system, and cZ  describes a less-mobile water-residue system. Because “more-mobile” and 
“less-mobile” is cumbersome, I prefer to use the names mobile and clathrate. However, the 
important point is that it is not the property of water that is more or less mobile, it is the 
interaction between the water and residue that cause the residue to be more or less mobile, 
which is the basis of the classification.  In fact, this description has been done for the twenty 
amino acids found in proteins to arrive at all the necessary solvation parameters [Du, et al. 
2011]. Therefore, the notion of a clathrate mechanism is a reality, but it may not correspond 
to the original notion, and it must be calculated in the context of a large ensemble of water-
residue configurations, where the flexibility of the residue must be quantified and assessed. 
Furthermore, a more refined classification scheme is in principle possible.   

6. Unifying different perspectives on protein stability  

Recent work on the thermodynamic response of a system subjected to geometrical 
constraints [Chen, et al. 2009] suggests that indirect intermolecular correlations, rather than 
geometric constraints, are the key to achieving a first-order phase transition. Although this 
latter conclusion was obtained in a different context, it appears the same idea is implied in 
the interfacial thermodynamics model. In particular, the template structure provides the 
native-state geometrical constraints, but all subsequent calculations only involve molecular 
correlations. That is, terms in the FEF couple intramolecular interactions to residue solvation 
properties as the protein conformation changes, albeit no new geometries are generated.  

I was surprised that the “standard model” for protein stability and folding was criticized 
with much scrutiny recently [Ben-Naim, 2011] with several misconceptions highlighted. The 
main concerns raised were: 1) Free energy landscapes must be used to quantify protein 
stability, not energy landscapes; 2) non-additivity is an inherit property of entropy; 3) 
stability differences due to the trade off between intramolecular and protein-solvent H-
bonds are too weak to drive protein folding; 4) hydrophobic interactions are also too weak 
to be the dominant driving force; whereas 5) the hydrophilic interactions are the strong 
driving forces that fold a protein. These five points and the clathrate mechanism controversy 
provide an opportunity to exam the assumptions of the interfacial thermodynamics model.  

All solvation effects appear either as volume terms for the primary constituents (residues) or 
as surface terms between the interfaces of these constituents. The volume and surface terms 
taken together represent hydrophilic and hydrophobic interactions, the clathrate mechanism 
and protein-solvent H-bonds interactions using implicit solvent. Non-additivity in entropy 
components is a primary concern of the approach, and it directly deals with the free energy 
landscape. Moreover, all parameters have thermodynamic interpretations. For example, the 
parameters ( , )hph hph   for the hydrophobic interaction combine into the chemical potential 
to transfer a water molecule from a buried region in the protein to bulk solvent. In short, the 
modelling scheme put forth is complete, with the exception of long-range electrostatics.  

7. Future direction  

The particular FED that has been described above to define all the terms in the FEF, and 
using the simple MCC in the self-consistent constraint theory calculations is but one possible 
implementation of the interfacial thermodynamics model for protein stability. Similar to the 
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strategy described here, but with finer coarse-graining [Jacobs, 2007b], new software called 
FAST is being finalized. Flexible to Flexibility proteins to predict myriad thermodynamic and 
mechanical properties for high-throughput applications. With my collaborator Prof. Dennis 
Livesay at UNC Charlotte, and our research associates, Dr. Hui Wang and Dr. Chuanbin Du, 
the software has been designed and coded in C++ from scratch to provide a stable platform 
to support calculations similar to those described here. The FEF is of a general form that 
includes accounting for protonation states on titratable residues and explicit packing 
interactions. Moreover, the FEF is self consistently solved using an accurate rigidity 
algorithm for which Dr. Luis Gonzalez has helped develop, and he has documented its 
accuracy over the course of his Ph.D. studies. Many results to be published have been 
reported at several conferences, such as how model parameters are determined. With the 
Herculean effort spent on computational methods and optimization by Dr. Wang, FAST 
exceeds the speed of the mDCM and has greater accuracy. Going forward, the main concern 
is to find support to finish FAST so it can be released as free software to academic users.  

8. Conclusion  

From conception, the interfacial thermodynamics model for protein stability was designed 
to balance accuracy with computational cost such that it can be applied in high-throughput 
applications. To meet this pragmatic objective, the fundamental problem of non-additivity of 
conformational entropy that plagues free energy decomposition schemes has been tackled 
directly by employing the Distance Constraint Model. In particular, network rigidity is 
invoked as an underlying long-range interaction that couples entropy components between 
intramolecular subsystems comprising a protein. The problem is formulated as a free energy 
functional, and it is numerically solved using constitutive equations and self-consistent 
constraint theory. While the model makes many approximations, it is able to retain essential 
elements that describe protein thermodynamics and mechanical properties. Perhaps the best 
aspect of the interfacial thermodynamics model is that every term is intuitive physically and 
chemically. Different types of enthalpy-entropy compensation mechanisms can be modeled, 
and their competing effects can be simultaneously calculated with high efficiency.  
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