
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

17

Quality Improvement Through Visualization
of Software and Systems

Peter Liggesmeyer, Henning Barthel, Achim Ebert, Jens Heidrich,
Patric Keller, Yi Yang and Axel Wickenkamp

Fraunhofer IESE / University of Kaiserslautern
Germany

1. Introduction

Many organizations still lack support for obtaining control over their system development
processes and for determining the performance of their processes and the quality of the
produced products. Systematic support for detecting and reacting to critical process and
product states in order to achieve planned goals is often missing. As systems and software
become bigger and more complex, classic approaches reach their limits, due to the difficulty
of extracting relevant information from a large volume of measures. Here, suitable
visualization and virtual reality solutions can offer a clear advantage by representing the
relevant information in a more easily recognizable form. However, many resulting
visualizations are still hard to understand, even for experts. This opens the door for
researching modern, human-centered approaches that provide the user with visualization
and interaction models for visually analyzing and understanding the underlying complex
data. This chapter focuses on two main topics: system visualization and software
visualization.

Software visualization continues a very successful direction of software engineering, namely
the topic of “software measuring/software analysis”. Software visualization in general does
more than visualizing the product “software” itself. Visualization mechanisms are also
typically applied to software development processes and to support the tracking of project
progress (e.g., as a central component in project dashboards).

System visualization aims at a better understanding of system properties, e.g., safety. These
properties are usually influenced by mechanical components, microelectronics, and
software.

2. Software Visualization

The term “Software Visualization” refers to a broad range of visualization mechanisms that
can be applied to many different issues relating to engineering-style software development.
For instance, it may be used to visualize and analyze software development processes,
different artifacts created as part of the development process (such as designs or code), or
even aspects of the project itself (like the communication of the team or the information flow
between development locations). This section focuses on providing an overview of the

www.intechopen.com

Quality Assurance and Management

316

variety of different visualization techniques that may be used. First, the visualization of
product and process/project characteristics will be discussed. After that, some mechanisms
for dealing with complexity and nesting issues in general will be highlighted.

2.1 Related work

Depending on the focus of a software development organization (e.g., safety-critical
software or commercial off-the-shelf software), different characteristics of software products
such as security, reliability, or maintainability may be important. ISO/IEC 25000 (see (ISO,
2011)) gives an extensive overview of different product characteristics and some
recommendations on how to quantify and measure different attributes of the software.
There are lots of measurement tools on the market for analyzing static and dynamic aspects
of a software product. Examples are Metrics Eclipse Plugin (Metrics, 2011), CodePro Studio
(Instantiations, 2011), JDepend (JDepend, 2011), or McCabe IQ (McCabe, 2011). Each of these
tools has different capabilities in terms of the metrics supported and the visualization
capabilities offered. A detailed description of such tools can be found in (Rech, 2005).

Typically standard visualization mechanisms are used for project control, such as simple
line, bar, and pie charts, spider plots, tables and matrices, simple graphs (networks), Gantt
charts, or box plots. The type of visualization used depends on the level of abstraction and
the viewpoint for which the data is visualized. Different kinds of exploration capabilities are
provided for project control, such as drill-down mechanisms aimed at getting a more
detailed view on the data, or aggregation mechanisms aimed at getting an overview
containing multiple, abstract pieces of information. Moreover, visualization techniques may
provide basic interaction mechanisms for browsing the data, such as scrolling data along a
time axis in order to browse the history and development of indicators over time. More
advanced visualizations such as visualization metaphors are seldom used within project
control frameworks. However, they can be found in special-purpose tools, e.g., visualizing
software systems using 3D models of landscapes and urban structures (Balzer, 2004).

In software visualization, graph drawing techniques are used to describe and comprehend
the complex structures of software systems, development processes, and software quality
characteristics. The most popular graph drawing techniques used are node-link diagrams.
The standard algorithm was proposed by Sugiyama (Sugiyama, 1981). Due to the inherent
complexity of solving the sub-problems using this algorithm, many heuristics have been
proposed, e.g., by Gansner et al. (Gansner, 1993) and Eiglsperger et al. (Eiglsperger, 2005). A
detailed description of graph visualization techniques using node-link diagrams can be
found in (Herman, 2000), (Battista, 1999), and (Kaufmann, 2001). Since the space
requirements of node-link diagrams grows rapidly with the size of a graph, space-filling
techniques like Treemaps (Johnson, 1991), Sunbursts (Stasko, 2000), or Icicle Plots (Kruskal,
1983) have been applied to realize a space-constrained visualization of large hierarchical
data sets. However, in contrast to node-link diagrams, it might be more difficult to
understand hierarchical relations using these space-filling techniques. Node-link diagrams
might be combined with space-filling techniques to visualize both hierarchical and non-
hierarchical relations within one view. Fekete (Fekete, 2003) uses a Treemap to visualize the
hierarchy, while Bézier curves are used to show additional non-hierarchical relations
connecting two Treemap regions. See (Fekete, 03) for more details on combining node-link
diagrams with space-filling visualization techniques.

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

317

2.2 Software product characteristics

Fine-grained measurement of software product characteristics tends to result in a huge
amount of measurement data. With simple high-level charting and diagram visualizations
(Fig. 1), only condensed views on the measurement data can be provided.

Fig. 1. High-level charting and diagram visualization techniques.

In order to provide a goal-oriented visual exploration and analysis of product characteristics,
the structural information about the system needs to be utilized, preserving the user’s mental
map of the system architecture. Hence graph-based techniques and especially UML diagrams
are often used as a base visualization technique, with relevant attributes of the software system
being analyzed mapped onto the structural visualization using a set of additional graphical
elements such as text, geometric shapes, and icons (Fig. 2). If product characteristics are to be
analyzed on the source code level, image-based techniques combined with traditional
brushing and shading mechanisms may be used. By utilizing appropriate scaling and
interaction techniques, this approach allows the visualization of several levels of details of the
source code within one picture: Some areas may show the original source code, while others
may visualize several lines of code as a shaded region using color coding and shading to map
measurement data onto the visual item (Fig. 3).

To get a deeper insight into the quality of a software product, it is not sufficient to use these
visualization techniques with just simple interaction techniques only. Rather, the
specification and selection of visualization techniques has to be tightly integrated with the
specification and selection of metrics used to collect the measurement data. With such tight
integration, the user may apply tailored metrics and visualization metaphors on different
level of details when visually exploring the product characteristics.

At Fraunhofer IESE we have realized this approach with our scalable measurement tool M-
System. We store an abstract syntax tree (AST) representation of the source code in a
relational database. This database is then used to define metrics and collect measurement
data by issuing appropriate SQL statements. The same SQL frontend is further used to filter
the measurement data and to select and tailor the visualization technique for use on
different levels of detail. Fig. 4 and Fig. 5 show example visualizations generated with the
M-System, used to analyze the product characteristics of a software system on different
levels of detail. The user starts with a 3D-Treemap overview visualization showing a
condensed view of the product characteristics. The 3D-Treemap technique maps both the
basic code structure as well as the quality data (e.g., component size and complexity
measures) to cubes using different graphical properties (position, size, height, and color).

www.intechopen.com

Quality Assurance and Management

318

Fig. 2. Graph-based techniques (Termeer, 2005) using UML diagrams.

Fig. 3. Image-based techniques (Ball, 1996) and brushing (Lommerse, 2005) on the source
code level.

Critical components (e.g., a red cube in the 3D-Treemap) might then be further analyzed by
selecting such components within the visualization and adapting the measurement data and

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

319

the visualization technique to be used in the subsequent analysis process. For example, in
Fig. 5, we use a node-link graph visualization to highlight critical components. We take the
same measures, but simply adjust the visualization to color code the data according to a
given threshold value. This simplifies the identification of critical parts of the component
being analyzed.

Using the SQL frontend to define metrics and collect measurement as well as to filter the
measurement data and to select and tailor the visualization technique has proven to be a
very flexible and powerful approach. Nevertheless, making this frontend more user-friendly
as well as integrating further visualization techniques into the M-System is ongoing work at
Fraunhofer IESE.

Fig. 4. 3D-Treemap visualization of software quality on different levels of detail using
Fraunhofer IESE’s M-System.

Fig. 5. Node-link graph visualization for highlighting critical components.

www.intechopen.com

Quality Assurance and Management

320

2.3 Software process and project characteristics

Visualization techniques may also be used for analyzing complex software development

processes. For instance, the German V-Modell®XT has more than 1000 entities with different

relationships among them. Analyzing the commonalities between the different versions of

such a process and identifying inconsistencies and bottlenecks is a non-trivial task that

requires advanced visualization techniques. Fig. 6 presents two analysis views for getting an

overview of the evolution of the V-Modell®XT based on the DeltaP approach developed at

Fraunhofer IESE (Soto, 2008). The left-hand side demonstrates the increase of entities

(activities, artifacts, roles, etc.) over different versions of the V-Modell®XT. The vertical lines

indicate official releases of an internal version. From version 1 to version 600, more than 200

entities were added. The right-hand side shows the number of changes in different modules

of the V-Modell®XT over time. The size of the circle reflects the number of changes

(additions, deletions, modifications) of a certain module. In order to obtain a simple

footprint of the evolution, the changes over time are mapped to a bar code. What can be

observed from the chart is, e.g., that the major work before release 1.0 was completed at the

end of 2005, but it took more than one month with close to zero changes before the actual

release took place. A second observation is, e.g., that a huge number of changes were

postponed after release 1.1. As soon as the main development branch was released, some

major changes were implemented into release 1.2.

Fig. 6. Visual analysis of the V-Modell®XT evolution (Soto, 2008).

Another very common area for software visualization is project monitoring and control.

Many different aspects of a development project have to be visualized on different levels of

abstraction, depending on the goals and characteristics of the project. This typically includes

the schedule of the project as well as effort/cost aspects, but also quality-related measures,

such as the defect density, the requirements already implemented, or the test coverage. One

challenge for the visualization of this data is how to show trends for identifying potentially

critical project states in time and how to initiate corresponding countermeasures. Another

challenge is how to provide visualization mechanisms for condensing and aggregating the

data (e.g., making use of corresponding quality models). Fig. 7 presents a Software Project

Control Center (SPCC) prototype created at Fraunhofer IESE. The Specula approach is able

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

321

to dynamically create an SPCC interface from project control building blocks for data

collection, data processing, and data visualization. The screenshot on the right shows on

overview of available control charts and displays the selected Gantt charts for monitoring

the project’s schedule and progress. The screenshot on the left side aggregates all data into a

simple matrix structure for analyzing the trend with respect to core project measurement

objects and properties.

Fig. 7. Visualizing software project control data (Heidrich, 2010).

2.4 Complexity and nesting

A very general underlying problem of software visualization is how to deal with highly

complex structures and nesting. Typically, graph representations are used for describing

these structures, and graph visualization techniques are applied to improve the

comprehension of software products, projects, and processes or to facilitate decision support

for software architects and project managers.

However, using off-the-shelf graph visualization tools may be inadequate in the software

engineering domain because they often do not reflect the user’s context and role-specific

visualization and interaction requirements in such distinct application scenarios as

Quality Measurement, Architectural Analysis, Reengineering, Process Management,

Process/Product Evolution, Risk Management, or Security and Safety. Rather, specially

engineered tool support is required, providing domain-centered visualization and

interaction techniques that support the interactive visual exploration of highly complex data

structures within each application scenario.

At Fraunhofer IESE we align our tool support according to this strategy (see sections 2.2,

2.3, 3.1 and 3.2 targeted at relevant application scenarios). Based on the user’s need, we

combine traditional visualization techniques with suitable interaction and navigation

techniques on different levels of detail. The user might start with a 2D or 3D visualization

providing an overview of the whole data set, which acts as the starting point for the visual

exploration (see Fig. 8). However, the user can also use traditional node-link diagrams or

www.intechopen.com

Quality Assurance and Management

322

a combination of node-link diagrams and space-filling techniques if he is used to that (see

Fig. 9).

The user might then decide to further investigate parts of the dataset using more

appropriate visualization and interaction techniques. For example, if the user performs an

architectural analysis and needs to know more details about the relations between

components of a subsystem, he might select the subsystem in the overview visualization

and switch to a more suitable visualization like that in Fig. 10.

Practical examples from industry indicate that it is reasonable to realize domain-specific,

user-centered visual exploration tools in the software engineering domain that are

tailored to the user’s context and role-specific visualization and interaction requirements.

Realizing this tool support is ongoing work and an interesting research topic at

Fraunhofer IESE.

Fig. 8. Exemplary overview visualizations that might be used as a starting point for visual

exploration.

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

323

Fig. 9. Traditional node-link diagram visualization (top) and a combination with space-

filling techniques (bottom) using sunbursts to visualize hierarchy nodes and Bezier-Curves

to visualize links.

Fig. 10. Combined space-filling and node-link visualization. Edge bundling (Holten, 2006) is

used to visualize non-hierarchical relations, based on the multivariate information taken

from the original dataset.

www.intechopen.com

Quality Assurance and Management

324

3. System visualization

The importance of system visualization increases due to growing size, critical properties

(e.g., safety, security), and new application domains (e.g., ubiquitous systems / ambient

systems), which are characterized by complex behavior (e.g., dynamic aspects). Many

safety-critical embedded systems need to be certified by certification authorities before

being released for public use. This requires techniques that are capable of displaying

detailed information about the safety properties of large systems and that can, at the same

time, prevent critical information overload.

3.1 Safety visualization

Safety is a quality characteristic that is very important in many application domains, e.g.,

rail systems, avionics, or medical systems. According to the IEC 61508 standard, safety is the

absence of unacceptable risks.

3.1.1 Safety analysis

The analysis of safety-critical systems is organized to follow certain rules. The

corresponding techniques and methods tend to analyze the causes leading to critical system

conditions that violate the specified safety objectives. One technique frequently used in this

context is the so-called Fault Tree Analysis (FTA). It describes the relationship between low-

level failures, e.g., failures on the component level, and system failures. Fault Trees (FT) use

logical gates to model these cause-effect relationships. Low-level failures (Basic Events

(BEs)) are represented as leaves of the FT, whereas the root represents a safety-critical

system failure (Top Event (TE)). Besides being a qualitative analysis, FTA allows

quantifying the probability of occurrence of the TE if the probabilities of the corresponding

BEs are known.

A Minimal Cut Set (MCS) is defined as a minimal set of BEs whose simultaneous

occurrences cause the TE. Traditional approaches for analyzing MCSs primarily use text-

based ((ESSaREL, 2011), (RELIA, 2011), (Fig. 11 (a)) or table-based ((RelexArchitect, 2011),

(SYNC, 2011), (Fig. 11 (b)) representations. The information listed there usually includes an

ID for identifying the individual MCSs and the BEs contained together with their

corresponding failure probabilities. In many cases, table-based representations rely on

regular interaction techniques such as filtering and sorting. However, the possibilities of

these manipulation techniques are limited. They neither provide appropriate graphical

assistance facilitating better understanding nor do they support the analysis of correlations

between BE and MCS within large data sets. This hampers efficient handling and

consequently might lead to situations in which information intended to contribute to safety

improvements may become lost. To reflect the way the effects of the current MCS propagate

along the FT (Fig. 11 (c)), some approaches ((ESSaREL, 2011), (ISOGRAPH, 2011)) represent

MCS via highlighted paths between BEs and the TE.

The idea of modeling cause-effect relationships was extended to so-called Component Fault

Trees (CFT). CFTs permit encapsulating sub-trees that correspond to technical components

and thus provide the possibility to deal with different levels of abstraction.

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

325

Fig. 11.Common methods for representing MCSs: (a) Plain text (ESSaREL, 2011). (b) Table
format (ALD, 2011). (c) Associated paths highlighting (RelexArchitect, 2011). (d) Component
Fault Tree (ESSaREL, 2011).

The tool ESSaREL (ESSaREL, 2011) supports the use of CFTs (Fig. 11 (d)). Additional MCS

information in the form of plain text is provided in separate views (Fig. 11 (a)).

3.1.2 ViSSaAn

A new visualization tool called ViSSaAn (Visual Support for Safety Analysis) developed at

the University of Kaiserslautern (Yang, 2011) uses a matrix-based visualization to efficiently

represent the information associated with MCSs of FTs and CFTs, respectively.

The matrix assigns the MCSs to the rows, whereas the failure probabilities of the individual

MCSs, the MCS IDs, the orders of the MCSs (Fig. 12, area 1), and the BEs (Fig. 12, area 2) are

assigned to the columns. The tool classifies the MCSs into three different safety categories

according to their failure probabilities: high, moderate, and acceptable; the thresholds for

this classification can be set according to the specific needs of the analysis process. The color

scheme applied for visualizing these relations uses red to indicate high, yellow to indicate

moderate, and green for acceptable probabilities. In this way the user is able to perceive the

criticalities of the individual MCSs very intuitively. The three-level categorization concept is

also applied in the same way for characterizing and visually highlighting the BEs.

www.intechopen.com

Quality Assurance and Management

326

Fig. 12. Overview of ViSSaAn: matrix view (center), navigation tree (left), and information
panel (bottom). In matrix view, area 1: properties of MCSs; area 2: containing relationships
between MCSs (rows) and BEs (columns); area 3: properties of BEs and indicators of groups
for BEs.

Furthermore, ViSSaAn uses translucent bar charts to represent the orders of the MCS. The

order in this regard is defined by the number of BEs contained in an MCS. In general, this

means: the smaller the order, the more critical the MCS.

Whenever a BE belongs to an MCS, the matrix indicates this dependency by coloring the cell
at the location where the BE column intersects with the MCS row (see Fig. 12, area 2). The

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

327

cell color used at the intersection depends on the BE’s safety category. In addition, ViSSaAn
displays the exact occurrences and failure probabilities of the BEs at the bottom of matrix to
support an extended quantitative analysis (Fig. 12, area 3).

In order to quickly identify essential dependencies within a large number of MCSs, ViSSaAn
provides a range of sorting and grouping functionalities. The sorting function, for instance,
allows sorting the MCSs according to their failure probabilities in descending and ascending
order. The resulting groups of MCSs having high, moderate, and acceptable probabilities
separating the matrix vertically into three distinct segments with different colors (Fig. 12,
area 1 shows the three MCS groupings in red, yellow, and green). The sorting function
automatically groups the MCSs according to their criticalities, so that the user can efficiently
delimit the number of MCSs to be examined. The sorting function is also available for the
columns in order to intuitively identify and delimit important BEs. The grouping in case of
BEs is illustrated by the last row of the matrix view in Fig. 12 (area 3).

To satisfy the need for providing a suitable overview when addressing large-scale MCS data
sets, ViSSaAn additionally provides flexible scaling interaction functionalities like uniform
scaling and scaling by groups. Uniform scaling allows narrowing the row heights in order to
depict as many MCSs as possible to exploit the limited display space. However, one
problem immanent to this scaling approach concerns the reduction of the space used to
depict other MCS-related information. To address this issue, ViSSaAn uses a scaling
approach following the degree-of-interest (DOI) concept referred to as scaling by groups. It
preserves important MCS information, while simultaneously maintaining a suitable
overview (Fig.12, area 1). The heights of the rows are adapted to the safety criticality of its
corresponding MCS: the more critical the MCSs, the larger the row heights. This way, the
users can focus on the important information while maintaining the overview as their
context. Both scaling approaches can be applied to rows as well as to columns in order to
reduce information overhead by simultaneously maintaining all details necessary for an
efficient analysis.

3.1.2.1 Embedded CFT structures

The FT logical structure supports better understanding of the influences of MCSs in a

system. ViSSaAn integrates the structures of CFT components into the matrix view using

focus+context techniques in combination with semantic zooming concepts. Whenever a

color-filled cell is double-clicked, ViSSaAn enlarges the corresponding cell area and displays

an embedded view (see Fig.13) showing the internal logical structure of the component

associated with the BE. The leaf nodes are again colored according to their safety criticality

levels. The color-filled nodes represent the BE corresponding to the selected column,

whereas the nodes having a thick border represent all other BEs contained by the MCSs of

the current row. Those leaf nodes or BEs not directly related to the MCS are marked with a

thin border. Integrating such embedded logical structures allows ViSSaAn to provide

additional information about how the BEs of an MCS influence the component of a CFT

along the internal structure. This allows the users to focus on the detailed internal structures

while maintaining the overall context. ViSSaAn also provides interactions for the internal

structure inside the embedded view, such as smooth zooming and panning, which allow

adapting the view to the current visualization needs. A more detailed description of the

ViSSaAn tool and its possibilities is provided in (Yang, 2011).

www.intechopen.com

Quality Assurance and Management

328

Fig. 13. Logical structure of the CFT component embedded in the matrix view. The color-

filled node represents the BE in the current column. The nodes with a thick border are

contained by the MCS in the current row. BEs not related to the current MCS are depicted

with a thin border.

3.2 Virtual Reality

Virtual Reality (VR) is considered a technology for providing virtual mappings of real-

world objects, which are allowed to be explored and manipulated by users. It combines 3D

visualization techniques with human-centered interaction techniques. Depending on the

display technology, VR is classified into four main categories: immersive (e.g., head-

mounted displays), semi-immersive (e.g., car driving simulator), projected (e.g., CAVE –

Cave Automated Virtual Environment, 3D Walls etc.), and desktop (e.g., monitor), each with

its own advantages and disadvantages.

3.2.1 Current approaches In VR

Regarding the usage of VR technology, several fields in science and engineering have

greatly benefitted from its application. This includes, among other things, that VR

contributes to a better understanding of real-world systems and processes. VR can

emphasize which information is important for the user and simultaneously allows blanking

out other kinds of information. It also supports the exploration of complex structures,

processes, and relations (Kreylos, 2003).

In addition, VR facilitates the process of developing large systems and environmental
structures by providing means for efficient design and analysis. In this context, VR is being
adopted in domains like automotive (e.g., the design of cars), aeronautics (e.g., in the
development of airplanes and satellites), as well as in the construction industry to provide a
first glance at final products, e.g., in the form of virtual prototypes. Following up on this

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

329

idea makes it possible, e.g., to perform a proof of concept even without any real system at
hand. When we consider economical aspects, the application of VR techniques provides
great benefits in terms of cost reduction and time savings during development. Particularly,
in scenarios where the existence of expensive functional models is required, it may no
longer be necessary to come up with a fully functional real-world system. The article by
Purschke et al. (Purschke, 1998) gives an example of how VR techniques have recently been
used with respect to developing vehicle systems at Volkswagen.

Another application area uses VR for the purpose of training and operator qualification.
Virtual training systems are built with the intention to reduce expenses for education and
training and to provide a safe way of preparing critical operations and procedures that
otherwise would most likely endanger persons or equipment. This is possible since VR
systems are, by their very nature, safe, controllable, and economical. VR applications were
developed e.g., for education (Oliveria, 2007), preparation of medical surgeries (Heng, 2004),
and others.

In addition, VR is preferably used in cases where safety-critical systems have to be tested
with regard to dangerous situations. This may become necessary within the context of
common certification procedures concerning a range of critical system properties. Not all
situations can be covered by real-world testing – be it due to time or money restrictions or
simply because of safety reasons. In (Barret, 2010), the authors introduce a virtual system
allowing the design and exploration of safety-critical scenarios in the context of electrical
engineering.

3.2.2 VR and safety

In the last few decades, the number of electronic and electronically programmable devices
deployed within embedded systems has risen dramatically. This not only had effects on the
size and complexity of those systems but also on their quality. Especially safety is a quality
characteristic strongly influenced by this evolution.

One possible step towards “safer” systems is to take advantage of extended means provided
by Virtual Reality (VR) technologies. VR is increasingly becoming a powerful tool for
tackling the challenges found in quality assurance of embedded systems. It allows
incorporating knowledge/information from different sources, ranging from physical
domains like object shapes and materials to more imaginary quantities like system quality
and usability, and allows presenting it in a way intuitively accessible for human perception.
In addition, special interaction techniques facilitate the handling of the provided
representations. The idea of supporting the analysis of complex embedded systems by using
VR technology is pursued by the project ViERforES (ViERforES, 2011) and its successor
ViERforES 2 (ViERforES, 2011). These projects especially aim at improving the quality of
complex embedded systems by providing methods and techniques for virtually accessing
and evaluating particular system characteristics such as safety, security, and reliability.

Regarding the analysis and evaluation of safety-related properties, the goal is to identify
critical system parts, relating them to possible system failures, and providing quantitative
measures concerning the probability of occurrence of hazardous situations. A system failure
in this sense is an undesired deviation of the actual behavior from the specified one.
Performing such an analysis necessitates the abstraction of certain system properties to yield

www.intechopen.com

Quality Assurance and Management

330

a view that represents a reduced image of the system. To accomplish this, most common
techniques rely on graph- or text-based approaches (see section on safety analysis). These
allow capturing specific safety-related aspects of the system under investigation. However,
in general this entails the loss of context information, which may also indirectly contribute
to system failures and hence is important with regard to the completeness of the analysis.

When considering embedded systems, the failing components at the most abstract stage can
be hardware (HW) or software (SW). By nature, HW and SW components have a great
variety of characteristics, modalities, and working conditions, and are generally not
representable by a single model. For example, installation prerequisites, exposure to
environmental interferences, as well as mutual interference between HW components are
additional properties not reflected by the models used for safety analysis.

Let’s assume that the safety of a control unit exposed to internal/external forces such as
extreme heat, shock, and/or radiation has to be evaluated. Here, only a safety analysis is
capable of making assumptions about the failure probability of the controller and how it
may contribute to a system crash. However, it does not consider the ways the controller
correlates with the aforementioned physical factors, i.e., it cannot answer the question
whether or not there is an actual dependency between the way the controller is installed and
the system’s safety. Deriving cross-related knowledge from other models or system views is
not possible from the safety models or is only provided up to a certain limit. To ascertain
such extended coherences, the incorporation of knowledge/information from additional
sources is required. Collecting all relevant information and representing them in a suitable
way is necessary for the hidden relations to become apparent.

The above observations hold for HW as well as for SW, which has a variety of essential
characteristics that indirectly contribute to safety. For example, important issues for
assessing the criticality of a SW component can be its complexity (e.g., lines of code, number
of dependencies between components, etc.), its state space situation, or its dependencies
between workload and the system response time in critical scenarios. Again this represents
context information not always considered in standard safety models.

Another important aspect concerns the distribution of the components of an embedded
system. Generally, the sort of systems that belong to this category feature the property of
being distributed. This means that communication takes place, which might also be affected
either directly by intended attacks or indirectly by physical interferences. The connection
between the vulnerability of communication channels in general and the way they affect the
safety/security criticality are explored best if there is a combined virtual sight.

In the ViERforES 2 project, VR is used to combine safety-related information with such kind
of “hidden” context information. This provides the chance to visually integrate safety-
critical relationships with the corresponding static and dynamic physical dependencies of
the investigated system. The related paper (Al-Zokari, 2010) proposes a way to link static
safety-related information in the form of Minimal Cut Sets (MCS) (see section 3.1) with
information about the physical system structure. A direct visual connection between the
critical components and the ways they cause the system to fail is established. A new
metaphor representing all possible constellations of cause-effect relationships allows the
effective identification of most critical failure causes. The linkage between the MCS safety
indicators and the physical context information in the form of a geometric representation of

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

331

the system components is based upon highlighting those components that contribute to a
selected failure scenario. The tool allows to intuitively trace the causes of safety-critical
system failures back to the components responsible for their origination. This way the users
(safety engineers and system engineers) can explore relations that could help, for example,
to efficiently identify critical system regions. Moreover, it provides a common view for
system and safety engineers to support inter-connected collaboration.

The ongoing research could be seen as a starting point regarding further development
aimed at the integration of multiple models from complex embedded systems. The
possibilities of application of the VR technology are various and provide great potential
concerning future research.

Virtual Reality (VR) provides promising possibilities for visually assessing the

characteristics of large embedded systems. Analyzing functional and non-functional aspects

generally necessitates uncovering hidden properties and relations between system parts that

heavily affect overall system functioning and system quality. Particularly, properties related

to software are not always visible at first glance. The research within the ViERforES (Virtual

and Augmented Reality for Maximum Safety and Reliability of Embedded Systems) project

(ViERforES, 2011) concentrates on capturing and visualizing qualitative aspects of safety-

critical systems to support system analysis and improvement. The process of tracing back

undesired system characteristics to their roots constitutes the first step in identifying critical

parts of a system. Generally, this produces huge amounts of data that are strongly correlated

and not accessible without the usage of the proper context information. The adoption of VR

techniques allows the user to look at every aspect of the system in detail. Furthermore, it

facilitates the exploration of hidden properties and supports the collaboration of domain

experts such as system and safety engineers. It associates safety-related information with

virtual models of the examined systems and provides interaction techniques to support the

process of identifying safety-critical elements.

4. Conclusion

The visualization of software and systems is becoming increasingly important for many

organizations. Well-known visualization and interaction techniques are applied to obtain

better insight into and control over system development processes and the quality of

produced products. Even though these methods have proven to be advantageous, more

domain-specific, user-centered approaches are necessary to support users in recognizing

and finding relevant information more easily. Based on practical examples from industry

and the experience of the authors, this chapter presented an overview of such goal-oriented,

domain-specific visual exploration tools in the software engineering domain.

We showed that tightly coupling the specification and selection of visualization techniques

with the specification and selection of metrics used to collect measurement data better

supports the visual recognition of software product, process, and project characteristics and

their interrelations.

In addition, we presented visualization techniques aimed at a better understanding of

system properties such as safety and security in highly complex, dynamic embedded

systems.

www.intechopen.com

Quality Assurance and Management

332

More sophisticated human-centered visual exploration techniques are needed to be able to

analyze such system properties, which generally necessitates uncovering hidden properties

and relations between system parts that heavily affect overall system functioning and

system quality. The presented work allows interactively exploring information associated

with the results of a safety analysis to maintain an overview of critical elements and

relations. Approaches like the matrix-based representation presented here facilitate the

understanding of the structural composition of failure causes and, in particular, allow to

efficiently determine weak points of safety-critical systems.

5. References

ALD RAM Commander. (2011) http://www.aldservice.com.

Al-Zokari, Y., Khan, T., Schneider, D., Zeckzer, D., Hagen, H. (2010). CaKES: Cake Metaphor

for Analyzing Safety Issues of Embedded Systems. Dagstuhl Follow-Ups.

Ball, T., Eick, S. (1996). Software visualization in the large. IEEE Computer, pp. 33–43.

Balzer, M., Noack, A., Deussen, O., Lewerentz, C. (2004). Software Landscapes: Visualizing

the Structure of Large Software Systems. In: Proceedings of the Joint Eurographics -

IEEE TCVG Symposium on Visualization (VisSym), pp. 261-266.

Barret, M., Blackledge, J. Eugene, E. (2010). Using Virtual Reality to Enhance Electrical Safety

and Design in the Built Environment. Dublin: Dublin Institute of Technology.

Battista, G. D., Eades, P., Tamassia, R., Tollis, I. G. (1999). Graph Drawing: Algorithms for the

Visualization of Graphs. Prentice Hall, Upper Saddle River, NJ, USA.

Eiglsperger, M., Siebenhaller, M., Kaufmann, M. (2005). An efficient implementation of

Sugiyama's algorithm for layered graph drawing. InGraph Drawing (GD 04), vol. 3383

of Lecture Notes in Computer Science, Springer, pp. 155-166.

ESSaREL. (2011). http://www.essarel.de.Fekete, J.-D., Wang, D., Dang, N., Aris, A.,

Plaisant, C. (2003). Overlaying Graph Links on Treemaps. In Proc. InfoVis’03, Poster

Compendium, IEEE Press.

Gansner, E. R., Koutsos, E., North, S. C., Vo, K. P. (1993). A Technique for Drawing Directed

Graphs. IEEE Trans. Softw. Eng. 19, 3, pp. 214-230.

Heidrich, J. Münch, J. (2010). Goal-oriented customization of software cockpits. Journal

of Software Maintenance and Evolution: Research and Practice, Volume 22 Issue

5.

Heng, P.A., Cheng, C.Y., Wong, T.T., Xu, Y., Chui, Y.P., Chan, K.M., Tso, S.K. (2008). A

virtual-reality training system for knee arthoscopic surgery. IEEE Transaction on

Information Technology in Biomedicine 8 (2), pp. 217-227.

Herman, I., Melancon, G., Marshall, M. S. (2000). Graph Visualization and Navigation in

Information Visualization: A Survey. IEEE Transactions on Visualization and

Computer Graphics 6 (1), pp. 24–43.

Holten, D. (2006). Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical

Data. IEEE Transactions on Visualization and Computer Graphics (Proc. of

INFOVIS’06) 12 (5), pp. 741–748.

Instantiations CodePro Studio. (2011). http://www.instantiations.com

ISOGRAPH FaultTree+. (2011). http://www.isograph-software.com.

ISO – International Organization for Standardization. (2011). http://www.iso.org

www.intechopen.com

Quality Improvement Through Visualization of Software and Systems

333

JDepend. (2011). http://clarkware.com

Johnson, B., Shneiderman, B. (1991). Tree-maps: A spacefilling approach to the visualization of

hierarchical information structures. Proceedings of Visualization ’91, (San Diego,

California), pp. 284–291.

Kaufmann, M., Wagner, D. (2001). Drawing Graphs, Methods and Models. Lecture Notes in

Computer Science, Springer Verlag.

Kreylos, O., Bethel, E.W., Ligocki, T.J., Hamann, B. (2003). Virtual-Reality Based Interactive

Exploration of Multiresolution Data. In: G. Farin, H. Hagen and Bernd Hamann:

Hierarchical Approximation and Geometrical Methods for Scientific Visualization.

Springer Verlag, pp. 205-224.

Kruskal, J. B., Landwehr, J. M. (1983): Icicle Plots: Better Displays for Hierarchical Clustering.

The American Statistician 37 (2), pp. 162–168.

Lommerse, G., Nossin, F., Voinea, L., Telea, A. (2005). The Visual Code Navigator: An

Interactive Toolset for Source Code Investigation. Proceedings of the 2005 IEEE

Symposium on Information Visualization, IEEE Computer Society.

McCabe IQ. (2011). http://www.mccabe.com

Metrics Eclipse Plugin. http://sourceforge.net/projects/metrics

Oliveria, D.M., Cao, S.C., Hermida, X.F., Rodríguez, F.M. (2007). Virtual Reality System for

Industrial Training. IEEE International Symposium on Industrial Electronics, pp.

1715-1720.

Purschke, F., Schulze, M., Zimmermann, P. (1998). Virtual Reality - New Methods for Improving

and Accelerating the Development Process in Vehicle Styling and Design. Computer

Graphics International.

RelexArchitect. (2011). http://www.relexsoftware.co.uk.

Rech, J., Weber, S. (2005). Werkzeuge zur Ermittlung von Software-Produktmetriken und

Qualitätsdefekten- Studie zu Software-Messwerkzeugen. Fraunhofer IESE.

RELIA BlockSim. http://www.reliasoft.com/BlockSim.

Stasko, J., Zhang, E. (2000). Focus+context display and navigation techniques for enhancing radial,

space-filling hierarchy visualizations. In INFOVIS '00: Proceedings of the IEEE

Symposium on Information Visualization 2000, pp. 57-68.

Soto, M., Ocampo, A., Münch, J. (2008). The Secret Life of a Process Description: A Look into the

Evolution of a Large Process Model. International Conference on Software Process

(ICSP) - Proceedings. Berlin: Springer, pp. 257-268.

Sotograph. http://www.software-tomography.de

Sugiyama, K., Tagawa, S., Toda, M. (1981). Methods for Visual Understanding of Hierarchical

System Structures. IEEE Transactions on Systems, Man, and Cybernetics SMC-11(2),

pp. 109-125.

SYNC DPL-Faulttrees. (2011).

 http://www.syncopationsoftware.com/faulttree.html.

Termeer, M., Lange, C. F., Telea, A., Chaudron, M. R. (2005). Visual Exploration of Combined

Architectural and Metric Information. VISSOFT '05 Proceedings of the 3rd IEEE

International Workshop on Visualizing Software for Understanding and Analysis,

IEEE Computer Society.

ViERforES Project. (2011). http://www.vierfores.de.

www.intechopen.com

Quality Assurance and Management

334

Yang, Y., Zeckzer, D., Liggesmeyer, P., Hagen, H. (2011). ViSSaAn: Visual Support for Safety

Analysis. Dagstuhl Follow-Ups, Vol. 2.

www.intechopen.com

Quality Assurance and Management

Edited by Prof. Mehmet Savsar

ISBN 978-953-51-0378-3

Hard cover, 424 pages

Publisher InTech

Published online 23, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The purpose of this book is to present new concepts, state-of-the-art techniques and advances in quality

related research. Novel ideas and current developments in the field of quality assurance and related topics are

presented in different chapters, which are organized according to application areas. Initial chapters present

basic ideas and historical perspectives on quality, while subsequent chapters present quality assurance

applications in education, healthcare, medicine, software development, service industry, and other technical

areas. This book is a valuable contribution to the literature in the field of quality assurance and quality

management. The primary target audience for the book includes students, researchers, quality engineers,

production and process managers, and professionals who are interested in quality assurance and related

areas.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Peter Liggesmeyer, Henning Barthel, Achim Ebert, Jens Heidrich, Patric Keller, Yi Yang and Axel Wickenkamp

(2012). Quality Improvement Through Visualization of Software and Systems, Quality Assurance and

Management, Prof. Mehmet Savsar (Ed.), ISBN: 978-953-51-0378-3, InTech, Available from:

http://www.intechopen.com/books/quality-assurance-and-management/quality-improvement-through-

visualization-of-software-and-systems

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

