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1. Introduction

Atomic interferometry is very useful in fundamental studies of coherence, decoherence and
phase shifts and for practical precision measurements, with the example of gravimeters,
gyroscopes, and gradiometers (Cronin et al., 2009). Bose-Einstein Condensate (BEC) based
atomic interferometry provides high contrasts, long integration times and the possible use
of small devices (Baumgärtner et al., 2010; Sapiro et al., 2009a; Torii et al., 2000). In such
atomic interferometry, coherent momentum manipulation is very effective for splitting and
recombining the condensate (Deng et al., 1999; Kozuma, Deng et al., 1999; Ovchinnikov et al.,
1999), for realizing the interference. In some precision measurements, the accumulated phase
is positively correlated to the atomic velocity, so that the larger the atomic momentum is, the

more precise the measurements can be if the measuring time is unchanged.

Based on our previous experimental and theoretical work about the interaction between
laser pulses and a BEC, in this chapter we mainly present methods of getting high order

of momentum states by resonant superradiance (Zhou et al., 2009) and by multi-pulse
Kapitza-Dirac scattering (Xiong et al., 2011), corresponding to travelling wave scattering and
standing wave scattering, respectively.

In the superradiant Rayleigh scattering (Bar-Gill et al., 2007; Guo et al., 2008; Inouye et al.,
1999; Kozuma, Suzuki et al., 1999; Moore & Meystre, 1999; Pu et al., 2003; Sadler et al., 2007;
Schneble et al., 2003; Slama et al., 2007; Zobay & Nikolopoulos, 2006), the spatial and time
evolutions of superradiant scattering are studied for a weak pump beam with different
frequency components traveling along the long axis of an elongated Bose-Einstein condensate.
Through the analysis of the mode competition between the different resonant channels and
the local depletion of the spatial distribution, we can get a large number of high-order forward
modes by resonant frequency components of the pump beam (Zhou et al., 2009).

On the other hand, the atomic diffraction from a standing wave light grating is a
primary method of atomic momentum manipulation. Different to usual separation of the
Kapitza-Dirac regime, the Bragg regime and the channeling regime (Keller et al., 1999), the
scattering process is described by the projection of atomic states between the momentum
presentation and Bloch states form by the scattering standing waves. According to this
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2 Will-be-set-by-IN-TECH

method, we are able to design and realize several specific high order momentum states for
the atomic interferometry (Xiong et al., 2011).

2. High-order momentum modes by resonant superradiant scattering

A typical superradiance experiment consists in a far off-resonant laser pulse traveling
along the short axis of a cigar-shaped BEC sample (Inouye et al., 1999), the scattered

lights, called end-fire modes, propagate along the long axis of the condensate, and the
recoiled atoms are refereed to as side modes. A series of experiments (Bar-Gill et al.,
2007; Kozuma, Suzuki et al., 1999; Sadler et al., 2007; Schneble et al., 2003; Slama et al.,
2007) have sparked related interests in phase-coherent amplification of matter waves
(Kozuma, Suzuki et al., 1999; Schneble et al., 2003), quantum information (Bar-Gill et al.,
2007), collective scattering instability (Slama et al., 2007), and coherent imaging (Sadler et al.,
2007). Several theoretical descriptions of these cooperative scattering in BEC with
single-frequency pump have also been presented (Guo et al., 2008; Moore & Meystre, 1999;
Pu et al., 2003; Zobay & Nikolopoulos, 2006).

For the long and weak pump beam, we can observe the forward peaks correspond to Bragg
diffraction of atoms (Inouye et al., 1999), where the high order scattering is limited by
detuning barriers for the end-fire mode radiation (Zobay & Nikolopoulos, 2007). On the
other hand, a X-shaped recoiling pattern is demonstrated in a short and strong pulse as
Kapitza-Dirac diffraction of atoms (Schneble et al., 2003), where an atom in the condensate
absorbs a photon from the pump laser, then emits a photon into an end-fire mode, and recoils
forwardly. Meanwhile another atom absorbs a photon from the end-fire modes, emits into
the pump beam and finally recoils backwardly. In this case, there is an energy mismatch
of four times the one-photon recoil kinetic energy h̄ωr in backward scattering, which then
remains very weak unless a short pumping pulse with a broad spectrum is used. Hence, two

phase-locked incident lasers with the frequency difference ∆ω compensating for the energy
mismatch has been used (Bar-Gill et al., 2007; Cola et al., 2009; Yang et al., 2008), which is
named resonant superradiance, where a large number of backward recoiling atoms can be
produced.

Followed that, it is attractive to extent this idea to achieve a high momentum transfer
by overcoming the detuning barriers, by a weak and long pump beams with the
resonant frequency. It requires to analysis the competition between the different transition
channels and the spatial distribution of different modes. Because the above traditional
superradiant-scattering configuration involves many atomic side modes coupled together,
to simplify it, we chose another configuration where a pump beam travels along the
long axis of the BEC. This scheme is widely studied in photon echo (Piovella et al.,
2003), decoherence (Fallani et al., 2005), spatial distribution effects (Li, Zhou et al., 2008) and
self-organized formation of dynamic gratings (Hilliard et al., 2008). Since the pulse length is
far longer than the initial spontaneous process (Zobay & Nikolopoulos, 2006), we choose the
semi-classical theory which can well describe the experimental results (Bar-Gill et al., 2007;
Yang et al., 2008; Zobay & Nikolopoulos, 2006).

In this section, we first introduce the semi-classical theory for the superradiance scattering
with a several-frequency pump in the weak coupling. Then the spatial and time evolutions
of scattered modes are analyzed for two-frequency pump beam, we find the backward first
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High Order Momentum States by Light Wave Scattering 3

Fig. 1. (Color online) Our experimental scheme. A cigar-shape BEC is illuminated by a far
off-resonant laser pulse along its long axis ẑ. Collective Rayleigh scattering induces
superradiance. Two end-fire modes, which are also along ẑ axis, form in superradiance
process and the 1st-order recoiled atoms obtain a momentum of 2h̄k.

order scattering mode is suppressed at the resonant condition ∆ω = 8ωr and the forward
second order mode is enhanced, resulting from the combination of mode competition effects
and spatial distribution of the modes. The case of the three-frequency pump beams for a large
number of the forward third order scattering modes, and the higher modes for more resonant
frequencies are studied, which supplies a new method to get a large number of atoms in higher

order forward modes. Finally, some discussion and conclusion are given.

2.1 Model for a multiple-frequency end-pumped beam

We consider the pump laser, with amplitude El(t), polarization ey, wave vector kl , frequencies
ωl and ωl − ∆ωn, propagating along the long axis ẑ of an elongated BEC, El = El(t)ey[(1 +

Σnei∆ωnt)ei(klz−ωlt) + c.c.]/2, as shown in Fig. 1. When supperradiant Rayleigh scattering
happens, end-fire modes spread along the same axis. The E+ mode has the same direction
as the incident light and mainly interacts with the right part of the condensate, and the E−
mode overlaps with the left part of the condensate. The atoms are recoiled to some discrete
momentum states with momentum 2mh̄k, where m is an integer and the wave vector of
end-fire mode light k is approximated as kl for energy conservation. The total electric field
E(r, t) = E(+) + E(−) is given by (Bar-Gill et al., 2007; Li, Zhou et al., 2008; Yang et al., 2008;
Zobay & Nikolopoulos, 2006)

E(+)(r, t) = [(1 + ∑
n

ei∆ωnt)El(t)e
−i(ωlt−klz)/2 + E−(z, t)e−i(ωt+kz)]ey (1)

where ω = ck, E(−) = E(+)∗, and E+ is ignored because it has the same wave vector
as the pump beam but is very small in comparison to El . ∆ωn satisfies the condition
∆ωn ≪ ωl (Bar-Gill et al., 2007) and the initial phases of the different frequency components
are assumed to be zero.

Since the BEC is tightly constrained in its short axis (x̂, ŷ) in the present superradiance setup
and the Fresnel number of the optical field is around 1, one dimensional approximation
is usually used (Bar-Gill et al., 2007; Hilliard et al., 2008; Inouye et al., 1999; Li, Zhou et al.,
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2008). We expand the wavefunction of the condensate ψ(r, t) in momentum space, ψ(r, t) =

∑m φm(z, t) ×e−i(ωmt−2mkz), where φm(z, t) = ψm(z, t)/
√

A, ωm = 2h̄m2k2/M with M the
atomic mass, m = 0 corresponds to the residual condensates, m �= 0 denotes the side
modes, and A is the average cross area of the condensate perpendicular to ẑ. Using the
Maxwell-Schrödinger equations, we obtain dynamics equations for φm(z, t),

i
∂φm

∂t
= − h̄

2M

∂2φm

∂z2
− 2imh̄k

M

∂φm

∂z
+ ḡ

[

E∗
−φm−1e−4i(1−2m)ωrt + E−φm+1e−4i(1+2m)ωrt

]

, (2)

where ωr = h̄k2
l /2M is the recoil frequency, the coupling between modes is given by

ḡ(t) = g

(

1 +∑
n

ei∆ωnt

)

, (3)

with the coupling factor g =
√

3πc3R/(2ω2
l AL), R is the Rayleigh scattering rate of the pump

components, and L is the BEC length.

The first term on the right-hand-side of Eq.(2) describes the dispersion of φm, and the second
term gives rise to their translation. The terms in square brackets describe the atom exchange
between φm and φm+1 or φm−1 through the pump laser and end-fire mode fields. An atom in
mode m may absorb a laser photon and emit it into end-fire mode E−, and the accompanying
recoil drives the atom into m + 1 mode, hence atoms with mode m + 1 can emerge in forward
scattering. On the other hand, in the backward scattering, atoms with mode m absorb one E−
mode photon, deposit it into the laser mode and go into mode m − 1. The envelope function
of end-fire mode E− is given by

E− = −i
ωr ḡ

2cε0

∫ +∞

z
dz′ ∑

m

φm(z
′, t)φ∗

m+1(z
′, t)ei4(2m+1)ωrt, (4)

indicating that the end-fire mode field E− is due to the transition between m and m + 1 mode
and the magnitude of E− depends on the spatial overlap between the two modes. In addition,
there is a frequency difference of 8ωr between adjacent modes.

2.2 Mode competition for a two-frequency pump beam

In the case of a single-frequency pump in the weak coupling regime, the evolution of the
side modes and the end-fire mode indicates that the scattering is a localized process. For this
end-pumping configuration, the scattering first starts on the leading edge of the BEC and then
moves towards the tailing edge. To investigate the effect of the two-frequency pump beam, the
different frequency components of the end-fire mode which indicate the energy change during
the scattering are depicted in Fig. 2. The momentum of side mode m = n is 2nh̄k, and its
kinetic energy is 4n2 h̄2k2/2M = 4n2h̄ωr. For the pump component with frequency ωl , atoms
from the condensate are pumped to the side mode m = 1 and emit end-fire mode photons with
frequency ωl − 4ωr spontaneously. However, in the backward scattering process, an atom in
the condensate absorbs the end-fire mode (ωl − 4ωr) and emits a photon with frequency ωl

back into the pump laser. Since energy is not conserved in backward-scattering, the backward
side mode is not populated in weak-pulse regime. Side mode m = 2 is also not populated
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High Order Momentum States by Light Wave Scattering 5

Fig. 2. (Color online) Light-field components of a two-frequency pump laser. The broad
arrows are the pump laser and narrow ones are the end-fire mode (scattering optical field). In
a spontaneous process, atoms in the condensate absorb photons from the pump laser with
frequencies ωl and ωl − 8ωr, are scattered to side mode m = 1 and emit end-fire mode
photons with frequency ωl − 4ωr (dashed arrow) and ωl − 12ωr (dotted arrow), respectively.
Meanwhile, atoms in the condensate can also absorb end-fire mode photons with frequency
ωl − 4ωr, be scattered back to side mode m = −1 and emit photons with frequency
ωl − 8ωr(solid arrow), resonating to one of the pump laser components. The side mode
m = 1 can absorb pump laser photons with frequency ωl and be scattered to mode m = 2,
emitting photons with frequency ωl − 12ωr resonating to the existing end-fire mode.

due to the energy barrier. However, if we use the two components pump laser with frequency
difference 8ωr, i.e. resonant frequency difference, the energy mismatch can be compensated
by the pump laser.

Although the resonant condition for the backward mode is satisfied, it should be noticed that
two scattering channels exist almost simultaneously. One is atoms scattered from side mode
m = 0 to m = −1 and the other is from m = 1 to m = 2, resulting in mode competition. The
transition from mode m = 1 to m = 2 requires absorbtion of photons from pump laser, while
the backward transition takes photons from the end-fire mode. Because the intensity of the

pump laser is far greater than that of the end-fire mode, the transition from m = 1 to m = 2
has a bigger probability than the transition from m = 0 to m = −1. Thus the population of
the backward mode m = −1 is suppressed even at the resonant condition, while the forward
mode m = 2 is enhanced.

However, the existence of competition between these two channels may not lead to the
suppression of the backward mode. If these two channels happen in different spacial parts
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Fig. 3. (Color online) Spatial distribution of the side modes |ψ2| and the end-fire mode |ε−| in
the weak coupling regime (g = 1.25 × 106s−1) with the two-frequency pump for different
pulse durations: 150µs (a); 200µs (b); 250µs (c); 300µs (d). Condensate mode m = 0 is the
solid line-1, backward first-order side mode m = −1 is the solid line-2, forward first-order
side mode m = 1 is the dash-dotted line, forward second-order side mode m = 2 is the
dashed line, and end-fire mode is the dotted line.

of the condensate, then both of side mode m = −1 and m = 2 will be enhanced. The

suppression of backward mode m = −1 and the enhancement of mode m = 2 need that
these two scattering channels happen in the same area. Therefore, the spatial distribution
effect should be considered.

We analyze the spatial effect when second-order forward side mode and backward side mode
are populated at the resonant condition ∆ω = 8ωr. The evolution of spatial distribution of
side modes and end-fire mode is shown in Fig.3. Superradiance first starts on the leading
edge of the BEC, as shown in Fig.3(a). Although the backward first-order side mode m = −1
is populated through the overlap between end-fire mode E− and side mode m = 0, it is very
small and emerges at the leading-edge of the BEC. Since the overlap between end-fire mode
and side mode m = 1 is in the same area, the population of side mode m = 2 is obvious
on this edge, as shown in Fig.3(b). Side mode m = 2 grows more rapidly than side mode
m = −1, which means more atoms are scattered from side mode m = 1 to m = 2 than that
from m = 0 to m = −1.Then the first peaks of side modes m = 1 and m = 2 move to the center
of the BEC, as shown in Fig.3(c). Though the movement of the peaks is similar to that in the
case of a single-frequency pump laser, one major difference is that the regrowth of side mode
m = 0 is very little, hence nearly all the atoms on this edge are forwardly scattered. Due to
the nearly-complete depletion of the condensate, atoms are mainly transferred between side
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Fig. 4. (Color online) Normalized side mode populations versus time: (a) for a
single-frequency pump beam; (b) for a two-frequency resonant pump beam. In both cases
the coupling constant is kept g = 1.55 × 106s−1. The side mode are: m=-1 (solid); m=1
(dotted); m=2 (dashed).

Fig. 5. (Color online) The light-field components of a three-frequency pump laser. The broad
arrows are the pump laser and narrow ones are the end-fire mode.

mode m = 1 and m = 2. The apparent regrowth of side mode m = 1 on the leading-edge
shown in Fig.3(d) indicates that there are Rabi oscillations between side modes m = 1 and
m = 2 in the depleted area of the condensate.

The time evolution of several side modes populations normalized by the total atom number
are depicted by Fig.4. Fig.4 (a) shows that using a single-frequency pump laser cannot produce
backward mode m = −1 or forward higher mode m = 2 in the weak-pulse regime. Using a
resonant two-frequency pump beam with the same intensity, modes m = −1 and m = 2
increased, as shown in Fig.4 (b), however, the forward mode is greatly enhanced while the
backward mode remains very small.

2.3 The third order forward modes enhanced with a three-frequency pump beam

The second forward side mode m = 2 is greatly enhanced with a resonant two-frequency
pump beam, however, the populations of higher forward modes such as m = 3 are very small
as the channel from the second forward mode to the third forward mode is not resonant with
the exiting optical field. To get a large number mode for m = 3, Fig.5 depicts the scheme
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Fig. 6. (Color online) Normalized side mode populations versus time with the coupling
constant g = 1.55 × 106s−1: (a) for a three-frequency pump laser: m = −1 (dash-dotted),
m = 1 (dotted), m = 2 (dashed), m = 3 (solid) ; (b) for a five-frequency pump laser: m = 1
(dotted), m = 3 (dash-dotted), m = 4 (dashed), m = 5 (solid) .

of the three-frequency pump beam with the frequencies of the pump laser ωl , ωl − 8ωr and
ωl − 16ωr. The frequency components ωl, ωl − 8ωr and ωl − 16ωr both have the resonant
frequency difference. Hence, there could be two channels to form the backward side mode
m = −1 but the enhancement of the backward scattering is small because of the formation
of higher forward side modes. There are also two channels to form side mode m = 2. One
thing different from the two-frequency pump beam is that there is also a channel to form
side mode m = 3 for the reason that atoms in side mode m = 2 absorb pump laser photons
with frequency ωl , are then scattered to mode m = 3 and eventually emit end-fire mode
photons with frequency ωl − 20ωr which is resonant to an existing end-fire mode. This means
that more atoms in side mode m = 2 will be pumped to side mode m = 3 and less will be
transferred back to side mode m = 1, a competition between side mode m = 3 and m = 1 is

set up. As a result, side mode m = 3 will be enhanced and m = 1 will be reduced relatively.

Fig.6(a) is the simulated result of the time evolution of normalized side mode populations
for a three-frequency pump beam. We could see that side mode m = 3 would be strongly

enhanced at long time while side mode m = 1 reduced.

2.4 Momentum transfer in the high order forward modes

From the above discussion we know that using multi-resonant frequencies is a promising
way to get a large number of higher forward modes. When a pump laser has frequency
components ωl, ωl − 8ωr, · · · , ωl − (n − 1) × 8ωr, satisfying (n − 1) × 8ωr ≪ ωl , with the
kinetic energy of mode m = n equal to 4n2h̄ωr, then after the condensate atoms spontaneously
scattered to mode m = 1, the end-fire mode will have frequency components ωl − 4ωr, ωl −
12ωr, · · · , ωl − (2n − 1)× 4ωr. For resonance concern, mode m = 1 will absorb photons from
the pump components ωl , ωl − 8ωr, · · · , ωl − (n − 2)× 8ωr and emits end-fire mode photons
with frequency ωl − 12ωr, · · · , ωl − (2n − 1)× 4ωr which are resonant with existing end-fire
mode, so mode m = 2 is produced. Like mode m = 1, modes m = 2, m = 3, · · · , m = n − 1 can
absorb pump photons and emit photons resonant to the existing end-fire mode. For example,
mode m = n − 1 will absorb photons with frequency ωl and emits photons with frequency
ωl − (2n − 1)× 4ωr. Therefore atoms could finally be transferred to mode m = n. Note that
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mode m = n cannot emit resonant end-fire mode, so mode m = n will be enhanced. To show
it, Fig.6(b) is the simulated result of the time evolution of normalized side mode populations
for a five-frequency pump beam. We could see that side mode m = 5 would be strongly
enhanced.

2.5 Discussion

In the experiment, to get several resonant frequencies, the laser beam from an external cavity
diode laser can be split into several parts, and their frequencies are shifted individually
by acoustic-optical modulators (AOMs) which are driven by phase-locked radio frequency
signals, as demonstrated in the case of two resonant frequency (Bar-Gill et al., 2007; Yang et al.,

2008). Therefore, the frequency difference between the beams can be controlled precisely.
Furthermore, to avoid the reflection from the glass tube and formation of Bragg scattering
in the experiment, the pump beam can actually deviate a few degrees from the long axis, as
shown in the experiments (Fallani et al., 2005; Hilliard et al., 2008; Li, Zhou et al., 2008).

Different to the works in the configuration where the pump beam travels along the short axis
of the condensate with the resonant frequency (Yang et al., 2008), where a large number of
backward scattering is obvious in a two-frequency pump beam, the backward scattering is
suppressed and the forward second-order mode is obviously enhanced in our case. This is
due to mode competition between the forward second-order mode and the backward mode
and local depletion of the superradiant process.

We have not considered the initial quantum process because its time scale is very small,
shorter than 1µs. In this quantum process there is also mode competition to form the end-fire
modes along the long axis and suppress the emission on the other direction. This is different
concept from what has been discussed above, in which case mode competition exists in the
different channels satisfying the energy match and spatial condition.

For the pump beam with several resonant frequencies, not only can we obtain the high
order momentum transfer which is important in the momentum manipulation for atom

interferometry, but also the above analysis is useful to understand the interplay between
the matter wave and light in the matter wave amplification (Kozuma, Suzuki et al., 1999;
Schneble et al., 2003), atomic cooperative scattering in the optical lattice (Xu et al., 2009), and
by the pump with a noisy laser (Robb & Firth, 2007; Zhou, 2009).

3. High order momentum states by scattering of standing wave pulses

In this section, we apply a method for flexible manipulation of the atomic momentum
states with the standing wave pulses. The atomic diffraction from standing wave pulses is
demonstrated in the experiments and systematically analyzed by the band structure theory
of one-dimension optical lattice. With this method, we are able to design and realize several
specific momentum states, which may be applied in atomic interferometry. In principle, this
method could be used for designing a wide range of possible target states.

3.1 Theoretical model

We consider a non-interacting condensate being diffracted by a sequence of square shaped
standing wave pulses with the successive durations τi(i = 1, 2, ..., s + 1), separated by the
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intervals τf i(i = 1, 2, ..., s). The standing wave consists of a pair of laser beams far-detuned
enough to suppress the spontaneous emission.

The periodic potential (Denschlag et al., 2002; Morsch & Oberthaler, 2006) introduced by the
ac Stark shift can be described as V(x) = U0 cos2(kLx), with the trap depth U0 and the laser’s
wave vector kL = 2π/λL (λL is the wavelength of the laser). The lattice leads to a band
structure of the energy spectra, of which the eigenvalues of the energy En,q and eigenvectors
|n, q〉 (Bloch states) are labeled by the quasi-momentum q and the band index n, and they
satisfy the equation:

Ĥ |n, q〉 = En,q |n, q〉 , (5)

where the Hamiltonian Ĥ = p̂2/2M + U0cos2(kLx), with the atomic momentum p̂ and

the atomic mass M. The Bloch states form a quasi-momentum space. In the lattice, the
spatial periodicity of the wave function results in separated peaks in momentum space,
corresponding to the reciprocal lattice vector 2kL .

When a condensate with an initial momentum pm0 = h̄(q + 2m0kL) (h̄ is the Plank constant,
−kL ≤ q ≤ kL , m0 = ...,−1, 0, 1, ...) is abruptly loaded into a lattice, the wave packet can be
described as a superposition of the Bloch states:

|Ψ(t = 0)〉 =
∞

∑
n=0

|n, q〉〈n, q|pm0〉, (6)

where 〈n, q|pm0〉 = cn,q(m0). The nth Bloch state evolves independently as e−iEn,qt/h̄, and the
total wave function evolves as

|Ψ(t)〉 =
∞

∑
n=0

cn,q(m0)e
−iEn,qt/h̄|n, q〉. (7)

While the incident light is switched off after the duration τ1, the wave function is projected
back to the momentum space from the quasi-momentum space. The coefficient b(m0, m, τ1) of
each |pm〉 state (m = ...,−1, 0, 1, ...) can be acquainted as:

b(m0, m, τ1) =
∞

∑
n=0

cn,q(m0)cn,q(m)e−iEn,qτ1/h̄. (8)

For a zero initial momentum of the condensate, the subscript q can be omitted for
simplification and m0 = 0. For one pulse scattering, the population of the |pm〉 state is

P
(1)
m = |b(0, m, τ1)|2. It can be seen that the probabilities of the momentum states after

one scattering pulse depend on the lattice depth and the pulse duration. The lattice depth
determines the band structure and is reflected in the terms cn,q. The pulse duration influences

the phase evolution of each Bloch state as e−iEn,qτ1/h̄.

The multi-pulse process, which consists of a number of single pulses and intervals can be
solved as follows. The wave function of the condensate after the first pulse τ1 can be derived
from Eq. (8) as

|Ψ(τ1, t)〉 = ∑
m

b(m0, m, τ1)e
−iE(m)t/h̄|2mh̄kL〉. (9)
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After the first interval τf 1 and the second pulse τ2, the population of the |pm〉 state can be
achieved as

P
(2)
m =

∣

∣

∣

∣

∣

∑
m1

b(m0, m1, τ1)e
−iE(m1)τf 1/h̄b(m1, m, τ2)

∣

∣

∣

∣

∣

2

. (10)

As shown in Eq. (10),the population is affected by the two pulses, the first one corresponding
to b(m0, m1, τ1), and the second one corresponding to b(m1, m, τ2). During the interval τf 1, the

phase of the |pm1 〉 state evolves along the time as e−iE(m1)t/h̄, where E(m1) = (2m1 h̄kL)
2/2M =

4m2
1ER is the kinetic energy, and ER = (h̄kL)

2/2M is the single photon recoil energy. The

interval τf 1 produces a phase shift e−iE(m)τf 1/h̄ and contributes to the momentum distribution.

In the same way, the population of the |pm〉 state after (s + 1) pulses can be achieved as:

P
(s+1)
m =

∣

∣

∣

∣

∣

∑
m1,m2,··· ,ms

s+1

∏
i=1

b(mi−1, mi, τi)
s

∏
i=1

e−iE(mi)τfi
/h̄

∣

∣

∣

∣

∣

2

, (11)

with m0 = 0, and ms+1 = m.

From the analysis above, the momentum distribution after a sequence of pulses’ scattering
is influenced by not only the lattice pulses with the term ∏

s+1
i=1 b(mi−1, mi, τi), but also

the intervals among the pulses as reflected in the term ∏
s
i=1 e−iE(mi)τfi

/h̄. Although the
populations of the momentum states do not change during the intervals, the phase-evolution
rates of the momentum states with different kinetic energies are not identical. The phase

deviations between the states oscillate from 0 to 2π with the interval, and the heterogeneously
accumulated phases change the distribution of the condensate in the quasi-momentum space.

3.2 Experiments of standing wave pulse sequences

We performed the experiments of a condensate in a magnetic trap (MT) (see Fig. 7(a)) being
scattered by a sequence of standing wave pulses (see Fig. 7(b)). As shown in Fig. 7(c),
after pre-cooling, a cigar shaped 87Rb condensate of 2 × 105 atoms in 52S1/2 |F = 2, MF = 2〉
state was achieved by the radio frequency (RF) cooling in the magnetic trap, of which the
axial frequency is 20 Hz and the radial frequency is 220 Hz (Yang et al., 2008; Zhou et al.,
2010). A pair of counter-propagating laser beams, of which the durations were controlled
by an acousto-optical modulator, and the amplitudes were adjusted by the injection current
of a tapered-amplifier, were applied to the condensate along the axial direction. The linear
polarized incident light at the wavelength λL = 852 nm was focused with a waist of 110 µm
to cover the condensate. The trap depth, which was calibrated by Kapitza-Dirac scattering
experimentally, reached 120ER, corresponding to the light power of 320 mW. The incident
light and the magnetic trap were simultaneously shut after the BEC-light interaction. After

30 ms free falling and ballistic expansion, the atomic gas was pictured by absorption imaging.
Since the minimum gap between different momentum states is 2h̄k, which is much larger
than the momentum width of a single momentum state, the components with different
momenta will be separated in the TOF (time of flight) signal (see Fig. 7(d)), and the atomic
number of each momentum state is possible to be read separately as Nm (the momentum
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1 21f s fs 1s
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( )c RF Cooling in MT
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Lattice sequence
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absorption
imaging
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2 k 0 k 2 k 4 k8 k 6 k 4 k 6 k 8 k

Fig. 7. (Color online) (a) A pair of counter-propagating light beams are applied to a
condensate in magnetic trap. (b) The scattering process consists of a sequence of standing
wave pulses, which contained s intervals with widths τf i (i=1,2,...s) and s + 1 light pulses
with durations τi (i=1,2,...s + 1). The incident light’s wavelength is 852 nm and its maximum
intensity can reach 120ER. (c) The procedure for the experiments is shown. The condensate is
exposed to a sequence of standing wave pulses and then released from the magnetic trap.
The absorption images of the condensate can be observed after the free falling. (d) A TOF
signal obtained in our experiment.

order m = ...,−2,−1, 0, 1, 2). The relative population of the momentum state |2mh̄k〉 can be
evaluated as Nm/ ∑ Nm.

The lattice in our experiments is quite deep, so we concentrate on the short-pulse diffractions
to avoid the de-coherence and heating effects of long pulses relevant for Bragg scattering.
However, for more flexible momentum manipulation, our pulses are not so short as the
Raman-Nath pulses (Huckans et al., 2009) used in previous works.

A brief introduction to the Raman-Nath regime is given in the following for comparison. In the
scattering process, the evolution during the free evolution intervals is analyzed as in previous
section, while the effect of lattice with adequately short duration τ can be analytically solved
by the Schrödinger equation ih̄∂ |Ψ(t)〉 /∂t = Ĥ |Ψ(t)〉, after omitting the atomic kinetic energy
term p̂2/2M in the Hamiltonian. This approximation can be made while the displacement of
the scattered atoms during the interaction time is much smaller than the spatial period of
the standing wave. Equivalently, the standing wave duration τ and the single photon recoil

frequency ωr = h̄k2
L/2M have to fulfill τ ≪ 1/ωr. The pulse is able to split a stationary

condensate into components with symmetrical momenta pn = 2nh̄kL(n = 0,±1,±2, ...), with
corresponding populations Pn = J2

n(U0τ/2h̄), where Jn(z) are Bessel functions of the first
kind.
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Fig. 8. (Color online) Single pulse scattering of condensate: The black dots represent the
experiment results. The blue solid line is the theoretical analysis with Raman-Nath
approximation. The red dashed line is the numerical simulation with band structure theory.
Figure (a), (b),(c) and (d) correspond to the relative populations of the condensates with the
momenta 0h̄k, ±2h̄k, ±4h̄k and ±6h̄k respectively.

First we demonstrate a one-pulse scattering experiment. A condensate is exposed to a
standing wave pulse with depth 100ER and duration varying from 0 to 30µs. The relative
populations of the condensates with the momenta 0h̄k, ±2h̄k, ±4h̄k and ±6h̄k, corresponding
to Fig. 8(a), (b), (c) and (d) respectively, are measured and theoretically analyzed. In addition,
the theoretical analysis with the Raman-Nath approximation, is also shown in the figure for
comparison. It can be seen that within 3µs the theoretical analysis with the Raman-Nath
approximation (blue solid line) is close to the experimental results (black dots), and so is the
theoretical analysis with band structure theory (red dashed line). When the pulse duration
exceeds 3µs, the analysis with the Raman-Nath approximation gradually goes far away from
the experimental results, while the numerical simulation with band structure theory still
agrees with the experimental results along the entire time scale. As shown in Fig. 8, the
probability of each momentum state oscillates with the pulse duration as described by the

band structure theory. It is clear that, in the single pulse scattering process, the band structure
theory works well not only for the short pulse but also for the longer pulse, because the atomic
motion has been taken into account. So the atomic diffraction by a single standing wave pulse
can be predicted in a wider range of pulse duration with the band structure theory.

Then we increase the number of pulses in the experiments to explore the extra factors
influencing the momentum distributions. In every sequence, all the pulses are the same and all
the intervals are identical to make the experiments more convenient to carry out. For further
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comparison between the band structure theory and the analysis in the Raman-Nath regime,
every single pulse is made short enough for the Raman-Nath approximation.
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Fig. 9. (Color online) Two-pulse scattering of the condensate: The relative populations of the
stationary condensate P0h̄k versus the varied intervals τf is shown. The parameters of the
experiments are described above each figure. The black dots are the experimental results.
The blue dashed line is the analysis with Raman-Nath approximation. The magenta dotted
line is the numerical simulation with band structure theory. The red solid line is a numerical
simulation taking into account the momentum dispersion. (c) A demonstration of
momentum expansion introduced by s-wave scattering. The TOF signal (i) corresponds to
the dashed curve and pictures the momentum distribution before the former lattice pulse.
The signal (ii) corresponds to the solid curve and shows the momentum distribution after the
former pulse. The momentum width along Z direction (the lattice direction) is evaluated
based on the parts in the dashed boxes which include the momenta from −h̄k to h̄k.

Two experiments of two-pulse scattering are demonstrated in Fig. 9, in which the relative
populations of the stationary condensate P0h̄k versus the varied intervals τ is shown. The
parameters of the scattering pulses used in different sequences are chosen to be of the same
products of the lattice depth and the pulse duration, so that each pulse affects the condensate
equivalently. As shown in the figure, the intervals actually affect the final momentum
distribution, and the theoretical analysis with the band structure theory and Raman-Nath
approximation both picture well the evolution of the atomic distributions versus the interval
between the two pulses. The results of two-pulse scattering can be explained as the fact that
since the phase shift accumulated during the interval varies harmonically from 0 to 2π, the

probability of the stationary condensate oscillates between the minimum and the maximum.
When the phase shift is 2π with the interval πh̄/2ER (around 80µs), the wave function is
little affected by the interval and the two pulses diffract the condensate as one combined
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pulse to make the probability P0h̄k the minimum. While the phase shift is π with the interval
πh̄/4ER (about 40µs), the second pulse produces an effect opposite of the first one and diffract
the non-stationary components of the condensate back to the stationary one and make the
probability P0h̄k the maximum.

It also can be acquainted from Fig. 9 that the numerical simulation with band structure theory
is much closer to the experimental results than the analytical solution with Raman-Nath
approximation. It is conjectured that the phase evolution during the scattering process makes
the difference. The phase evolution in the scattering process is neglected in the Raman-Nath
approximation, but not in the numerical simulation with band structure theory. Although
the duration of the scattering process is short, the phase shifts in the scattering process
still increase. The phase shift in the scattering process needs to be taken into account and
influences the final momentum distribution. As a result, the longer the scattering pulse is,
the larger the difference is. Although the maximum of the probability P0h̄k corresponds to
the interval πh̄/4ER, the two-pulse experiments in Fig. 9 can clearly show that the longer
pulse leads to the larger difference. In Fig. 9 (a), the pulse duration is 6µs, the probability
P0h̄k reaches the maximum with the interval 34µs. In Fig. 9 (b), the pulse duration is 2µs, the
probability P0h̄k gets to the top with the interval 38µs.

Nevertheless, there is still some obvious deviation between the simulation and the
experimental results. It is observed that the momentum width has been expanded after the
former pulse (see Fig. 9(c)), because of the s-wave scattering between the different momentum
states. Consequently, this dispersion process is approximated to an initial momentum width

of ∼ 0.1h̄kL on average to optimize the numerical simulation. Unlike the analysis without
momentum width, phase evolution is different for different initial momenta and results in a
phase dispersion. The quasi modes obtained at the end of the diffraction process result from
the linear superposition of final states obtained after time evolutions of the different momenta
populated the initial BEC. It can be seen from Fig. 9 that the approximation is effective.

As discussed in (Li, Deng et al., 2008), the maximum of the probability P0h̄k will never reach 1
thanks to the imperfect optical lattice. In our case, the momentum expansion is an explanation
of the similar situation as shown in Fig. 9. Since the momentum width is considered, the phase
shift is populated around π with a width, instead of a definite π, with the interval πh̄/4ER.
In other words, there is no interval that accumulates a phase shift exactly equal to π, so with
any interval, the second standing wave pulse is not able to diffract all the condensates back to
the stationary part.

3.3 Manipulate the momentum states as design

The experiments and the numerical simulations above have shown the possibility and
feasibility of the manipulation of a condensate’s momentum states. We manage to design
several two-pulse sequences to achieve high contrast momentum states such as |±2h̄k〉,
|±4h̄k〉 and |±6h̄k〉, which may be useful in atomic interferometry (Beattie et al., 2009;

Rohwedder, 2001). For each state, we apply two totally different two-pulse sequences to
show the flexibility of the method. The general method to achieve the target states is to find

out the condition of the minimum of the square deviation ∆2 =
+∞

∑
m=−∞

(P
g
m − Pm)

2
, where P

g
m

is the probability of |2mh̄kL〉 in the goal state, and Pm is that generated by the sequence. A

355High Order Momentum States by Light Wave Scattering

www.intechopen.com



16 Will-be-set-by-IN-TECH

second method, as the target is to obtain the highest population of some certain momentum
state, consists in scanning the set of initial conditions and choose the one corresponding to
the maximum value of the desired population. We apply the two methods above separately
and obtain the same pulse sequences. As shown in Fig. 10, the experimental results (the black
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Fig. 10. Experimental realization of designed momentum states. The expected momentum
state is ±2h̄kL((a) and (b)), ±4h̄kL((c) and (d)) and ±6h̄kL((e) and (f)). The pulse sequences
are shown above each figure. The black round dots are experimental results. The blue
diamond dots are the expectations based on the design. The red square dots are the modified
design with momentum width, which agree with the experiments better.

round dots) agree well with the expectations of the designs (the blue diamond dots), whether
the pulses are in the Raman-Nath regime (see Fig. 10(b)) or not (see others in Fig. 10). When
the momentum dispersion is being considered, the expected momentum distributions (the
red square dots) get closer to the experiments, where the figures only display the relative
populations of the target states and omit the others for the figures being more clear.

It can be seen from Fig. 10 that the momentum width correction can improve the precision
of the prediction with our method. The average relative deviation between the experimental
results and the expected values without including the momentum width is 25.03%, while the
deviation is decreased to 13.15% with the correction.

An asymmetry of the momenta can be observed in Fig. 10, and it may ascribe to the following
factors. Besides the measurement error, there is an imperfection of the standing wave, brought
forth by the unbalanced intensity of the laser beams. External field (such as the magnetic trap)
fluctuations during the scattering process may also affect the momentum distribution.

3.4 Discussion

The band structure theory is a global method to deal with the standing wave scattering a
condensate, while Bragg and Raman-Nath scattering are two special situations which can be
analytically solved with their respective approximations. In the Bragg regime, the potential
height introduced by the standing wave is restrained below 4ER and that leads to the difficulty
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of generating higher order momentum states. In the Raman-Nath regime, the intensity of
the standing wave is not limited so that higher order momentum states can be generated
symmetrically (Gadway et al., 2009; Sapiro et al., 2009b). However the pulse duration has to
be short enough to neglect the atomic motion, so the momentum states can not be predicted
in this regime if the pulse duration is slightly longer. In our work, the scattering can be
well explained and numerically analyzed within a much wider range of pulse intensity and
duration. So it is natural that more momentum states can be generated.

Some valuable states, such as |±2h̄k〉, |±4h̄k〉 and |±6h̄k〉 states with high contrast, can
not be realized by the single pulse scattering, while they can be realized by a sequence of
standing wave pulses. A sequence of lattice pulses is a more effective and flexible tool for
momentum manipulation. It can generate many useful momentum states, in addition to the
ones demonstrated in our work.

Although the numerical simulation is corrected to take into account the momentum
dispersion, some deviations between the experiments and the simulation still exist. The
inaccuracy of the lattice-depth calibration, which is 5% at least, is one of the reasons. The
phase shift introduced by the magnetic trap is another one, while the influence is estimated
to be within 0.03%, which is below the experimental uncertainty. The heating and momenta
exchange during the s-wave scattering may also lead to some differences.

4. Conclusion

We have shown in this chapter two methods of getting high order momentum states by
resonant superradiant scattering and by a sequences of pulsed standing waves, corresponding
to traveling wave scattering and standing wave scattering, respectively. Different to Bragg
scattering, we can get a large number of high-order forward modes by resonant frequency
components of the pump beam by the former method through the mode competition between
the different resonant channels and the local depletion of the spatial distribution. While
with the latter method a symmetric momentum distribution is generated, with one pair of
momentum states designed to be mostly populated. Both methods are beneficial to a lager

momentum transfer in atom manipulation for the atom interferometry and atomic optics.
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