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1. Introduction  

Optical interferometry is widely used in many precision measurements such as 
displacement[1, 2], vibration[3, 4], surface roughness[5, 6], and optical properties[7-14] of 
the object. For example, holographic interferomter [1-3] can be used to measure the surface 
topography of the rigid object. The emulsion side of the photographic plate faces the object 
and is illuminated by a plane wave at normal incidence. Therefore, the reflection type 
hologram is recorded the interference signals between the incident wave and scattered wave 
from the object within the emulsion layer. Then the hologram is reconstructed with laser 
light and the information of object surface can be obtained. The Speckle interferometry [2-4] 
can be used to measure the motion of the rough surface. To compare the two exposure 
specklegrams, then the phase difference related to the surface movement can be obtained. 
Abbe refractometer [7, 8] is an easy method to determine the refractive index of the material 
based on the total internal reflection (TIR). That means the refractive index of the testing 
sample will be limit by the hemisphere prism installed in the refractometer. The 
ellipsometer [9-12] is widely used to measure the thickness and refractive index of film or 
bulk materials. Typically, the optical components of ellipsometer included polarizer, 
compensator, sample, and analyzer. Hence, there were many different types of ellipsometer 
for refractive index and thickness measurement of the sample. Most popular type is rotating 
polarizer and analyzer ellipsometer which can be divided into rotating polarizer type and 

rotating analyzer type. Both of them are analysis of the ellipsometric angles (, ) which 
determined directly from the adjustable angular settings of the optical components. The 

accuracy of the ellipsometric measurement are typically within the range 0.01 and 0.05 in 

(, ) [13, 14]. 

Compare to previous method, the heterodyne interferometry give much more flexibility of 
different kinds of the measurement purposes with suitable optical configuration. In this 
chapter, I will review the heterodyne interferometry and focus on the applications of this 
kind of interferometer. First of all, I will briefly introduce the history and applications of 
heterodyne interferometry that will be discussed in this chapter. Before I mention the 
applications of the heterodyne interferometry, I would like to describe several types of 
heterodyne interferometry. Then I would like to describe the precision positioning with 
optical interferometer and focus on the heterodyne grating interferometer. After that, I will 
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review some refractometer using heterodyne interferometer. In this section I would like to 
quick look some useful methods for measuring the refractive index and thickness of bulk 
material or thin film structure. In addition, the measurement of the optic axis and 
birefringence of the birefringent crystal will also be discussed in this section. The final 
application of the heterodyne interferometry that I would like to talk about is the 
concentration measurement. In this section, I will roughly classify the method into two 
categories. One is fiber type sensor; another is a non-fiber type sensor. And I will discuss the 
surface plasmon resonance (SPR) sensor in fiber-type and non-fiber type sensors. Finally, I 
would like to give the short conclusion, which summarized the advantages and 
disadvantages of the heterodyne interferometer.  

2. Heterodyne interferometry 

This section will introduce the development history of the heterodyne interferometry and 
describe the fundamental theory and basic optical configuration of the heterodyne 
interferometer. 

2.1 History of Heterodyne light source developement 

Hewlett Packard Company (HP) developed the first commercial heterodyne interferometer 
for precision positioning since 1966. Until now, HP systems have widely used in industry, 
scientific research, and education. J. A. Dahlquist, D. G. Peterson, and W. Culshaw [15] 
demonstrated an optical interferometer, which used Zeeman laser properties in 1966. They 
had the application of an axial magnetic field and resulted in the frequency difference 
between the right hand and left hand circular polarization states of the He-Ne laser. Because 
of these two polarization states are affected by equally thermal drift and mechanism 
vibration of the laser, the frequency difference are extremely stable. Therefore, this light 
source with different frequency is so called the heterodyne light source. Figure 1 showed 
that the first heterodyne interferometer which constructed with Zeeman laser. As you can 

see, the frequency shift coming from the moving mirror will be carried with 2. Then these 

two lights with different frequency will be interference at 45 and the distance-varying 
phase can be detected. 

There are many methods can construct the optical frequency shift such as rotation or 

moving grating method [16, 17], accousto-optical modulator (AOM) [18, 19], electro-optical 

modulator (EOM) [20, 21], and modulating two slightly different wavelengths of laser 

diodes [22]. Suzuki and Hioki [16] proposed the idea of moving grating method for 

constructing the heterodyne light source in 1967. As the grating moves along y-axis with the 

velocity v, the frequency shift will be introduced into the 1 order diffracted beam with . 

By suitable arrangement of the optical configuration, either one of these frequency shifted 

signals can be selected and to form the heterodyne light source. W. H. Stevenson [17] 

proposed the rotation radial grating to form the heterodyne light source in which he showed 

that the frequency shift were linear increased with the rotation rate of the radial grating up 

to 6k rpm. And the maximum frequency shift in this case was 500 kHz. 

An acousto-optic modulator (AOM) uses the acousto-optic effect to diffract and shift the 
frequency of the light [18, 19]. The piezoelectric transducer attaches to the quartz and the  


v

a
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Fig. 1. The first heterodyne interferometer constructed by Zeeman laser [15]. 

 

Fig. 2. The heterodyne light source constructed with moving grating [17]. 

 

Fig. 3. The heterodyne light source constructed with rotation radial grating [17]. 
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oscillating electric signal drives the transducer to vibrate, which creates sound wave in the 
quartz and changes the refractive index of the quartz as periodic index modulation. The 
incoming light diffracts by these moving periodic index modulation planes, which induced 
the Doppler-shifted by an amount equal to the frequency of the sound wave. That 
phenomenon is similar to the moving grating method but the fundamental concepts are 
momentum conservation of the phonon-photon interaction and Bragg diffraction theory. 
Figure 4 shows the frequency shifted by AOM that proposed in 1988 [18]. A typical 
frequency shifted varies from 27 MHz to 400 MHz. In the case of M. J. Ehrlich et al. [18], the 

frequency shifted was 29.7 MHz and the induced phase shifted over 360 by applying the 
voltage within 15 V.  

 

Fig. 4. The frequency shifted by AOM [18]. 

Electro-optic modulator is a signal-controlled optical device that based on the electro-optic 
effect to modulate a beam of light. The modulation may be imposed the phase, amplitude, 
or frequency of the modulated beam. Lithium niobate (LiNbO3) is one of the electro-optic 
crystals that is widely used for integrated optics device because of its large-valued Pockels 
coefficients. The refractive index of LiNbO3 is a linear function of the strength of the applied 
electric field, which is called Pockel effect. Figure 5 shows one of the optical configurations 
of the heterodyne light source constructed by EOM. The linear polarized light into the EOM, 

which the crystal axis is located at 45 respected to the x-axis and applied half-wave voltage 

 on it, the outcome light will carry the frequency shifted.  

The wavelength of laser diode can be varied as the injection current and temperature of the 
laser diode. The wavelength increased as the injection current increased. In general, the rate 
of the increase is about 0.005 nm/mA at 800 nm and that will be different for different types 

of laser diode [22]. As the wavelength of the laser diode is changed from  to + 
periodically, in which the injection current is periodically changed, the frequency shift of the 
heterodyne signal can be obtained.  

V
2
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Fig. 5. The optical setup of heterodyne light source with EOM. 

2.2 Type of Heterodyne interferometer 

The heterodyne interferometer can be divided into two categories, one is common-path type 

and another is non common-path type. The common-path means that the environment 

influence of the polarization states of the interference signal can be ignored. Of course, one 

also can divide into linear polarized heterodyne and circular polarized heterodyne 

interferometers based on the heterodyne light source. In this section, we would like to 

describe that based on heterodyne light source and focus on the boundary phenomena 

between the heterodyne light source and testing sample. 

The optical configuration of the linear polarized heterodyne light source have described in 

figure 5. For convenient, assume that the light propagate along z-axis and vertical direction 

is y-axis. If the fast axis of the EOM is located at 45 respected to the x-axis, the Jones matrix 

can be described [14, 23]: 

 EO岫ねの°, Г岻 = 盤達誰坦 替泰任坦辿樽 替泰任 	貸坦辿樽替泰任達誰坦 替泰任 匪 峭勅日Г鉄待 	 待勅貼日Г鉄嶌 盤 達誰坦 替泰任貸坦辿樽 替泰任 	 坦辿樽 替泰任達誰坦 替泰任匪 = 峭 頂墜鎚Г鉄	沈	鎚沈津Г鉄 	 	沈	鎚沈津Г鉄頂墜鎚Г鉄 嶌		  (1) 

where the  is the phase retardation of EOM and can be described . When we 

applied half-wave voltage of the EOM with sawtooth electric signal, equation (1) can be 
approximated as 

 EO岫降建岻 = 峭勅貼日尿肺日狽禰鉄待 待勅日尿肺貼日狽禰鉄 嶌 = 峭勅日狽禰鉄待 待勅貼日狽禰鉄 嶌              (2) 

As a linear polarized light with the polarization direction at 45 pass through the EOM, then 

the E-field can be  

 継 = 継頚岫降建岻 ∙ 継沈津 = 峭勅日狽禰鉄待 待勅貼日狽禰鉄 嶌 ∙ 怠√態 盤怠怠匪結沈摘轍痛 = 怠√態峭 勅日狽禰鉄勅貼日狽禰鉄 嶌 結沈摘轍痛  (3) 


V
V 2

EOM 

P (90) (45, ) 

Driver 

Z-axis 

Y-axis 
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where 0 and  are optical frequency and frequency shifted between two orthogonal 
polarization state, respectively. Obviously, equation (3) described the linear polarized 
heterodyne light source. 

For a circular polarized heterodyne light source, the optical configuration is showed in 
figure 6. As a linear polarized light pass through EOM and quarter-wave plate Q with the 

azimuth angle at 0, the Jones matrix of the E-field of the outcome light can be described 

 	継嫗 = 芸岫ど°岻 ∙ 継頚岫降建岻 ∙ 継沈津																														    

                     = 盤怠待 待沈匪 岾 達誰坦岫摘痛/態岻沈	 坦辿樽岫摘痛/態岻 沈	 坦辿樽岫摘痛/態岻達誰坦岫摘痛/態岻 峇 盤怠待匪 = 岾 達誰坦岫摘痛/態岻	貸 坦辿樽岫摘痛/態岻峇  

 = 怠態 盤怠沈匪結日狽禰鉄 + 怠態 盤 怠貸沈匪結貸日狽禰鉄 .																					 (4) 

Obviously, equation (4) describes the circular heterodyne light source that indicated the 

frequency shifted  between left-hand circular polarized light and right-hand circular 
polarized. 

 

Fig. 6. The circular polarized heterodyne light source. 

If the optical interferometer is constructed of the circular polarized heterodyne light source, 

we always call that circular heterodyne interferometer otherwise we call that heterodyne 

interferometer. For the specific purpose, we will arrange the tested system as transmission 

type, reflection type, and multi-reflection type according to the optical property of the 

testing sample. These types are summarized and show in figure 7. It is obvious that the 

polarization states (p- and s- polarization states or right-hand and left-hand circular 

polarization states) of the heterodyne light source are propagated at the same optical path, 

in which we call common-path structure. The advantage of the common-path structure is 

the influence of the polarization states of the heterodyne light source can be assumed and 

limited to the acceptable value. In general, we can ignore the error when the measurement 

system with common-path configuration. In figure 7, the reference signal Ir coming from the 

function generator can be written as 

 荊追 = 荊嫗[な + cos	岫降建岻], (5) 

EOM 

P (0) (45, ) 

Driver 
Z-axis 

Y-axis 

Q (0) 
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and direct into the lock-in amplifier. The heterodyne light source will pass through or reflect 
from the tested system and then pass through the analyzer ANt with azimuth angle at , 
finally detect by photodetector Dt. The tested system can be divided into three types based 
on the optical property of the testing sample. There are transmission, reflection, and multi-
reflection types.  

To consider a heterodyne light source passed through the transmission materials which 
induced the phase retardation , the E-field and intensity detected by Dt can be written as  

継痛 = 畦軽痛岫糠岻 ∙ 激 ∙ 継沈津 = 怠態 岾な なな な峇 峭結日梅鉄 どど 結貸日梅鉄 嶌峭 達誰坦狽禰鉄貸坦辿樽狽禰鉄 嶌, 

 										= [cos糠 cos摘痛態 結沈梅鉄 − sin 糠 sin摘痛態 結貸沈梅鉄] ∙ 盤達誰坦 底坦辿樽底匪        (6) 

and  

 荊痛 = |継痛|態 = 怠態 範な + に√畦態 + 稽態 cos岫降建 + 剛岻飯		  (7) 

where W is the Jones matrix of testing sample at transmission condition; A, B, and  can be 
written as 

   畦 = 怠態 岫cos態 α − sin態 α岻,  (8a) 

 稽 = cos α sin α cosφ,  (8b) 

and 

 剛 = tan貸怠岫喋凋岻 = tan貸怠 態達誰坦池 坦辿樽池 達誰坦宙岫達誰坦鉄 池貸坦辿樽鉄 池岻 ,  (8c) 

It is obvious that the phase retardation  will be carried by the testing signal It. To compare 
Ir and It with lock-in amplifier, the phase difference  coming from the testing sample can be 
obtained. Substitute the phase difference into equation (8c), the phase retardation of the 
sample can be determined. 

Of course, if the testing sample is not transparence, the reflection type or multi-reflection 
type can be applied to measure the optical property of the testing sample. To consider a 
circular heterodyne light source is reflected by the testing sample, passed through the 
analyzer with the azimuth angle , and finally detected by photodetector. According to 
Jones calculation, the E-field and intensity can be expressed as 

 		継痛 = 畦軽岫糠岻 ∙ 鯨 ∙ 継′  

 = 岾 cos態 糠 sin 糠 cos 糠sin 糠 cos 糠 sin態 糠 峇 磐堅椎 どど 堅鎚卑 峭 達誰坦狽禰鉄貸坦辿樽狽禰鉄 嶌    

 	= 岾堅椎 cos 糠 cos摘痛態 − 堅鎚 sin 糠 sin摘痛態 峇 盤達誰坦底坦辿樽底匪     (9) 

and  

 		荊痛 = |継痛|態 = 荊待[な + cos岫降建 + 剛岻] .             (10) 

www.intechopen.com



 
Interferometry – Research and Applications in Science and Technology 38

 

Fig. 7. Types of the heterodyne interferometer with common-path structure. 

Where S is the Jones matrix of testing sample at reflection condition, rp and rs are the 
reflection coefficients, I0 and  are the average intensity and phase difference coming from 
the sample between p- and s- polarizations, which can be written as 

 荊待 = 岫追妊鉄 達誰坦鉄 底袋追濡鉄 坦辿樽鉄 底岻態                   (11a) 

and 
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 剛 = tan貸怠 磐 態 坦辿樽底 達誰坦底∙追妊追濡追妊鉄 達誰坦鉄 底袋追濡鉄 坦辿樽鉄 底卑          (11b) 

The reflection coefficients in the reflection matrix of the sample can be expressed by Fresnel 
equation that can be divided into single reflection and multi-reflection depended on the 
testing structure. Hence, the rp and rs can be written as [14, 23] 

(1) single reflection 

 堅椎 = 津鉄 達誰坦提貸津迭 達誰坦提禰津鉄 達誰坦提袋津迭 達誰坦提禰,              (12a) 

 堅鎚 = 津迭 達誰坦提貸津鉄 達誰坦提禰津迭 達誰坦提袋津鉄 達誰坦提禰,                      (12b) 

(2) multi-reflection 

 堅椎岫紅岻 = 追迭妊袋追鉄妊奪淡丹	岫沈庭岻怠袋追迭妊追鉄妊奪淡丹	岫沈庭岻,                 (13a) 

 堅鎚岫紅岻 = 追迭濡袋追鉄濡奪淡丹	岫沈庭岻怠袋追迭濡追鉄濡奪淡丹	岫沈庭岻,                  (13b) 

and 

 紅 = 態訂津鉄鳥 達誰坦岫提禰岻碇 .              (13c) 

Where n1 and n2 are the refractive indices of air and testing sample,  and t are the incident 

angle and refracted angle,  is the phase difference coming from the optical path difference 

in the testing sample,  is the wavelength of the heterodyne light source. It is obvious that 

the optical properties of the testing sample can be obtained by substitute phase difference 

into the equations (10) ~ (13). 

On the other hand, the typical optical configuration of the non-common path is shown in 

figure 8. It is clear that p- and s- polarizations will be propagated at two different paths 

when they passed through the polarization beam splitter (PBS). In practice, the environment 

disturbance will not be neglected in non-common path configuration because of these two 

orthogonal polarization states will have different influence at different path. Therefore, the 

non-common path optical interferometry using for precision measurement should be 

seriously taken consideration of stability of the environment disturbance. Figure 8 shows the 

optical configuration of the displacement measurement. The p- and s- polarizations will 

reflect by mirrors M1 and M2, then pass through the analyzer with azimuth angle at 45. 
Therefore, the E-field and intensity of the interference signal between two arms can be 

written as 

 継痛 = 蕃勅日狽禰鉄 貼日入岫鉄匂妊岻勅日狽禰鉄 貼日入岫鉄匂濡岻否結沈摘轍痛,       (14) 

and 

 	荊痛 = 怠態 峽な + cos 峙降建 − 替訂碇 岫穴椎 − 穴鎚岻峩峺.               (15) 
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If the mirror M1 is moved with time, the phase difference 
替訂鳥妊碇  will be changed and the 

displacement variation can be measured by comparing the testing signal and reference 
signal with lock-in amplifier. 

 

Fig. 8. The optical configuration of the non-common path displacement measurement. 

3. Accurate positioning with heterodyne interferometer 

Nano-scale positioning devices have become a significant requirement in scientific 
instruments used for nanotechnology applications. These devices can be applied to nano-
handling, nanomanipulation, and nanofabrication. In addition, they are an essential part of 
the scanning probe microscopy (SPM) and widely used in many research fields. The 
precision positioning devices consist of three principle parts, which are the rolling 
component, the driving system and the position sensor. Piezoelectric actuator is the most 
popular method for driving system and commercial products have been on the market for a 
few decades. Therefore, the piezoelectric actuator and the position sensor will play the role 
of the positioning and the feedback control of the rolling element. To achieve the high 
resolution positioning, the sensing methods of position sensor become more important and 
have attracted great attention over the past two decades. In this section, we will introduce a 
few of typical precision positioning methods [24-30] which used heterodyne interferometry. 
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C. C. Hsu [29] proposed the grating heterodyne interferometry (GHI) to measure the in-
plane displacement. The schematic diagram of this method is shown in figure 10. The 
diffracted grating has mounted on the motorized stage and four diffracted lights will 
diffract and propagate in the x-z and y-z planes which are for measuring the displacement 
in x- and y- directions respectively. Based on the Jones calculation, the E-field of the 1 
diffracted beams can be expressed 

 

Fig. 10. 2-D displacement measurement system with GHI [29]. 

 継掴罰怠 ∝ exp 岾件倦健掴罰怠 罰 件 態訂巽猫 穴掴峇 ∙ 継張 = exp 岾件倦健掴罰怠 罰 件 態訂巽猫 穴掴峇 岾 勅日狽禰/鉄勅貼日狽禰/鉄峇, (x-direction)   (16a) 

and 

 継槻罰怠 ∝ exp 磐件倦健槻罰怠 罰 件 態訂巽熱 穴槻卑 ∙ 継張 = exp 磐件倦健槻罰怠 罰 件 態訂巽熱 穴槻卑 岾 勅日狽禰/鉄勅貼日狽禰/鉄峇, (y-direction)  (16b) 

where gx and gy are the grating pitch in x- and y- directions, dx and dy are the displacement 
along the x- and y- directions respectively. To consider x-direction displacement 
measurement, the 1st order diffracted lights will be collected by a lens L and propagate into 
two paths: (1) prism P2  polarization beam splitter PBS2  analyzer AN2 (45)  detector 
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Dx1, (2) prism P4  polarization beam splitter PBS2  analyzer AN3 (45)  detector Dx2. It 
is similar to the y-direction displacement measurement, the 1st order diffracted lights will 
be propagated into (3) prism P1  polarization beam splitter PBS2  analyzer AN4 (45)  
detector Dy1, (4) prism P3  polarization beam splitter PBS2  analyzer AN5 (45)  
detector Dy2. After Jones calculation, they can be written as 

 荊掴怠 ∝ 弁継袋怠鎚,掴 + 継袋怠椎,掴弁態 = 怠態 崘な + cos 岾降建 + 倦盤健貸怠,掴 − 健袋怠,掴匪 − 替訂巽猫 穴掴峇嵌,   (17a) 

 荊掴態 ∝ 弁継貸怠鎚,掴 + 継袋怠椎,掴弁態 = 怠態 崘な + cos 岾降建 + 倦盤健袋怠,掴 − 健貸怠,掴匪 − 替訂巽猫 穴掴峇嵌,  (17b) 

 荊槻怠 ∝ 弁継袋怠鎚,槻 + 継貸怠椎,槻弁態 = 怠態 尾な + cos 磐降建 + 倦盤健貸怠,槻 − 健袋怠,槻匪 − 替訂巽熱 穴槻卑琵,  (18a) 

and 

 荊槻態 ∝ 弁継貸怠鎚,槻 + 継袋怠椎,槻弁態 = 怠態 尾な + cos 磐降建 + 倦盤健袋怠,槻 − 健貸怠,槻匪 − 替訂巽熱 穴槻卑琵.  (18b) 

To compare the equations (17) and (18), the phase difference coming from the movement in 
x- and y- directions can be obtained and expressed as 

 剛沈 = 腿訂巽日 穴沈 + に倦健沈 				岫件 = 捲, 検岻, (19) 

where lx and ly are the path difference between grating and PBS1 and PBS2 respectively. In 
practice, the second term in equation (19) can be assumed the initial phase. Therefore, the 
displacement can be obtained as phase difference is measured and grating pitch is given. 

Figure 11 shows that the 2-D displacement measurement with 2-D grating. The movement 

of the stage is toward to 45 respected to the x-direction and moved 180 nm. The 
displacement projection in the x- and y-direction are about 120 nm and 140 nm respectively. 
It is obvious that there are small difference between the results measured by GHI and HP 
5529A. Hsu’s results can observe that the sensitivity of GHI is higher than HP 5529A and the 
smallest displacement variation can be judged is about 6 pm. Besides, GHI can provide the 
2-D displacement monitoring with single measurement apparatus which have many 
advantages such as easy alignment, high cost/preference ratio, and easy integrated to the 
motorized system.  

Recently, J. Y. Lee [30] proposed a novel method to measure the 2-D displacement which 
have quasi-common optical path (QCOP) configuration. The optical structure is shown in 
figure 12. Based on the clever arrangement, the expanded heterodyne beam is divided into 4 

parts A, B, C and D. Aヤヤヰンュリワヨ ヵヰ ヵラユ Jヰワユヴ ヤalヤヶlaヵリヰワ, the amplitudes of these 4 parts are 
given by 

 継喋 = 継寵 = 蛍岫なぱど°岻 ∙ 継張 = 岾勅貼日狽禰/鉄勅日狽禰/鉄 峇 , 継凋 = 継帖 = 蛍岫ど°岻 ∙ 継張 = 岾 勅日狽禰/鉄勅貼日狽禰/鉄峇.   (20) 

The expanded heterodyne beam will reflect by a mirror and focus by a lens with suitable 

focal length, in which can make the zero order (m=0) beam overlap with the 1 order 

diffracted beams. The beam distribution is shown in detail in the inset. When the grating 

moves along the x direction, the interference phase changes can be observed from the  
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Fig. 11. Displacement measurement of 2-D movement of motorized stage with GHI and HP 
5529A. 

overlapping area O1 to O4; when the grating moves along the y direction, the interference 

phase changes can be observed from the overlapping area O5 to O8. One can use an iris 

before the focus lens to control the overlapping area. The overlapping areas (O1 and O5) are 

chosen to pass through two polarizers P1 and P2 with transmittance axes at 0°. The 

interference of the light is detected using two detectors D1 and D2. The interference signal I1 

and I2 measured by the detectors D1 and D2 can be written as 

 荊怠 = な + cos岫降建 − 剛掴怠岻,          (21a) 

 荊態 = な + cos岫降建 − 剛槻怠岻.              (21b) 

A polarizer P3 for which the transmittance axis is at 45° and a detector D3 are used to 

measure the intensity of the non-overlapping areas which can be a reference signal I3 

(measured by D3) and written as 

 荊戴 = な + cos岫降建岻, (22) 
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Fig. 12. The schematic of the single type and differential type QCOP heterodyne grating 
interferometer. 

These three signals I1, I2, and I3 are sent into the lock-in amplifier and the phase differences 

x = x1 (between I1 and I3) and y = y1 (between I2 and I3) are given by 

 剛沈 = 態訂巽日 穴沈 					岫件 = 捲, 検岻,   (23) 

where di is the displacement in x- and y- directions; gi is the grating pitch of 2-D grating in x- 
and y- directions. It is obvious that the 2-D displacement can be obtained as the phase 
difference and grating pitch of the 2-D grating are given. In the differential type QCOP 
method, two polarization beam splitters (PBSs) are used to separate the two overlapping 
beams into four parts. Therefore, the interference signals detected by D4, D5, D6, and D7 can 
be written as 

 荊替 = な + cos岫降建 − 剛掴怠岻 and 荊泰 = な + cos岫降建 + 剛掴怠岻;    (for x- direction)  (24a) 

 荊滞 = な + cos岫降建 − 剛槻怠岻 and 荊胎 = な + cos岫降建 + 剛槻怠岻.    (for y- direction)  (24b) 

These two pairs signal are sent into the multi-channel lock-in amplifier, the phase 

differences x =x1 – (–x1) (between I4 and I5) and y =y1 – (–y1) (between I6 and I7) are 4 

times of i. 

Figure 13 shows a top view of the experimental results in the XY section and the XY stepper 
moves with a displacement of 1 mm. It is clear that the slight difference between the results 
measured by the laser encoder and QCOP method. The difference is coming from a tiny 
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angle between the moving direction and the grating, which can be alignment by mounting 
2D grating on the rotation stage. In their case, the larger difference was about 12 μm in the y- 
direction and the smallest difference was about 29 nm in the x- direction for a displacement 

of 1 mm. Based on the error analysis, if the phase resolution (0.001) of the lock-in amplifier 
is considered, the corresponding displacement resolutions of the differential and single type 

interferometers are estimated to be 9 pm and 4.5 pm for a grating pitch of 3.2 m, 
respectively. If only high frequency noise is considered, the measurement resolution of the 
differential and single type QCOP interferometers can be estimated to be 1.41 nm and 2.52 
nm. 

 

Fig. 13. Displacement measurement of the quadrangular motion with the QCOP method 
[30]. 

4. Optical constants measurement with heterodyne interferometer 

Optical constants of the materials such as refractive index, birefringence, optical activity, 
and thickness are significant parameters in material science. There are many methods [9-12, 
31-40] can determine those factors, most popular method is ellipsometer [9-12]. Recently, 
these factors can be obtained by heterodyne interferometer. In this section, we will review 
some novel methods [31-40] for optical constants measurement with heterodyne 
interferometer. 

C. C. Hsu [32] proposed a novel method for determine the refractive index of the bulk 
materials with normal incident circular heterodyne interferometer (NICHI) and the 
schematic diagram is shown in figure 14. The circular heterodyne light source was incident 
into the modified Twyman-Green interferometer, in which the testing signal reflected from 
the sample can be interfered and carried by the circular heterodyne light beams. Based on 
Jones calculation, the interference signal measured by D can be written as 
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 荊痛 = |継怠 + 継態|態 = 荊待[な + 紘 cos岫降建 + 剛岻],       (25) 

where E1 and E2 are the E-field coming from the optical path 1 and path 2 respectively. I0, , 
and  are the mean intensity, the visibility and the phase of the interference signal, 
respectively. In additions, they can derive from the Jones calculation and written as 

 

 

Fig. 14. The optical configuration of normal incident circular heterodyne interferometer [32]. 

 荊待 = 峙怠態 岫津貸怠津袋怠岻態 + に堅陳態 + に岫津貸怠津袋怠岻堅陳 sin に糠 sin岫剛鳥怠 − 剛鳥態岻峩,      (26a) 

 γ = √凋鉄袋喋鉄[迭鉄岫韮貼迭韮甜迭岻鉄袋態追尿鉄袋態岫韮貼迭韮甜迭岻追尿 坦辿樽 態底 坦辿樽岫笛匂迭貸笛匂鉄岻],      (26b) 

 剛 = tan貸怠岫喋凋岻,                  (26c) 

where the symbols A and B can be written as 

 A = 怠態 [岾津貸怠津袋怠峇態 − ね堅陳態] ∙ 岫cos態 糠 − sin態 糠岻, (27a) 

 B = 怠態 [岾津貸怠津袋怠峇態 − ね堅陳態] ∙ sin に糠 − に 津貸怠津袋怠 堅陳,          (27b) 
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where rm is the normal reflection coefficients of the test medium. If the phase can be 
measured and the reflectivity of mirror is given, the refractive index of the testing sample 
will be obtained. Furthermore, it is clear that the resolution of refractive index is strongly 
related to the azimuth angle of analyzer and the reflectivity of the mirror. To derive 
equation (26) to n, the resolution of refractive index can be written as 

 娟 券 = 怠匂這匂韮 |∆剛| = [銚頂貸長頂鳥 ]|∆剛|,  (28) 

where a, b, c, and d are 

 欠 = 態[貸 填認尿岫迭甜韮岻鉄袋鉄岫韮貼迭岻岫迭甜韮岻典 坦辿樽 態底][岾韮貼迭迭甜韮峇鉄貸替追尿鉄][達誰坦鉄 底貸坦辿樽鉄 底],          (29a) 

 決 = に 替岫津貸怠岻岫怠袋津岻典 犯貸態岫津貸怠岻追尿怠袋津 + 怠態 [岾津貸怠津袋怠峇態 − ね堅陳態] ∙ sin に糠般,  (29b) 

 潔 = [岾津貸怠津袋怠峇態 − ね堅陳態]態岫cos態 糠 − sin態 糠岻, (29c) 

 穴 = な + 替犯貼鉄岫韮貼迭岻認尿韮甜迭 袋迭鉄[岾韮貼迭韮甜迭峇鉄貸替追尿鉄] 坦辿樽 態底般鉄[岾韮貼迭韮甜迭峇鉄貸替追尿鉄]鉄[達誰坦鉄 底貸坦辿樽鉄 底]鉄 .  (29d) 

The simulation results were shown in figure 15 and resolution of the refractive index can be 
reached 10-5 as the suitable experimental conditions were chosen.  

 
 

 
 

Fig. 15. The relationship between the azimuth angle, reflectivity of the mirror, and 
resolution of the refractive index [32]. 

In 2010, Y. L. Chen and D. C. Su [38] developed a full-field refractive index measurement of 

gradient-index lens with normal incident circular heterodyne interferometer (NICHI). They 

used high speed CMOS camera to record 2D interference signal and the optical 

configuration was shown in figure 16.  

n n

 rm 

a

a b 

b 

a: low refractive index (1.33) 
b: high refractive index(1.77) 
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Fig. 16. Optical configuration of full-field normal incident circular heterodyne 
interferometer [38]. 

In this interferometer, one is for reference beam (BSQ2MQ2BSANILC) and 

one is for testing beam ((BSGBSANILC). Here, G means GRIN lens. They were 

interfere with each other after passing through AN. Before insert the Q1, the interference 

signal can be written as   荊怠 = 荊待 + 紘怠 cos岫に講血建 + 剛怠岻                                     
 = 怠態 峽堅態 + 堅陳態 − に堅堅陳 cos 峙に講血建 + 訂態 − 岫剛鳥怠 − 剛鳥態 + 剛追岻峩峺   (30) 

where I0 , 1 , and 1 are the mean intensity, visibility, and phase of the interference signal, 

respectively. Then insert the Q1, the interference signal can be written as 

 荊態 = [堅堅陳 sin岫剛鳥怠 − 剛鳥態 + 剛追岻] cos岫に講血建岻 + 崘怠態 岫堅陳態 − 堅態岻嵌 cos岫に講血建岻 + 系,  (31a) 

and  

 		剛態 = cot貸怠 峙態追追尿 坦辿樽岫笛匂迭貸笛匂鉄袋笛認岻岫追尿鉄貸追鉄岻 峩.  (31b) 

It is obvious that the refractive index of the GRIN lens G can be the function of 1 and 2 
which expressed as 

 券 = 達誰担笛鉄貸追尿 達誰坦笛迭袋追尿紐達誰坦鉄笛迭袋達誰担鉄笛鉄達誰担笛鉄袋追尿 達誰坦笛迭貸追尿紐達誰坦鉄笛迭袋達誰担鉄笛鉄.           (32) 

Therefore, for a specified rm, 1 and 2 are given by the measurement, the refractive index of 

GRIN lens can be obtained.  

For full-filed heterodyne phase detection can be realized with three-parameter sine wave 

fitting method that proposed by IEEE standards 1241-2000. The fitting equation has the form 

of 
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 荊岫建岻 = 謬畦待態 + 稽待態 cos岫に講血建 + 砿岻 + 系待,  (33a) 

and  

 	砿 = tan貸怠 岾貸喋轍凋轍 峇.      (33b) 

where A0 , B0 , and C0 are real numbers and they can be derived with the least-square 
method. And finally the phase of the all pixels on the CCD camera can be obtained. Based 
on their method, they demonstrated the two dimensional refractive index distribution of the 
GRIN lens and showed in figure 17. 

 
 

 
 

Fig. 17. The refractive index contour of GRIN lens measured by full-field NICHI [38]. 

For the measurement of the optical constants of the thin film, K. H. Chen and C. C. Hsu [33] 
proposed a circular heterodyne refractometer. The optical configuration was shown in 

figure 18. The circular heterodyne light source was incident onto the sample at 0 and the 
light will be partially transmitted and reflected at the interface between the thin film and 

substrate. If the transmission axis of AN is located at  with respect to the x-axis, then the E-
field of the light arriving at D is given 

www.intechopen.com



 
Interferometry – Research and Applications in Science and Technology 50

 

Fig. 18. The circular heterodyne refractor. 

 継痛 = 岾 cos態 ∝ sin 糠 cos 糠sin 糠 cos 糠 sin態 糠 峇 磐堅椎 どど 堅鎚卑 峭 達誰坦狽禰鉄貸坦辿樽狽禰鉄 嶌 = 峭追妊 達誰坦鉄 底 達誰坦狽禰鉄 貸追濡 坦辿樽底 達誰坦底 坦辿樽狽禰鉄追妊 坦辿樽底 達誰坦底 達誰坦狽禰鉄 貸追濡 坦辿樽鉄 底 坦辿樽狽禰鉄 嶌. (34) 

Therefore, the testing signal detected by the detector D can be written as 

 荊痛 = |継痛|態 = 荊待[な + √凋鉄袋喋鉄彫轍 cos岫降建 + 剛岻],              (35) 

where I0 and  are the bias intensity and the visibility of the signal, and  is the phase 

difference between the p- and s- polarizations coming from the reflection of the sample. 

They can be expressed as 

 荊待 = 怠態 岫弁堅椎弁態 cos態 糠 + |堅鎚|態 sin態 糠岻,  (36a) 

 畦 = 怠態 岫弁堅椎弁態 cos態 糠 − |堅鎚|態 sin態 糠岻,                  (36b) 

 稽 = 怠態 岫堅椎堅鎚∗ + 堅鎚堅椎∗岻 sin 糠 cos 糠,          (36c) 
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and 

  剛 = tan貸怠岫喋凋岻 = tan貸怠[ 岫追妊追濡∗袋追濡追妊∗岻 坦辿樽底 達誰坦底岫弁追妊弁鉄 達誰坦鉄 底貸|追濡|鉄 坦辿樽鉄 底岻].              (36d) 

The symbols rp and rs are the Fresnel equation (as equation 13);  and  are the conjugates 

of rp and rs, respectively. It is obvious that the phase difference coming from the samples are 

function of the incident angle and the transmission axis of the analyzer AN. In practice, one 

can adjust three transmission axis of the analyzer at fixed incident angle or change three 

different incident angles with fixed transmission axis of the analyzer to get the 

corresponding phase difference . Therefore, substitute the phase difference into equation 

(36d) the optical constants of the sample can be obtained. According to Chen’s results, they 

can successfully measure the thin metal film deposited on the glass substrate with lower 

measurement errors, which are 10-3 for the complex refractive index and 10-1 nm for the 

thickness.  

Birefrigent crystals (BC) have been used to fabricate polarization optical components for a 
long time. To enhance their qualities and performances, it is necessary to determine the 
optical axis (OA) and measure the extraordinary index ne and the ordinary index no 
accurately. There are many methods proposed to measure these parameters of the 
birefrigent crystal. Huang et al. [39] measured (ne, no) of the wedge-shaped birefrigent 
crystal with transmission-type method. Therefore, the accuracy of thickness, flatness and 
parallelism of the two opposite sides of the birefrigent crystals are strongly required. D. C. 
Su and C. C. Hsu [37] proposed a novel method for measuring the extraordinary index ne, 
the ordinary index no, and the azimuth angle of the birefrigent crystal with single apparatus 
which described in figure 19. Based on the circular heterodyne interferometer (CHI) and 
replaced the sample by the birefrigent crystal, the Jones vector of the E-field detected by D 
can be written as 

 継痛 = 畦軽岫紅岻 ∙ 崘堅椎椎 堅椎鎚堅鎚椎 堅鎚鎚 嵌 ∙ 継沈  

 = 磐盤堅椎椎 cos 紅 + 堅鎚椎 sin 紅匪 cos摘痛態 − 岫堅椎鎚 cos 紅 + 堅鎚鎚 sin 紅岻 sin摘痛態 卑 岾達誰坦庭坦辿樽庭峇               (37) 

where S is the Jones matrix for BC, rpp and rss are the direct-reflection coefficients, and rps 

and rsp are the cross-reflection coefficients [14], respectively. Based on Fresnel equations, rpp, 

rss, rps and rsp are the function of the ne, no, and azimuth angle  of the birefrigent crystal. 

Therefore, the intensity of the testing signal can be expressed 

 荊痛 = |継痛|態 = 盤追妊妊 達誰坦庭袋追濡妊 坦辿樽庭匪鉄袋岫追妊濡 達誰坦庭袋追濡濡 坦辿樽庭岻鉄態 [な + cos岫降建 + 剛岻],  (38a) 

and 

 剛 = tan貸怠 磐 態盤追妊妊 達誰坦庭袋追濡妊 坦辿樽庭匪岫追妊濡 達誰坦庭袋追濡濡 坦辿樽庭岻盤追妊妊 達誰坦庭袋追濡妊 坦辿樽庭匪鉄袋岫追妊濡 達誰坦庭袋追濡濡 坦辿樽庭岻鉄卑.      (38b) 

Theoretically, it is difficult to obtain the ne, no, and azimuth angle  of the birefrigent crystal 

by substituting the phase difference, which is arbitrary choose the measurement conditions  
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Fig. 19. Optical configuration of the determination of the optical properties of birefrigent 
crystal with CHI.  

of the incident angle and azimuth angle of the analyzer, into equation (38b). Therefore, Su 

developed a sequence for determining these parameters. First, let azimuth angle  of 

analyzer equal to 0 and phase difference can be written as 

 剛 = tan貸怠 磐 態追妊妊追妊濡追妊妊鉄貸追妊濡鉄卑.  (39) 

As azimuth angle  of the birefrigent crystal at 0 or 90, rps and rsp will be equal to 0, and 

phase difference  is equal to 0. But in this period, one cannot determine the azimuth angle 

 of brifrigent crystal exactly at 0 or 90. 
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Second, fixed the azimuth angle of the birefrigent crystal and rotated azimuth angle  of 

analyzer to nonzero position. The phase difference  can be expressed as 

 剛 = tan貸怠 磐 坦辿樽 態庭∙追妊妊追妊濡追妊妊鉄 達誰坦鉄 庭貸追濡濡鉄 坦辿樽鉄 庭卑.   (40) 

At this period, the rpp and rss will be under one of the conditions (i) =90or (ii) =0. Hence, 
we solved the ne and no under conditions (i) and (ii) with two different incident angles. 

Third, determine the correct solution with two justifications. (1) Rationality of the solution: 

In general, both ne and no are within the range 1 and 5. If any estimated data of ne and no is 

not within this range, it is obvious that the estimated data may be incorrect. (2) Comparison 

between ne and no: Either a positive or negative crystal is tested, all two pairs of solutions of 

either group should meet with only either or . If not, then that group is 

incorrect. 

Based on Su’s procedure, they have successfully determined the ne, no, and azimuth angle  

of the birefrigent crystal, which were positive crystal (quartz) and negative crystal (calcite), 

with lower error of the refractive index (~ 10-3) and azimuth angle (~0.1) of BC.  

J. F. Lin et al [40] proposed a transmission type circular heterodyne interferometer to 

determine the rotation angle of chiral medium (glucose solution). The optical setup was 

shown in figure 20 and the E-field of the testing signal derived from Jones calculation is 

given 

 E = A岫ど岻 ∙ S岫θ岻 ∙ 芸怠岫ねの岻 ∙ 継頚岫ひど岻 ∙ 鶏岫ねの岻 ∙ 継沈津  

 = 峙な どど ど峩 峙 cos 肯 sin 肯− sin 肯 cos 肯峩嵜怠貸沈態 怠袋沈態怠袋沈態 怠貸沈態 崟 釆結貸沈摘痛/態 どど 結貸摘痛/態挽 崛怠態 怠態怠態 怠態崑 峙 待帳轍勅日葱轍禰峩,  (41) 

where  is the optical rotation angle of the chiral medium. And the intensity of the testing 

signal detected by the photodetector can be derived and written as 

 荊痛 = 荊鳥頂[な − sin岫降建 − に肯岻],   (42) 

Compare with the reference signal by lock-in amplifier, the phase difference between the 

reference and testing signals can be obtained. Theoretically, the optical rotation angle is 

strongly related to the concentration, temperature, and propagation length of the chiral 

medium (glucose solution). And that can be expressed as 

 C = 怠待待提挑[提] ,   (43) 

where the glucose concentration C (g/dl) in a liquid solution,  (degree) is optical rotation 

angle, L (decimeter) is the propagation length in chiral medium. 

Figure 21 showed that the optical rotation angle of the glucose solution which the 

concentration was varied from 0 to 1.2 g/dl. Their results showed the good linearity and 

high sensitivity which can achieve 0.273 /g/dl.   

oe nn  oe nn 
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Fig. 20. Schematic diagram of circular heterodyne interferometer for measuring the optical 
rotation angle in a chiral medium [40]. 

 

Fig. 21. Optical rotation angle of glucose solution with concentration variation [40]. 

5. Concentration measurement with heterodyne interferometer 

The concentration of solution is an important factor in food, chemical and biochemical 
industrial, especially in health care and disease prevention. For example, the blood glucose 
concentration is related to the diabetes. To control the blood glucose concentration within 
the normal level is critical issue to the diabetic daily care. Therefore, many researchers 
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developed novel methods for measuring the solution concentration. Because of the 
advantages of the optical method such as high sensitivity, high resolution, non-contact, and 
quick response, optical measurement method become more popular in past few decades. 
And these methods can roughly divide into fiber type sensor [41, 44-45, 49] and non-fiber 
type sensor [42-43, 46-48, 50]. In this section, we will review some recent development in 
both type sensors for measuring concentration of the specific chemical compound [41-50]. 

M. H. Chiu [41] developed a D-shape fiber sensor with SPR property and integrated with 

heterodyne interferometer which could detect variation in the alcohol concentration of 2%. 

The optical setup was shown in figure 22. The heterodyne light source was guided into the 

sensor and suffered the attenuate total reflection (ATR) at the sensing region. Because of the 

refractive index of the sample will be varied as the concentration changed. And induce the 

phase difference between the p- and s- polarizations. To measure the phase difference can be 

obtained the concentration variation of the sample.  

 

Fig. 22. The scheme of the D-shape fiber sensor [41]. 

Figure 22 shows that the testing signal detected by photodetector and sent into the 

phasemeter. Therefore, the interference signal can be written as 

 荊岫建岻 = 荊待 峽な + 撃 cos 峙降建 + 岾挑岫笛妊貸笛濡岻態朕 担叩樽提日 峇峩峺,   (44) 

where I0 and V are the average intensity and visibility; L and h are the sensing length and 

core diameter; (p-s) is the phase difference between p- and s- polarizations; i is the 

incident angle at the interface between fiber core and metal film. Based on the Fresnel 

equation, one can derive the (p-s) from the amplitude reflection coefficient under ATR 

condition and it is obvious that (p-s) is the function of the refractive index of the sensing 

medium. Figure 23 shows that the results measured by the D-shape fiber sensor for different 

concentration of the alcohol.  
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Fig. 23. The experiment result of different concentration of alcohol measured by D-shape 
fiber sensor [41]. 

In Chiu’s results, they can observe the concentration variation 2 %, in which the 
corresponding refractive index variation is about 0.0009. Based on error analysis, their 

method can be reached 210-6 refractive index unit. 

Recently, T. Q. Lin [44] and C. C. Hsu [45] developed a fiber sensor which immobilized 
glucose oxidase (GOx) on the fiber core for measuring the glucose concentration in serum 
and phosphate buffer solution (PBS). Their measurement method integrated the fiber sensor 
and heterodyne interferometer which showed in figure 24. 

 

Fig. 24. Schematic diagram of the measurement system and preliminary test of the glucose 
fiber sensor [44]. 
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As the heterodyne light source enters the sensing part, the light beam undergoes total 
internal reflection (TIR) and the phase difference between the p- and s- polarization states 
can be written as 

 剛痛 = 兼剛脹彫眺 = 挑朕 担叩樽提禰 ∙ tan貸怠 嵜謬坦辿樽鉄 提禰貸岫韮鉄韮迭岻鉄担叩樽提禰∙坦辿樽提禰 崟,   (45) 

where n1 and n2 are the refractive indices of the immobilized GOx and the testing solution. 

t and m are the incident angle and the number of TIRs that occur at the interface between 

the GOx and the testing solution. After dripping the testing sample onto the sensor, the 

phase will vary as the glucose reacts with the GOx to be converted into gluconic acid and 

hydrogen peroxide. The chemical reaction can be formulated as follows: 

 Glucose +	O態 鷹拓淡屬吟屐 gluconic	acid +	H態O態.       (46) 

It means that the refractive index (n2) will change and consequently the phase will change. 

Besides, the refractive index n2 is a function of the concentration of the testing sample. 

Different concentration of the solution has different refractive index. Therefore, one can 

determine the concentration variation by measuring the phase variation. In their methods, 

the phase difference can be carried in the heterodyne interference signal and written as  荊痛 = 荊待[な + cos岫降建岻 + 剛痛]. 
To deserve to be mentioned, they found that the pH property between the testing sample 

and sensor is critical issue for rapid measurement. Figure 25 shows that the response time 

and response efficiency of the fiber sensor. It is clear that the response time for measuring 

glucose solution was shorter than those for serum measurement. And the response 

efficiency for measuring glucose solution was faster than those for serum measurement at 

different GOx concentration. 

Based on their results, this fiber sensor has good linearity of the calibration curve for glucose 

solution and serum sample. And they showed the best resolutions were 0.1 and 0.136 mg/dl 

for glucose solution and serum based sample, respectively. 

One of the non-fiber type sensors is SPR (surface Plasmon resonance) sensor which has been 

applied in field such as pharmaceutical development and life sciences. And SPR provides 

ultra high sensitivity for detecting tiny refractive index (RI) changes or other quantities 

which can be converted into an equivalent RI. The heterodyne interferometer detects the 

SPR phase by using a Zeeman laser or optical modulator, such as an acousto-optic 

modulator or electro-optic modulator and has been reported in the literature. Heterodyne 

phase detection techniques offer the high measurement performance high sensitivity and 

high resolution in real-time. J. Y. Lee [43] proposed wavelength-modulation circular 

heterodyne interferometer (WMCHI) with SPR sensor for measuring the different 

concentration of alcohol. The diagram of the WMCHI is shown in figure 26.  

The SPR sensor had the Kretschmann configuration consists of a BK7 prism coated with a 50 

nm gold film and integrated with micro-fluid channel which used to inject the testing  
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Fig. 25. The response time and response efficiency of the fiber sensor for measuring both 
glucose solution and human serum [44]. 

sample. The E-field detected by D1 and D2 can be written as 継怠 = 鶏岫ねの°岻 ∙ 蛍聴牒眺 ∙ 蛍町岫ねの°岻 ∙ 継朕                                           

= 怠態 峙な なな な峩 峪弁堅椎弁結沈笛椎 どど |堅鎚|結沈笛鎚崋 怠√態 峙な 件件 な峩 峙 勅日岫這轍貼狽禰岻/鉄勅貼日岫這轍貼狽禰岻/鉄峩                      
 			= 怠態√態 釆盤弁堅椎弁結沈笛椎 + 件|堅鎚|結沈笛鎚匪結日岫這轍貼狽禰岻鉄 + 盤件弁堅椎弁結沈笛椎 + |堅鎚|結沈笛鎚匪結貸日岫這轍貼狽禰岻鉄 挽 範怠怠飯, (47a) 

and 継態 = 鶏岫−ねの°岻 ∙ 蛍聴牒眺 ∙ 蛍町岫ねの°岻 ∙ 継朕                                         

 = 怠態√態 釆盤弁堅椎弁結沈笛椎 + 件|堅鎚|結沈笛鎚匪結日岫這轍貼狽禰岻鉄 + 盤件弁堅椎弁結沈笛椎 + |堅鎚|結沈笛鎚匪結貸日岫這轍貼狽禰岻鉄 挽 範 怠貸怠飯, (47b) 

where JSPR is the Jones matrix of SPR sensor. They became two testing signals and sent into 
lock-in amplifier which can obtained the phase difference between them. The phase 
difference  of these two signals is obtained as 

  = 岾待 + tan貸怠 喋凋峇 − 岾待 − tan貸怠 喋凋峇 = に tan貸怠 磐 弁追妊弁鉄貸|追濡|鉄態弁追妊弁|追濡| 達誰坦 卑.      (48) 
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Fig. 26 Schematic diagram of WMCHI for different concentration measurement [43]. 

Based on equation (44), it is clear that the resonant angles for  and  are different. 
Obviously,  is the function of rp, rs and  which varies with the refractive index of sample 
n3 and the incident angle. The relationship between  and  and the incident angle was 
shown in figure 27 It is obvious that the maximum of  is larger than that of . On the other 
hand,  can be larger than 10,000 in the incident angle interval between 66.25 and 66.75. 
This means that Lee’s method has a high angle toleration and larger dynamic range. 

C. Chou [42] proposed a novel pair surface plasma wave biosensor which provided a larger 
dynamic measurement range for effective refractive index. In their system, it can avoid 
excess noise coming from laser intensity fluctuation and environment disturbance. It is 
important to retain the amplitude stability in this method for high detection sensitivity. 
Figure 28 showed the amplitude sensitivity PSPR method. In this figure, PBS separated the 
pair of p-polarization waves and the pair of s-polarization waves, which can be optical 
heterodyne interference signal at the photodetectors Dp and Ds. Then these two signals can 
be expressed as  

 荊椎怠袋椎態岫∆ωt岻 = 畦椎怠A椎態 cos岫∆降建 + 椎岻, (49a) 

 荊鎚怠袋鎚態岫∆ωt岻 = 畦鎚怠A鎚態 cos岫∆降建 + 鎚岻, (49b) 

where AP1 and AP2 are the attenuated amplitudes of the reflected P1 and P2 waves 
respectively; AS1 and AS2 are the attenuated amplitudes of the reflected S1 and S2 waves  
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Fig. 27. The relationship between  and  and the incident angle [43]. 

respectively. P and S are the phase differences of the reflected P and P and the reflected S 

and S waves respectively. In equation (49), P and S are equal to 0 and these two 
interference signals will remain at maximum intensity under the SPR proceeded. 

 

Fig. 28. The schematic of the amplitude sensitivity PSPR [42]. 

Based on this method, Chou demonstrated three different testing samples with 
concentration variation which were sucrose, glycerin-water solution, and rabbit anti-mouse 

IgG. In figure 29, the best of these sample are 810-8, 7.610-7, and 210-9, respectively. 
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Fig. 29. The measurement results of the PSPR method [42]. 

6. Conclusion 

In this chapter, we reviewed some recent development or state of the art techniques. It shows 
that the heterodyne interferometry is a mature technique and can be applied to many different 
aspects. For example, the diffraction grating heterodyne interferometry (DGHI) provided 
nanometer resolution for precision positioning which can be integrated with motorized stage. 
Full-field circular heterodyne interferometry (FFCHI) can be used to investigate the two-
dimensional optical properties, such as refractive index and birefrigence of testing sample. For 
this point of view, the heterodyne interferometry can be a refractometer with high accuracy. 
To integrate with optical sensor, the heterodyne interferometry can be used to diagnose the 
concentration of the body fluid such as blood glucose and glycerin or the protein interaction 
between body-antibody. Therefore, the heterodyne interferometry is a powerful, flexible, 
integrable, and reliable technique for precision metrology. 
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