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1. Introduction 

Telecommunication networks are growing very fast. The user’s needs, in regards to new 
services and applications that have a higher bandwidth requirement, are becoming bigger 
every day. A telecommunication network requires early design, planning, maintenance, 
continuous development and updating, as demand increases. In that respect we are forced 
to incessantly evaluate the telecommunication network’s efficiency by utilizing methods 
such as measurement, analysis modeling and simulations of these networks.  

Measuring, analyses and the modeling of self-similar traffic has still been one of the main 
research challenges. Several studies have been carried-out over the last fifteen years on: 
analysis of network traffic on the Internet [30], [31], traffic measurements in the high speed 
networks [32], and also measurement in the next generation networks [33]. Also, a lot of 
research works exist, where attention had been given to analysis of the network traffic 
caused by different applications, such as P2P [34], [35], network games [36] and VoIP 
application Skype [37]. Analyses of the measured network traffic help us to understand the 
basic behavior of network traffic. Various have showed that traffic in contemporary 
communication networks is well described with a self-similar statistical traffic model, which 
is based on fractal theory [6]. The pioneers in this field are: Leland, Willinger, and many 
others [1], [5], [6]. They introduced the new network traffic description in 1994. New 
description appeared as an alternative to traditional models, as were Poisson and Markov, 
which were used as a good approximation for telephone networks (PSNT networks) when 
describing the process of call durations and time between calls [5], [20]. These models do not 
allow descriptions of bursts, which are distinctive in today’s network traffic. Such bursts can 
be described by a self-similarity model [5], [6], because it shows bursts over a wide-range of 
time scales. This contrasts with the traditional traffic model (Poisson model), which became 
very smooth during the aggregation process. The measure of bursts and also self-similarity 
present the Hurst parameter [1]-[4], which is correlated with another very important 
property called long-range dependence [5]-[8]. This property is also manifested with heavy-
tailed probability of density distributions [5], [6], such as Pareto [43] or Weibull [44]. So 
Pareto’s and Weibull’s heavy-tailed distributions became the most frequently used 
distributions to describe self-similar network traffic in communication networks. 
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During past years another aspect of network traffic studying has also appeared. In this case, 
the network traffic is researched from application or data source point of view, especially 
focused on statistics of file sizes and inter-arrival times between files [19]. These research 
works are very important for describing a relation between packet network traffic on lower 
ISO/OSI layers and data source network traffic on higher layers of ISO/OSI model. Based 
on the research of WWW network traffic, it has been shown that file sizes of such traffic are 
best described by Pareto distribution with shape parameter ǂ = 1 [38]. That was also shown 
for the FTP traffic, where the shape parameter of Pareto distribution is in the range 0.9 < ǂ < 
1.1 [20]. In [6], [39], and [40] it is shown that inter-arrival time of TCP connections are self-
similar processes, which can be described by Weibull heavily tailed distribution.  

With expansion of simulation tools, which are used for simulation of communication 
networks, the knowledge about simulating the network traffic also becomes very important. 
One of the important tasks in simulations is also knowledge about modeling and simulating 
of network traffic. Network traffic is usually modeled in simulation tools from an 
application point of view [42], [45]. It is usually supposed that the file size statistics and file 
inter-arrival times are known [39], [40]. Such kinds of traffic models are supported by most 
commercial telecommunication simulation tools such as the OPNET Modeler [10], [11], [24], 
used in our simulations and experiments. Consequently, for using the measured data of 
packet traffic, when modeling file statistics, it is necessary to transform packets’ statistics 
into files’ statistics [9, 10]. This transformation contains opposite operations in relation to the 
fragmentation and encapsulation process. Extensive research and investigation about traffic 
sources in contemporary networks show that this approach requires an in-depth analysis of 
packet's traffic (which needs specialized, very powerful and consequently, expensive 
instruments). This approach, in the case of encrypted packets and non-standard application 
protocols, is not completely possible. In such cases, capture of entire packets is also 
necessary, which can be problematic in contemporary high-speed networks. Another 
approach estimates distribution parameters of file data sources from measured packets' 
network traffic. For such approach, we have developed and tested different methods [42], 
[45]. Estimated distribution parameters are used for modeling of the measured network 
traffic for simulation purposes. Through the use of these methods we want to minimize 
discrepancies between the measured and simulated traffic in regards to an average bit rate 
and bursts, which are characteristic of self-similar traffic. 

2. Network traffic 

2.1 Packet network traffic measuring 

The measuring and analyzing of real network traffic provide us with a very important 
knowledge about computer network states. In analyzing process, we need statistical 
mathematical tools. These tools are crucial for accuracy of a derived mathematical model, 
described by stochastic parameters for packet size and inter-arrival time [9]. Using this 
simulation model, we want to acquire information about telecommunication network’s 
performances for:  

• improvement of the current network,  
• bottleneck searching,  
• building and development of new network devices and protocols,  
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• and for ensuring quality of service (QoS) for real-time streaming multimedia 
applications.  

Using this information, network administrators can make the network more efficient. 

The simplest tools that measure and capture the packets of network traffic are packet 
sniffers. Packet sniffers, also known as protocol or network analyzers, are tools that monitor 
and capture network traffic with all content of network traffic. We can use sniffers to obtain 
the main information about network traffic, such as packet size, inter-arrival time and the 
type and structure of IP protocol. Sniffers have become very important and indispensable 
tools for network administrators. Figure 1 shows traffic captured by a packet sniffer.  

 

 
Fig. 1. User interface of WireShark sniffer during the network capturing.  
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Any sniffers are able to extract this data from the IP headers. Knowing them, it is then 
simple to calculate a length of IP PDU (Protocol Data Unit), which also contains a header of 
higher layer protocols. Using an in-depth header analysis, it is possible, in the similar way to 
the IP header, to calculate the lengths of all these headers. 

An analytical description of network traffic does not exist, because we cannot predict the 
size and arrival time of the next packet. Therefore, we can only describe network traffic as a 
stochastic process. Hence, we have tried to describe these two stochastic processes (arrival 
time and packet size) with the use of Hurst parameter and probability distributions.  

2.2 Self-similarity  

In the 1990s, new descriptions and models of network’s traffic were developed, which then 
replaced the traditional traffic models, such as Poisson and Markov [5], [20]. The Poisson 
process was widely used in the past, because it gave a good approximation of telephone 
network (PSNT networks), especially when describing times between each call and call 
durations. This model is usually described by exponential probability distribution, which is 
characterized by the parameter λ (number of events per second). However, these models do 
not allow for descriptions of bursts, which are distinctive in today’s network traffic. Such  
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Fig. 2. Comparison of self-similar network traffic (left) and synthetic traffic created by 
Poisson model (right) on different time scales (100, 10, 1, 0.1 and 0.01s). Self similar traffic 
contains bursts on all time scales in contrast to the generated synthetic traffic, based on the 
Poisson model, which tends to average on longer time [1]. 

bursts can be described by a self-similarity model, because it shows bursts over a wide-
range of time scales [1]-[4]. This contrasts the traditional traffic model (Poisson model), 
which becomes very smooth during the aggregation process.  

2.3 Self-similarity 

The definition of self-similarity is usually based on fractals for the standard stationary time 
series [5], [6], [21].  

Let X = (Xt, t = 0, 1, 2,…) be a covariance stationary stochastic process; that is a process with 
a constant mean, finite variance σ2 = E[(Xt – µ)2], with auto-covariance function Ǆ(k) = E[(Xt –
 µ)(Xt+k – µ)], that depends only on k. Then the autocorrelation function r(k) is: 

 
[ ]

2 2
0 1 2

( )( )( )
( ) , , , ,

( )
t t k

t

E X Xk
r k k

E X

µ µγ

σ µ

+− −
= = =

 − 
  (1) 

Assume X has an autocorrelation function, which is asymptotically equal to:  

 1
0 1( ) ( ), , ,r k k L k kβ β−≈ → ∞ < <  (2) 

where L1(k) slowly varies at infinity, that is 
1 1

1lim( ( ) / ( ))
t

L tx L t
→∞

=  for all x > 0. Such functions 

are for example L1(t) = const. and L1(t) = log(t)) [5], [6].  
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The measure of self-similarity is the Hurst parameter (H), which is in a relationship with the 
parameter ǃ in equation (3). 

 1
2

H
β

= −  (3) 

Let’s define the aggregation process for the time series [5], [6]: 

For each m = 1, 2, 3, … let X(m) = (Xk(m), k = 1,2,..m) denote a new time series obtained by 
averaging the original series X over a non-overlapping block of size m. That is, for m=1, 2, 3, 
…, X(m) is given by: 

 
1

1
1 2 3

( ) ( ... ), , , , ...m
km m kmkX X X k

m
− += + + =  (4) 

Xk(m) is the process with average mean and autocorrelation function r(m)(k) [6]. 

The process X is called an exactly second order with parameter H, which represents the 
measure of self-similarity if the corresponding aggregated X(m) has the same correlation 
structures as X and 2( )var( )mX m βσ −=  for all m = 1, 2, … : 

 
( )( ) ( ),mr k r k=  for all 1 2 1 2, , ... , , ...m k= =  (5) 

The process X is called an asymptotically second order with parameter H = 1 – ǃ/2, if for all 
k it is large enough, 

 ( )( ) ( ),mr k r k m→ → ∞  (6) 

It follows from definitions that the process is the second order self-similar in the exact or 
asymptotical sense, if their corresponding aggregated process X(m) is the same as X or 
becomes indistinguishable from X-at least with respect to their autocorrelation function. The 
most striking property in both cases, exact and asymptotical self-similar processes, is that 
their aggregated processes X(m) possess a no degenerate correlation structure as m → ∞. This 
contrasts with the Poisson stochastic models, where their aggregated processes tend to 
second order pure noise as m → ∞:  

 0 0 1 2
( )( ) , , , , ,...mr k m k→ → ∞ =  (7) 

Network traffic with bursts is self-similar, if it shows bursts over many time scales, or it can 
be also said over a wide-range of time scales. This contrasts with traditional models such as 
Poisson and Markov, where their aggregation processes become very smooth.  

2.4 Long-range dependence 

The self-similar process can also contain a property of long-range dependence [5]-[8]. Long 
range dependence describes the memory effect, where a current value strongly depends 
upon the past values, of a stochastic process, and it is characterized by its autocorrelation 
function. This property has a stochastic process, which satisfies relation (2), order with 
relation r(k) = Ǆ(k)/σ2. 
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For 0 < H < 1, H ≠ 1/2 it holds [6]  

 
2 2

2 1( ) ( ) ,Hr k H H k r− −≈ − → ∞  (8) 

For values 0.5 < H < 1 autocorrelation function r(k) behavior, in an asymptotic mean, as ck-ǃ 
for values 0 < ǃ < 1, where c is constant c > 0, ǃ = 2 - 2H, and we have: 

 ( )
k

r k
∞

=−∞

= ∞ . (9) 

The autocorrelation function decays hyperbolically, as the k increases, which means that 
autocorrelation function is non-summable. This is opposite to the property of short-range 
dependence (SRD), where the autocorrelation function decays exponentially and the 
equation (9) has a finite value. Short and long-range dependence have a common 
relationship with the value of the Hurst parameter of the self-similar process [6], [21]: 

• 0 < H < 0.5 →SRD - Short Range Dependence  
• 0.5 < H < 1 →LRD - Long Range Dependence 

 
Fig. 3. Comparison between autocorrelation function of short range dependence process 
(left) and autocorrelation function of long range dependence process (right) [15]. 
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2.5 Heavy-tailed distributions 

Self-similar processes can be described by heavy-tailed distributions [5], [6], [9]. The main 
property of heavy-tailed distributions is that they decay hyperbolically, which is opposite to 
the light-tailed distribution, which decays exponentially. The simplest heavy-tailed 
distribution is Pareto. The probability density function of Pareto distribution is given by 
[43]: 

 1( ) , , , 0
k

p x k x k
x

α

α

α
α

+
= ≤ >  (10) 

where parameter ǂ represents the shape parameter, and k represents the local parameter of 
distribution (also a minimum possible positive value of the random variable x).  

 
Fig. 4. Probability density function and cumulative distribution function of Pareto 
distribution for various shape parameters α and constant location parameter k = 1 [43]. 
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Another very important heavy-tailed distribution is Weibull distribution, which is described 
by [44]: 

 
1 ( )

( ) , 0, , 0
x

k
x

p x e x k
k k

αα
α

α
−

− 
= ⋅ ⋅ ≥ > 

 
 (11) 

where parameter ǂ presents the shape parameter, and k presents the local parameter of 
distribution. 

 
Fig. 5. Probability density function and cumulative distribution function of Weibull 
distribution for various shape parameters ǂ and constant location parameter k [44]. 
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2.6 Network traffic definitions 

The network traffic can be observed on different layers of ISO/OSI model, for that reason 
we define different kinds of network traffics. The network traffic can be represented as a 
stochastic process, which can be interpreted as the traffic volume – measured in packets, 
bytes or bits per time unit, and it is consequent on data or packets, which are sent through 
the network in time unit. If we observe network traffic on the low level of ISO/OSI model, 
then define the packet network traffic [45] Zp[n]: 

Let define the packet network traffic Zp[n] as a stochastic process interpreted as the traffic 
volume, measured in packets per time unit. Zp[n] can be described as a composite of two 
stochastic processes: 

 [ ] [ ] [ ] ,p p pZ n X n Y n n= ∈  . (12) 

where Xp[n] represents packet size process and Yp[n] represents the packet inter-arrival time.  

Packet-size process Xp[n] is defined as a series of packet sizes lPi measured in bits (b) or bytes 
(B).  

 
[ ] { }1 2

1, ,... ,..., ,p P P Pi PnX n l l l l i n= ≤ ≤
 (13) 

where sizes of packets' lPi are limited by the shortest lm and the longest lMTU packet size 
(MTU - Maximum Transmission Unit). 

 m Pi MTUl l l≤ ≤
 (14) 

Packet inter-arrival time process Yp[n] is defined as a series of times between packet arrivals 
tPi (time stamps). 

 
[ ] { }

{ }
2 1

1 2 1

1

1

,..., ,..., ,

, ,..., ,..., ,

p P P Pi pi i Pn Pn i

p p pi pn

Y n t t t t t t i n

t t t t i n

− −

−

= − − − ≤ ≤

= Δ Δ Δ Δ ≤ ≤
 (15) 

The measured network traffic is packet network traffic, which can be captured using special 
software program or hardware devices. For that reason, the measured network traffic is 
marked as Zpm[n]. We also define modeled (simulated) network traffic as Zps[n]. We 
suppose, that the measured and modeled traffic is statistically equal, denoted by the symbol 
≈, 

 
[ ] [ ]pm psZ n Z n≈

 (16) 

if there are also statistical equalities between a packet size and inter-arrival time processes of 
measured, and modeled traffic.   

[ ] [ ]pm psX n X n≈
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and  

 
[ ] [ ]pm psY n Y n≈

 (17) 

Let’s define network traffic on higher layers (application) of ISO/OSI model. Data source 
network traffic Zd[n] can be described as a composite of data source lengths Xd[n] and data 
inter-arrival times Yd[n] processes: 

 [ ] [ ] [ ] ,d d dZ n X n Y n n= ∈ 
 (18) 

To provide statistical equality between packet network traffic Zp[n] and data sources 

network traffic Zd[n], we have performed a transformation between packet size process 
Xp[n] and the process of data length Xd[n] as well as transformation between packet inter-
arrival time Yp[n] and data inter-arrival time Yd[n]. 

 
[ ] [ ]

transformation

pm dX n X n⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯  (19) 

 
[ ] [ ]

transformation

pm dY n Y n⎯⎯⎯⎯⎯⎯→←⎯⎯⎯⎯⎯⎯  (20) 

Transformation (19) and (20) allows estimation of packet traffic processes from data source 
traffic processes or vice verse.  

3. Network traffic analysis and modeling 

3.1 Hurst parameter estimations 

Hurst's parameter represents the measure of self-similarity. There are several methods for 
estimating Hurst's parameter (H) [1]-[4] of stochastic self-similar processes. However, there 
are no criteria as to which method gives the best results. There are several different methods 
for estimating the Hurst parameter which can lead to diverse results [9], [10]. This is the 
reason why Hurst's parameter cannot be calculating but can be estimated. The most often 
used methods for Hurst's parameter estimation are [6], [8], [21]: 

• Variance method is a graphical method, which is based on the property of slowly 
decaying variance. In a log-log scale plot, a sample variance versus a non-overlapping 
block of size m is drawn for each aggregation level. From the line with slope ǃ we can 
estimate Hurst's parameter as a relationship, from equation (3).  

• R/S method is also a graphical method. It is based on a range of partial sums regarding 
data series deviations from mean value, rescaled by its standard deviation. The slope in 
the log-log plot of the R/S statistic versus aggregated points is the estimation for 
Hurst's parameter.  

• Periodogram method plots spectral density in a logarithm scale versus frequency (also 
in logarithm scale). The slope in periodogram allows the estimation of parameter H.  

Figure 6 presents an example of test traffic and estimations of Hurst's parameter through 
different methods. 
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Fig. 6. Estimating parameter H for self-similar traffic (upper-left) with the variances method 
(lower left), R/S method (upper-right) and periodogram method (lower-right) using SELFIS 
tool [8]. 

3.2 Distribution parameter estimation for stochastic process of network traffic 

Network traffic can be described by two stochastic processes, one for packet/data sizes and 
one for packet/data inter-arrival time. All processes are usually described by probability 
distributions. Self-similar process can be described by heavy tailed distributions. The main 
task for modeling the stochastic process with probability distribution is to choose the right 
distribution, which would be a good representation of our network traffic stochastic process. 
The statistic distribution parameters of data sources are then estimated by fitting tools [9], 
[25], [26] or other known methods, such as CCDF [6] or Hill estimator [17], [18]. 
Mathematical fitting tools are used (EasyFit), which allow us to automatically include the fit 
distribution of the stochastic process, and also estimate parameters of distribution from the 
captured traffic [9], [29]. 
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Fig. 7. For the stochastic process of inter-arrival time, distribution and estimate parameters 
of these distributions are chosen based on the histogram (upper left), and cumulative 
distribution function (upper right). Differences between empirical and theoretical 
distributions in P-P plot (lower left), and deferential distribution (lower right). 

4. Simulation of network traffic in simulation tools 

One of the very important tasks in simulation is modeling the real network parameters and 
network elements for simulation purposes. The main goal in successful modeling of 
network traffic is to minimize discrepancies between the measured simulations and by 
simulations statistically-modeled and generated traffic. This means, that both traffics are 
similar within the different criteria, such as bit and packet-rate, bursts (Hurst's parameter), 
variance, etc. 

Network traffic simulations are usually based on modeling of data sources or applications. 
One of the most known simulation tools is OPNET Modeler [22], [23]. A simulation of 
network traffic in this tool is based on the "on/off" models [41] or more often used traffic 
generators. Difference between these manners is in a modeling manner. In the first case, the 
arrival process is described by Hurst's parameter (H) and the data length process is 
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described by probability density function (pdf). In the second case, processes of data length 
and data inter-arrival time are both described by pdf.  

In OPNET Modeler, two standard node models appear [9]:   

• Raw Packet Generator (RPG) 
• IP station 

Raw Packet Generator (RPG) is a traffic source model [16], [27] implemented specially to 
generate self-similar traffic, which is based on different fractal point processes (FPP) [41]. 
Self similar traffic is modeled with an arrival process, which is described by Hurst's 
parameter and the distribution probability for packet sizes. This arrival process can be based 
on many different parameters, such as Hurst parameter, average arrival rate, fractal onset 
time scale, source activity ratio and peak to mean ratio [16]. There are several different 
fractal point processes (FPP). In our case, we used the superposition of the fractal renewal 
process (Sub-FRP) model, which is defined as the superposition of M independent and 
probably identical renewal fractal processes. Each FRP stream is a point renewal processes 
and M numbers of independent sources compose the Sub-FRP model. Common inter-arrival 
probability density function p(t) of this process is:   
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0
/

( )

   
( )
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p t
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− −

− +−
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where 1 < Ǆ < 2. Process FRP can be defined as Sup-FRP process, when the number of 
independent identical renewal processes (M) is equal to 1. A model Sub-FRP is described by 
three parameters: Ǆ, A and M. Ǆ represents the fractal exponent, A is the location parameter, 
and M is the number of sources. These three parameters are in relationship with three 
OPNET parameters. These parameters are Hurst's average arrival-rate λ, and fractal onset 
time-scale (FOTS). The relationships between these three parameters of Sub-FRP and 
parameters in OPNET model are: 

3 2( ) /H γ= −  

 1
1 1

- -1 -1[ ( ) ]M e Aγλ γ γ −= + −  (22) 

2 1 2
1 2 3 1 1

-12 ( ) ( )( )[ ( ) ] ,T e e Aα γ γ αγ γ γ γ γ− − −= − − − + −  

where Ǆ = 2 – ǃ. Hurst parameter H is defined by equation (3). In the Sub-FRP model from 
OPNET, we can set Hurst's parameter (H), average arrival-rate (λ) and fractal onset time-
scale (FOTS) in seconds. The recommended value for the parameter FOTS in OPNET is 1 
second. 

The IP station [16] can contain an arbitrary number of independent simultaneous working-
traffic generators. Each generator enables the use of heavy-tailed distributions, such as 
Pareto or Weibull, for the generation of a self-similar network traffic by two distributions, 
one for length of a data source process and another for data inter-arrival time process. In our 
research, a traffic generator contained in an Ethernet IP station model of the OPNET 
Modeler simulation tool is used, as shown in the Figure 8. 
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Fig. 8. Node model for used IP station in simulation. 

In the IP station model, the traffic generator is placed above the IP encapsulation layer, 
which takes care of packets’ formations and fragmentation. This is the process of 
segmentation of long data into the shorter packets, or vice versa, according to the RFC 793 
[12]. Padding of the packet data payload with additional bits is also performed when data is 
shorter than a predefined minimal payload. Because the traffic is modeled, above IP level of 
the TCP/IP model, to the lengths of the generated data, 20 bytes of IP header are added. 18 
bytes of information for MAC (14bytes) and CRC (4 bytes) are also further added. Structure 
of Ethernet frame used in the IP station model. Using this model, the applications’ protocol 
does not impact the generated traffic. The model is suitable for the simulation cases, when 
we want to statistically model the network traffic, which can be caused by many arbitrary 
communications’ applications. Using this approach, we can model such network traffic by 
single traffic source.  

5. Estimation of simulation parameters of measured network traffic 

The main problem of measured packet network traffic modeling is to estimate the 
parameter, which is needed for modeling measured network traffic in simulation tools. It 
has already been mentioned that the parameters of data source traffic processes are needed. 
We already described that transformation from packet network traffic Zp[n] to data source 
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network traffic Zd[n] is needed (section 2.6) [45]. There are many possibilities to make a 
transformation from Zp[n] to Zd[n], which allows estimation of parameters of data source 
network traffic processes. We investigated two algorithms [28]: 

1. algorithm with an in-depth analysis of all packet headers, 
2. algorithm with a coarse inspection of IP header only. 

The main differences between them are complexity and the needed execution time. The first 
algorithm mimics a complete decapsulation process, and defragmentation in higher layers 
of the communication model. Any sniffers are able to extract this data from the IP header. 
Knowing them, it is then simple to calculate a length of IP PDU (Protocol Data Unit) which 
also contains a header of higher layer protocols. Through the use of an in-depth header 
analysis, it is possible, in the similar way as the IP header, to calculate the lengths of all these 
headers. Each packed IP header has four the so-called fragmentation fields that contain 
information about data fragmentation, which is shown on Figure 9. 

 
Fig. 9. IP header. Shadowed fields are used in the defragmentation process. Legend:  
V: protocol version; IHL: Internet Header Length; ToS: Type of Service; TL: Total Length;  
ID: Identification Data; F: Flags; FO: Fragment Offset; TTL: Time to Live. 

Extensive research and investigation about traffic sources in contemporary networks show 
that this approach requires an in-depth analysis of packets (where need specialized, very 
powerful and consequently, expensive instruments), which in case of encrypted packets and 
non-standard application protocols, is not completely possible. In such cases, it is also 
necessary to capture the entire packets, which can be problematic in the high-speed 
networks. For these reasons, a simple algorithm has been developed, where only 
information of packets sizes, packet time stamps and IP addresses are needed. 

The second algorithm skips decapsulation by considering the average lengths of packet 
headers and then uses only packet lengths and inter-arrival times. In the second case, the 
algorithm offers the estimation of data source network traffic, not the exact reconstructed 
data source traffic. The second algorithm represents the main part of method by mimic 
defragmentation process, which is described in detail in [45]. The main idea of mimic 
defragmentation process method is to compose data from the captured packet traffic, 
which is previously fragmented at the transmitter. The data source traffic estimation is 
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carried out by finding and summing fragmented packets’ sequences without an in-depth 
analysis of packets. Fragmented sequence is defined as a sequence of lMTU sized packets 
associated with the same source and destination addresses and terminated by packet 
shorter than lMTU.  

6. Simulation results 

In real networks, we have captured packets of different network traffic through a Wireshark 
sniffer. The two different types of measured traffic are used for analysis, modeling and 
simulation purposes. These two test traffics are shown in Figure 10. 

 
Fig. 10. Measured test traffic 1 and 2 captured by Wireshark sniffer. 

 

measured test 
traffics 

packet rate 
(p/s) 

bit rate 
(kb/s) 

variance 
method 

R/S 
method 

periodogram 
method 

test traffic 1 24.02 108.90 0.630 0.723 0.843 

test traffic 2 35.612 114.51 0.592 0.580 0.477 

Table 1. The main properties of captured traffics. On the right side of the table the Hurst 
parameter is estimated using different methods for both test traffics. 

For each of test traffics, the Hurst parameter has been estimated through different methods. 
The Hurst parameters for both cases are bigger than 0.5, so we can classify these test traffics 
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as a self-similar network traffic. Table 1 contains the estimated parameters H for both 
traffics, which are estimated by variance, R/S and periodogram methods. We also 
conducted tests about short and long-range dependence. In the case of the first test traffic, 
the autocorrelation function decayed hyperbolically, which means, that this traffic can have 
the property of a long-range dependence. For the second test traffic autocorrelation, 
function decayed exponentially towards 0. For this case, the sum of autocorrelations has 
finite results and, therefore, the test traffic 2 has the property of short-range dependence.  

For both test traffics (test traffic 1 and test traffic 2) we estimate distribution and its 
parameters for data source traffic processes for simulation purpose. For that reason, we 
made an estimation of data source traffic from the captured packet traffic through the mimic 
defragmentation process method [45]. For both test traffics, the suitably heavy (Pareto or 
Weibull) and also light-tailed (exponential) distributions are chosen. 

Based on the estimated distribution parameters for both measured test traffic (test traffic 1 
and test traffic 2), we generated self-similar traffic in the OPNET simulation tool with two 
different station types – RPG and IP stations. We have created six different scenarios for 
each of test traffic. In the first two scenarios, the network traffic is generated by an RPG 
station, where a self-similarity is described by Hurst parameter. During the first scenario, 
we use heavy-tailed distribution for the data size process, while in the second a light-tailed 
distribution (exponential) is used. In the next four scenarios, network traffic is generated 
using the IP station, where we use different combination's distributions for the data size 
process and data inter-arrival time. One of the criterions, for successful modeling, is the 
difference between bit and packet-rates of the test traffic and modeled traffic in OPNET 
simulation tool. Besides the average values of bit and packet-rates, the more important 
criteria are also bursts’ intensity within the network traffic. For each of test traffics (test 
traffic 1 and test traffic 2), the traffic which best represents the measured test traffic is chosen 
from six modeled traffics. 

Test traffic 1 poses the property of long-range dependence, so there are a lot of bursts in the 
traffic. We model this measured-test traffic over six different scenarios. The results are 
shown in Figure 6 and Table 2. Table 2 shows the main properties of measured test traffic 1 
and estimated distribution parameters which were used in OPNET simulation tool for 
simulating network traffic (the left side of Table 2). Table 2 (the right side) also shows main 
properties of simulated network traffics (six different scenarios) in OPNET simulation tool 
based on estimated distributions. 

Table 2 shows modeling results for test traffic 1 over six different scenarios in OPNET 
simulation tool. There are estimated statistical parameters such as Hurst parameters and 
distributions used in models and simulation results using these models. Figure 11 shows all 
six modeled traffic traffics generated by OPNET, with estimated distributions and 
parameters from Table 2.  

The best approximation for test traffic 1 is modeled traffic 5 from Table 2, which is described 
by Pareto distribution for data size process and Weibull distribution for data inter-arrival 
time. Figure 12 shows a comparison between the second test traffic and the modeled traffic 5 
for bit rates. From all critera after comparison, we can say that the modeled traffic 5 is a 
good approximation of measured test traffic 1. 
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Fig. 11. Modeling measured test traffic 1 in OPNET simulation tool with six different 
estimated parameters from Table 2 (scenario 1 and 2 with RPG station, scenario 3, 4, 5, 6 
with IP station). 
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parameters for modeling 
parameters of measured and 

modeled traffic in OPNET 

traffic 
data inter-arrival 

process 
data size 
process 

packet 
rate (p/s) 

bite rate 
(kb/s) 

H 

measured test 
traffic 1 

X X 24 108.90 0.73 

modeled 
1 

H = 0.732 
Pareto 
ǂ = 0.9835 
ǃ = 432 

33.82 128.75 0.59 

modeled 
2 

H = 0.732 
exponential 
λ = 7547.2 

29.18 181.44 0.59 

modeled 
3 

exponential 
λ = 0.0458 

exponential 
λ = 933.4 

27.56 168.94 0.51 

modeled 
4 

Weibull 
ǂ = 0.304 
ǃ = 0.00578 

exponential 
λ = 933.4 

25.14 153.71 0.62 

modeled 
5 

Weibull 
ǂ = 0.304 
ǃ = 0.00578 

Pareto 
ǂ = 0.9835 
ǃ = 34 

25.32 88.70 0.66 

modeled 
6 

exponential 
λ = 0.0458 

Pareto 
ǂ = 0.9835 
ǃ = 34 

26.63 81.30 0.55 

Table 2. The left side of table shows the estimated distributions and parameters for 
measured test traffic 1 (six different distribution combinations). The right side of table 
shows main properties of modeled network traffic in OPNET simulation tool (six scenarios), 
where estimated distributions were used.  

 
Fig. 12. Comparison between the modeled traffic 5 generated in OPNET simulation tool and 
the measured test traffic 1 in bits per second (kb/s). 
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Test traffic 2 is also modeled over six different scenarios, just like in the first case. Table 3 
shows the main properties of measured test traffic 2 and estimated distribution parameters 
which were used in OPNET simulation tool for simulating network traffic (left side of Table 
3). Table 3 (right side) also shows main properties of simulated network traffics (six different 
scenarios) in OPNET simulation tool. 

As the best modeled traffic of test traffic 2 from all six cases (Table 3), we choose the case 
where simulated traffic is described by the exponential distribution for packet sizes and 
Weibull heavy-tailed distribution for inter-arrival time (modeled traffic 4). The bit-rate of 
this traffic is 33.27 (p/s) and packet-rate is 126.79 (kb/s), which are very close to the 
measured values. The Hurst parameter of the simulated traffic is 0.58, which is also close to 
the estimated values of the measured traffic. Figure 13 shows the comparison between the 
measured test traffic 2 and the best-modeled traffic (modeled traffic 4) for bit rates. From all 
critera after comparison, we can say that the simulated traffic is a good approximation of the 
measured traffic 2. 
 

parameters for modeling 
parameters of measured and 

modeled traffic in OPNET 

traffic 
data inter-arrival 

process 
data size 
process 

packet 
rate (p/s) 

bite rate 
(kb/s) 

H 

measured test 
traffic 2 

X X 35.61 114.51 0.55 

modeled 
1 

H = 0.55 
Pareto 
ǂ = 0.8373 
ǃ = 272 

49.46 231.98 0.62 

modeled 
2 

H = 0.55 
exponential 
λ = 3619 

36.66 140.72 0.58 

modeled 
3 

exponential 
λ = 0.029 

exponential 
λ = 452.48 

35.66 135.89 0.53 

modeled 
4 

Weibull 
ǂ = 0.57 

ǃ = 0.01894 

exponential 
λ = 452.48 

33.27 126.79 0.58 

modeled 
5 

Weibull 
ǂ = 0.57 

ǃ = 0.01894 

Pareto 
ǂ = 0.8373 
ǃ = 34 

52.27 298.25 0.62 

modeled 
6 

exponential 
λ = 0.029 

Pareto 
ǂ = 0.8373 
ǃ = 34 

55.12 315.61 0.53 

Table 3. The left side of table shows the estimated distributions and parameters for 
measured test traffic 2 (six different distribution combinations). The right side of table 
shows main properties of modeled network traffic in OPNET simulation tool (six scenarios), 
where estimated distributions and its parameters were used.  
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Fig. 13. Comparison between modeled traffic 4 generated in OPNET simulation tool and 
measured test traffic 2 in bits per second (kb/s). 

7. Conclusion 

In this chapter, we present our research in the area of measurements, modeling and 
simulations of the self-similar network traffic. Firstly, the state of the art method for 
modeling and simulating of self-similar network traffic is presented. We also describe a 
number of facts about self-similarity, long range dependences and probability, which are 
used to describe such stochastic processes. Described as well are the mechanism and models 
to simulate network traffic in the OPNET Modeler simulation tool. The main goal of our 
research is to simulate measured network traffic, where we tend to minimize discrepancies 
between the measured and the simulated network traffic in the sense of packet-rate, bit-rate, 
bursts intensity, and variances. One of the big challenges in our research work was to find 
appropriate method to estimate parameters of data source network traffic processes that are 
based on measured network packet's traffic. The estimated parameters are needed during 
the modeling of the measured network traffic in the simulation tool. For those reasons, we 
have developed different methods, which allow estimation of the parameters of data source 
network traffic processes, based on the measured network packet's traffic.  

At the end of the chapter, all phases needed for simulating the measured network traffic in 
the OPNET simulation tool are presented. During the analysis phase we pay attention to the 
self-similar property, which has become the basic model for describing today’s network 
traffic. In the network traffic theory, the properties of short and long-range dependence are 
directly prescribed by the values of estimated parameter H. In our network traffic analysis, 
we prove that network traffic (test traffic 2) can exist where Hurst parameter is bigger than 
0.5, but this process does not have the property of a long-range dependence.  

For the purpose of parameters estimation of data source network traffic processes, we have 
used a method that mimics packet defragmentation. Through the use of this method we 
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offer estimated parameters, used in simulations, where six traffics are simulated by different 
distributions for each of the measured test traffic. It can be seen from simulations that in the 
case of modeling self-similar traffic, short-range dependence is more appropriate for 
choosing exponential distribution to describe a packet-size process. The exponential 
distribution does not impact the extreme peaks in the modeled traffic. Pareto distribution is 
unsuitable for this purpose.  

Heavy-tailed distributions, especially Pareto, are suitable for modeling a packet-size process 
of the measured network traffic, which are self-similar and also have the property of a long-
range dependence (test traffic 1).  

There are discrepancies between the measured and the modeled traffics in the sense of 
packet-rate, bit-rate, bursts intensity, and variances. With a method which mimics 
defragmentation, a good approximation of the measured network traffic is obtained. We 
cannot claim that this is the optimal method for all situations, because there are some 
limitations, although it shows good results through simulation in OPNET Modeler. We have 
noticed that estimating the shape-parameter of Pareto is very delicate, because a small 
deviation in the parameter causes large discrepancies regarding the network traffic’s 
average values, which is one of the important criteria for traffic modeling. 
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