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1. Introduction    

Talking about human eye and how its astounding complexity seemingly challenged the 
very laws of evolution, Charles Darwin observed the following while discussing about 
“organs of extreme perfection and complication”, in the Chapter VI titled Difficulties of the 
Theory of his revolutionary work, The Origin of Species:
“To suppose that the eye with all its inimitable contrivances for adjusting the focus to 
different distances, for admitting different amounts of light, and for the correction of 
spherical and chromatic aberration, could have been formed by natural selection, seems, I 
freely confess, absurd in the highest degree. When it was first said that the sun stood still 
and the world turned round, the common sense of mankind declared the doctrine false; but 
the old saying of Vox populi, vox Dei, as every philosopher knows, cannot be trusted in 
science. Reason tells me, that if numerous gradations from a simple and imperfect eye to one 
complex and perfect can be shown to exist, each grade being useful to its possessor, as is 
certainly the case; if further, the eye ever varies and the variations be inherited, as is likewise 
certainly the case and if such variations should be useful to any animal under changing 
conditions of life, then the difficulty of believing that a perfect and complex eye could be 
formed by natural selection, though insuperable by our imagination, should not be 
considered as subversive of the theory. ” 
The purpose of the present chapter would be to understand and explain some of the aspects 
of this highly complicated organ and how it is likely to coordinate with the brain at the stage 
of early vision. Pioneering contributions in this domain came from renowned philosophers 
and vision scientists like Wilhelm Wundt, Hermann von Helmholtz (Helmholtz, 1867) and 
Ernst Mach (Mach, 1865). The British empiricist school of Locke, Hume and Berkeley led to 
the structuralist viewpoint of Wundt and the empirio-critical view of Mach, that defined 
visual perception as a process arising out of certain basic sensory atoms which act as 
primitive, indivisible elements of visual experience spanning each tiny localized region of 
the visual field, presumably resulting from the activity of the individual rods and cones in 
the retina. Analogous to the structural relation between primitive atoms and the more 
complex molecules, this structuralist theory relied upon the concept of gluing together of 

Source: Vision Systems: Segmentation and Pattern Recognition, ISBN 987-3-902613-05-9,
Edited by: Goro Obinata and Ashish Dutta, pp.546, I-Tech, Vienna, Austria, June 2007
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many simple sensations (like colour) into more complex perceptions of a whole                          
entity.
As a reaction to such mechanical materialist viewpoint arose the Gestalt movement that was 
led by Max Wertheimer who in the guise of rejecting the structuralist viewpoint, actually 
attacked the very base of scientific materialist viewpoint by claiming that perceptions can 
only have their own intrinsic whole structures that cannot, by any means, be reduced to 
parts or even to piecewise relations among the parts. As evidence of holism, Gestaltists 
pointed to those examples in which configurations have emergent properties, not shared by 
any of their local parts. Thus, while the structuralist viewpoint represented an inconsistent 
materialistic approach where “part” assumes the role of almighty and the “whole” is merely 
its follower, the Gestalt school on the other resorted to idealism where “part” is devoid of 
any identity with respect to “whole”. The dialectical relation between part and whole  that 
is the science of transformation of quantity to quality, which is responsible for any emergent 
behaviour was temporarily dissolved in the fog of subjectivism, until the time was ripe for 
the advancement of science and philosophy to free the domain of vision science from such 
cloaks of mysticism. Emerged a new school of vision scientists to whom vision is first and 
foremost, an information-processing task whose study should invariably include not just 
how to extract from images the various aspects of the world that are useful to us, but also an 
enquiry into the nature of internal representations by which we capture this information and 
make it available for processing as a basis for decisions about our thoughts and actions. The 
use of computer simulations to model the cognitive processes, the application of 
information processing approach to psychology and the rapid advancement in 
neurophysiological techniques that led to the emergence of the idea that the eye-brain 
system is a biological processor of information, changed the way in which scientists 
understood vision. The remarkable works of Golgi, Cajal, Adrian, Granit, Hartline and other 
physiologists along with the advent of the modern computer age led by Alan Turing and  
John von Neumann served to establish the fact that starting from the two dimensional 
intensity array formation on the retina to the three dimensional object reconstruction and 
recognition in higher regions of the brain, the entire process is controlled and executed by 
networks of neurons of different types and that there is no “soul” sitting anywhere and 
interpreting things from the neuronal outputs. Rather visual perception is a collective, step-
by-step synchronization of the outputs at various stages in the eye and the brain, no matter 
how complex that process is. It was this approach that led to the notion of a cell’s “receptive 
field” that becomes evident so clearly from the study by H. B. Barlow of the ganglion cells of 
the frog retina where he said (Barlow, 1953): 
“If one explores the responsiveness of single ganglion cells in the frog’s retina using 
handheld targets, one finds that one particular type of ganglion cell is most effectively 
driven by something like a black disc subtending a degree or so moved rapidly to and fro 
within the unit’s receptive field. ” 
The corresponding mathematical approach of creating computer programs to extract useful 
information about the environment from optical images was articulated most effectively by 
David Marr and his colleagues (Marr, 1982). It dealt in details with how the luminance 
structure in two-dimensional images may provide information about the structure of 
surfaces and objects in three-dimensional space, though the pioneering mathematical 
analysis in this field was contributed by the Dutch physicists Jan Koenderink and Andrea 
van Doorn who dealt with sophisticated mathematical techniques from differential 
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geometry to the three dimensional orientation of surfaces from shading information. But in 
this chapter we shall restrict ourselves only to the receptive field structure relevant to the 
Theory of edge detection (Marr & Hildreth, 1980) that, according to its authors, is 
responsible for a “raw primal sketch” of the world around us. For this, we first elucidate a 
few basic things associated with the processing of the digital images by computers, which 
would be extensively used in the present chapter.  

2. Preliminary Concepts in Computer Vision 

An image is a two-dimensional representation of a three dimensional object or scenario. A 

monochrome image is characterised by a continuous intensity function ),( yxI  at every point 

),( yx  in the image plane. The final goal of image processing is to extract information from 

),( yxI  to reconstruct the 3-D view of the original object or scenario. In a digital image the 

abstract concept of points is replaced by a realistic concept of infinitesimal identical areas 
(such as pixels in a computer screen). These infinitesimal areas span the entire image plane 
and are numbered in an ordered fashion both horizontally and vertically. Moreover, the 
continuous intensity function is replaced by values from a discrete gray scale. As a result the 

continuous intensity function ),( yxI  is replaced by a discrete function ),( ii yxI , in 

which ),( ii yx denotes the pixel position and ),( ii yxI denotes the average discrete gray scale 

value of that pixel.  
Let us now discuss the salient points about the concept of an edge. Location of an edge is the 
most crucial information that is to be extracted during the primary processing of any image. 
Any sharp change of intensity qualifies for an edge (Fig. 1a). Accurate detection of these 
transitions along with their correct locations is the purpose of edge detection algorithms. In 
a digital image an edge occurs at the boundary between two pixels provided the gray values 
of the pixels differ considerably from one another.  From the vagueness of the word 
“considerably” it is obvious that identification of an edge is a subjective procedure. In one 
extreme any difference of intensity may be assumed to be an edge, so that the processed 
image would become a messy assemblage of edges leaving no scope for feature extraction. 
In its other extreme, the important edges may get lost thereby forsaking valuable 
information. Sudden transition of a continuous function is best identified by differentiating 
it, which gives a large value at the point of transition and zero value at the points of no 
transition. For a discrete function, the differentiation operation is replaced by difference 

operation. One can use either first order directional derivatives, like x∂∂ or y∂∂ in which 

case one would have to search for their crests and troughs at each orientation (Fig. 1b) when 
applied to a 2-D image, or one can also use second order directional derivatives, like 

22 x∂∂ or 22 y∂∂  in which case the directional intensity change would correspond to their 

zero-crossings (Fig. 1c). Using finite difference approximation, the corresponding spatial 
organizations for some these operators or “receptive fields” as they are neurophysiologically 
termed, are displayed below: 

≡∂∂ x -1 +1 ≡∂∂ 22 x -1 +2 -1 
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Fig. 1. (a)  A function showing simple one-dimensional step edge. (b) First order derivative 
of a step edge showing zero value at all points except the transition point. (c) Second order 
derivative of a step edge.  It is to be noted that the location of the zero crossing faithfully 
reproduces the location of the edge. 

These are also called masks and all the operations can be performed on a digital image by 

convolving ),( ii yxI  with such a mask. Convolution of a digital image with a finite mask is 

the process of converting the gray value of each of its pixel with weighted sum of the gray 
values of the pixels in its neighbourhood. In this way a one dimensional image 
corresponding to the step function shown in Fig. 1a has been convoluted with the two 
masks shown above and the intensity distributions of the convoluted images have been 
shown in Fig. 1b and 1c.  However, a major disadvantage of these operators is that, they are 

all directional. Thus in order to use first order derivatives, both xI ∂∂  and yI ∂∂ have to be 

computed, where I represents the intensity distribution of the image. Then the crests and 

troughs in the overall amplitude have to be found i.e. ( ) ( )[ ]2
1

22
yIxI ∂∂+∂∂ must also be 

computed. Using second order directional derivative operators will lead to similar and 
worse problems. The only way to avoid these extra computational burdens is to choose an 
isotropic differential operator and such an operator of the lowest order happens to be the 

Laplacian ( 2∇ ). It is also interesting to note at this point that a role of the same operator in 

visual perception was suggested by Ernst Mach (Mach, 1865). Mach relied upon 
psychophysical observations to arrive at this conclusion empirically. This we shall explain in 
section 4. Presently we shall discuss the role of Gaussian blurring in the edge detection 
problem.
Edge detection being a problem of numerical differentiation, is a weakly ill-posed problem 
since every realistic image is contaminated by some noise and these small variations in 

(a) (b)

(c)



The Theory of Edge Detection and Low-level Vision in Retrospect 357

input lead to large changes in output. Since a noise point has a likelihood of having an 
intensity difference with its neighbours, in edge analysis this may create spurious edge 
points. It is, therefore, desirable that before processing the image, the intensity of a noise 
point should be brought closer to the intensity of its neighbourhood. Any filter operated 
over the image to achieve such a smoothing should make the spatial variation of intensity as 

small as possible or in other words the spatial variance x∆  of the filter should be small. On 

the other hand, the filter’s spectrum should be band-limited in the frequency domain. 

Consequently its variance ω∆  should also be small. There is a conflict between these two 

localisations through an uncertainty principle:
4

π
ω ≥∆∆x . The only function that optimises 

this relation is the Gaussian function. This is the reason why the images are generally 
smoothened by convolving with a Gaussian function prior to the differentiation operation. 
A one-dimensional Gaussian function is defined as:  
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Here σ  is the standard deviation (or scale parameter) of the Gaussian function. 

Convolution of an image with the Gaussian function effectively wipes out all structures at 
scales smaller than the space constant σ  of the Gaussian function. It may easily be verified 

that the Fourier transform of a Gaussian function is also a Gaussian. 
In 2-D, the Gaussian is defined as: 
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For an image, the Gaussian filtering has the added advantages. Since a 2-D Gaussian 
function is rotationally symmetric, it preserves the neighbourhood characteristics both in the 
spatial and frequency domain. It is also computationally handy because it can be 

decomposed into two 1-D Gaussians i.e. )()(),( yGxGyxG = . In fact Gaussian is the only 

rotationally symmetric function that is separable. The two types of filters, discussed above 
viz. the derivative operator and the smoothing operator, are both used extensively in digital 
image processing. In effect, initially the unwanted noises are to be removed (smoothened) 
from the image by convoluting it with a Gaussian function. Then a derivative filter is 
operated to detect the edge points. From the discussion presented above, it is becoming 
increasingly clear why in their classical theory of edge detection (Marr & Hildreth, 1980), the 

authors argued in favour of the Laplacian of Gaussian ( G2∇ ) based structure of receptive 

field. But before we deal with this operator in more detail, it is first important to look into 
the mechanism of image processing in mammalian eye and what the receptive field is. 

3. A Brief Overview of Mammalian Retina 

It is known from neurophysiological experiments on cat and monkey that a good deal of 
processing of images falling on the eye occurs in the retina and primary visual cortex itself.  
This is known as primary or low-level visual processing. We shall now give a brief overview 
of the physiology related to primary visual processing and its role in edge detection.  
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Fig. 2   A schematic drawing showing the retinal network. Rods and cones, known as 
photoreceptors, receive the light, get excited, send information to the bipolar cells, either 
directly or through the network of horizontal cells. The bipolar cells, in their turn, send 
information to ganglion cells, again either directly or through the network of amacrine cells.  
From ganglion cells the information travels to the primary visual cortex through optic 
nerves. 

In the mammalian retina, the primary photoreceptors are the rods and cones (Fig. 2), which 
are spread over a surface. For simplicity if we neglect the aspect of colour, the retinal images 

can be approximated by ),( ii yxI as argued in the previous section. Classical investigations 

by neurophysiologists have shown that information about the input image is extracted in 
the successive layers of the retina (Fig. 3a). For example, a bipolar cell receives information 
from a large number of photoreceptors distributed over a circular zone, mainly through a 
network of horizontal cells and the ganglion cell receives information from the bipolar cells 
through another network of amacrine cells. It is easy to understand that any particular 
bipolar or ganglion cell cannot receive information from all the photoreceptors (rods and 
cones) of the entire retina. Only a small area of the retina would be responsible for eliciting 
response in that cell. That area (assumed to be circular or elliptical in shape) is called the 
receptive field of that bipolar or ganglion cell. A schematic diagram is shown in Fig. 3b. 
Physiologists further observed that while the receptors in the central region of this zone 
send information to a bipolar cell in a positive fashion, the information from the peripheral 
cells arrives with a reversal of signature (Fig. 4). As a result a central bright spot with dark 
background is the best stimulus for exciting the bipolar cell. (These bipolar cells are known 
as on-centre cells. There are also off-centre bipolar cells for which a dark spot with bright 
background is the most appropriate stimulus.) Information of such an antagonistic effect 
from a large number of bipolar cells is collected and transmitted by the ganglion cells.  
For simplicity in understanding the organization of a receptive field structure, let us 
consider a one-dimensional retina in which the photoreceptors are spread over a line. 
Strength of the output from a photoreceptor to the ganglion cell should be maximum when 
the two cells are in closest proximity. It is also natural to assume that the contributions  
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Fig. 3 (a) Information processing occurs in the retina through successive layers. (b) Receptive 
field of a bipolar or ganglion cell is a circular or elliptical area on the photoreceptor layer 
that elicit response in that cell  

Fig. 4 The classical excitatory-inhibitory centre-surround receptive field structure of retinal 
bipolar and ganglion cells. 

Rods and 
Cones

Bipolar
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Ganglion
cells
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Fig. 5. The centre and surround responses of a ganglion cell has been fitted with two 
Gaussian curves in opposite phase. The surround is represented by a broader Gaussian 
compared to the central one 

received by a ganglion cell from other receptors will smoothly fall off with the distance. 
Such a distribution can be safely assumed to be a Gaussian. This would be true for both 
positive (centre) and negative (surround) inputs (Fig. 5).  Consequently the net input to a 
ganglion cell is obtained from a difference of two Gaussian inputs, the central one (positive) 
having a smaller variance than the surround (negative). This prompted the physiologists to 
develop a model of Difference of Gaussian or DOG for the receptive field of retinal ganglion 
cells. A DOG function in one dimension, will be: 

         +ve contribution
-ve -ve

Distance

Intensity of 
signal

     -2       -1           0          1          2 

     +ve contribution-ve -ve
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This model can be easily extended for two-dimensional images by using 2-D Gaussians. The 
DOG model is very effective in explaining a large number of experimental findings in 
retinal responses as we shall see in sections 4 and 5.3. Essentially DOG is the classical model 
for the centre-surround antagonistic effects observed at the retinal ganglion cell.  

4. The Classical Receptive Field and Theory of Edge Detection 

As discussed previously, from the computational point of view the most natural filter for 
edge detection should have a combination of derivative and smoothening filter. As 
established before, a Laplacian of Gaussian (LOG) filter is the best alternative for combining 
the smoothening and derivative operation for the image.  Laplacian operated on a 2-D 
Gaussian will give: 
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Marr and Hildreth (Marr & Hildreth, 1980) further argued that for a certain ratio of the scale 

parameters in DOG (i.e. for a certain value of 21 :σσ ), LOG can be considered to be a good 

approximation to DOG. We have already said that even without any knowledge of the DOG 
based classical receptive field structure from physiologists, since those experiments were 
actually performed almost a century after he carried out his psychophysical experiments, 
Ernst Mach, could still visualize empirically the centre-surround structure in retina and 
predict the Laplacian operation in early vision as well. This is what Mach said (Mach, 1865):  
“The illumination of a retinal point will, in proportion to the difference between this 
illumination and the average of the illumination on neighboring points, appear brighter or 
darker, respectively depending on whether the illumination of it is above or below the 
average. The weight of the retinal points in this average is to be thought of as rapidly 
decreasing with distance from the particular point considered.” 
Furthermore, he went on to state:  

“Let us call the intensity of illumination ),( yxfu = . The brightness sensation v of the 

corresponding retinal point is given by 

)( 2222 dyuddxudmuv +−=   (5)  

where m is a constant. If the expression in parentheses is positive, then the sensation of 
brightness is reduced; in the opposite case, it is increased. Thus, v  is not only influenced 

by u , but also its second differential coefficients.” 

Let us now see, what led Mach to arrive at such revolutionary conclusions on visual 
perception. Mach was experimenting with rotating white discs with black sectors of varying 
size, when he came across the phenomenon that is now commonly referred to as Mach band 
illusion. The most commonly used image for understanding the Mach band illusion is 
shown in Fig. 6a.  By scanning this image in a direction in which the luminance increases or 
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decreases our visual system perceives an actually non-existent darker bar at the location 
where the figure just starts getting lighter. Similarly, a brighter bar is perceived at the point 
where brightness just stops increasing. However, a horizontal line scan of this image (Fig. 
6b) clearly establishes that what we see is a mere illusion and the image represents a simple 
staircase function only devoid of any special border effect. It was the observation of this 
illusory phenomenon that prompted Mach to arrive at his inferences quoted above. In order  

Fig. 6 (a) The Mach band illusion of dark and bright borders around bright and dark regions 
respectively (b) A horizontal profile of this image is obviously a simple staircase function 
that bears no signature of the illusory perception. 

to conceive Mach’s arguments let us resort to the receptive field mode of spatial 
organizations of the Laplacian operator as has been initiated for derivative operators in 
section 2. We have stated there that a finite difference approximation of the horizontal 

directional second order partial derivative, 22 x∂∂  may be written as: 

Consequently, the vertical directional operator 22 y∂∂ may be represented by the transpose 

of the above vector. When these two are combined together, we obtain the kernel for the 

isotropic 2∇  (i.e. 2222 yx ∂∂+∂∂ ) operator: 

           

Using the property of isotropicity of the Laplacian opeartor, the diagonal directions are now 

incorporated by taking the co-ordinates along these directions applying a 045  rotation so 

that we arrive at a new kernel: 

≡∂∂ 22 x -1 +2 -1 

0 -1 0 

-1 4 -1 

0 -1 0 

(a)

(b)
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By combining the above two kernels, we get the omnidirectional operator corresponding 

to 2222 yx ∂∂+∂∂ :

Convoluting any intensity array u  with this operator and combining the result linearly 

with u  as has been proposed by Mach in Equation (5), is the same as convolving u with the 

filter mask given below:  

    

Let us now convolve the Mach band image shown in Fig. 6 with this final mask. We find 
that the edges at each transition have become enhanced by a mechanism where new bands 
have been formed clearly separating each gray level from the other (Fig. 7a). To demonstrate 
that this again is not mere illusion, we draw a horizontal line profile through this convolved 
image to find undershoots and overshoots at each step transition that bears resemblance to 
our illusive perception of the original image whose line scan is in contrast simply a staircase 
function (Fig. 6b).  So we understand what prompted Mach to propose the Laplacian 
operation as a model for spatial filtering in the retina and as is apparent from this mask, it is 
essentially excitatory-inhibitory in character, which also Mach claimed. Since we have 
already defined image edges as sharp changes in gray levels, therefore we may conclude 
from these observations that any image convoluted with the omnidirectional Laplacian 
mask will show pronounced Mach band effect at each edge of the filtered image. In other 
words, the edges will all be enhanced due to the effect of such a kernel being operated on 
any image, since new Mach bands will be created that would serve to clearly distinguish 

-1 0 -1 

0 4 0 

-1 0 -1 

-1 -1 -1 

-1 8 -1 

-1 -1 -1 

-1 -1 -1 

-1 9 -1 

-1 -1 -1 
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one gray level from another.  Edge enhancement by such a mechanism has been shown in 
Fig. 8. The resultant images clearly show an increase in the level of sharpness compared to 
the original images. The reason behind such sharpening is that the bright Mach bands 
around dark regions and the dark ones around lighter regions, apart from being illusions, 
also play a crucial role in image processing. They actually represent a mechanism of lateral 
inhibition or the contrast-sensitivity in the eye that enables one to clearly isolate an object 

Fig. 7 (a) The effect of convoluting the Mach band image in Fig. 6a with the omnidirectional 
Laplacian mask clearly shows that new bands have actually been formed clearly separating 
each gray level from the other (b) This becomes obvious if we draw a horizontal line profile 
through the convoluted image, that shows the new bands as undershoots and overshoots at 
each step of the staircase shown in Fig. 6b. In other words a mimetic of the illusory 
perception of Fig. 6a, has thus been reproduced.   

(a)

 (b)
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Fig. 8 Result of convoluting two bench-mark images in (a) and (c) with the omnidirectional 
discrete Laplacian mask has been shown in (b) and (d).  

from its background, thus helping in image sharpening. As already mentioned, the 
polarities in the discrete mask resemble the antagonistic centre-surround receptive field 
structure shown in Fig. 4. Also, being an orientation independent operator, this mask 
naturally forms the Mach bands in all directions in an image, thus enhancing the images 
from objects of any arbitrary shape.  What effectively gets sharpened in the process, are the 
edges in the images. This phenomenon, in fact, mystified Mach’s viewpoint about illusion 
and reality, which finally led him to construct the unscientific philosophy of empirio-
criticism. 

5. The Non-classical Receptive Field and Low-level Vision in Retrospect 

When Marr and Hildreth (Marr & Hildreth, 1980) claimed the equivalence of LoG and DoG 
for a particular scale ratio between the two Gaussians, they could not provide any strong 
theoretical basis for the equivalence. That basis was provided much later in a paper by Ma 
and Li (Ma & Li, 1998), wherein they proved from very general consideration that any 
derivative filter of a smooth function could be expressed as a linear combination of the 

smooth function at different scale parameters. Ma and Li have shown that any kth2 order

(a) (b)

(c) (d)
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derivative filter can be designed as the weighted sum of any )1( +k  even functions, every 

function having the same kernel, but different scales. Also thk )12( +  order derivative filter 

can be designed as the weighted sum of )1( +k odd functions of different scales. In the 

present chapter our discussion, with respect to non-classical receptive field will be confined 
only within even order derivative filters because we have chosen to construct filters at 
different scales by using two-dimensional Gaussian function, which happens to be an even 
function.
But first, it would be appropriate to introduce the concept of non-classical receptive field of 
retinal ganglion cells. The concept of a centre-surround antagonistic receptive field of retinal 
ganglion cell, as we have already discussed, evolved on one hand, from Mach’s earlier 
studies in psychophysics and on the other from the later experiments dealing with the 
neurophysiology of retina. The DOG or LOG models merely follow this studies. Some 
experimental observations, however are strongly indicative of some necessary modification 
to this concept of “classical receptive field”. From such experiments from seventies onwards 
of the last century, it was observed that there are many photoreceptor cells outside the 
classical receptive field, that are capable of modulating the behaviour of the ganglion cells. 
Presently, there is practically no doubt that the actual receptive field of a ganglion cell is 
much widely spread than that depicted by the classical picture and that such an extended 
surround actually disinhibits the response of the classical receptive field. Such a non-
classical receptive field containing non-linear sub-units is shown in Fig. 9, following a recent 
work (Passaglia et al., 2001), where it is conjectured that the mean increasing and mean 
decreasing units would remain either active or inactive depending on the desired task of the 
retina.
Although the modulation of the ganglion cells by the non-classical receptive field is 
probably nonlinear in nature, yet some of the effects of the non-classical receptive field may 
be emulated by modeling the corresponding response bahaviour simply as a linear 
combination of three or more zero-mean Gaussians at different scales. The narrower two of 

Fig. 9 The non-classical receptive field of retinal ganglion cells is characterised by an 
extended disinhibitory surround beyond the classical receptive field 
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these Gaussians may represent the classical center and the classical antagonistic surround 
while the non-classical extended disinhibitory surround mostly contributed by the amacrine 
cells in the inner plexiform layer of the retina may be represented by the wider Gaussians. 
Since, according to Ma and Li (Ma & Li, 1998), such a linear combination of Gaussians could 
be expressed as equivalent to higher order derivatives, therefore from such an argument it 
can been shown, that the non-classical receptive field of retinal ganglion cells can be 
modeled by a fourth or sixth order rotationally symmetric derivative of Gaussian, that is by 

G4∇ (the Bi-Laplacian or Bi-harmonic of Gaussian) or G6∇ (the tri-Laplacian of Gaussian). 

The detailed expressions are given in the sub-section 5.1 for the one-dimensional case, 

where it has also been shown that one could express G4∇  as 1GDoG + where 1G  is the 

widest Gaussian representing a disinhibitory surround beyond the classical receptive field 

or in other words the mean-increasing sub-units in Fig. 9. Similarly, G6∇  can be expressed 

as 21 GGDoG −+ , where 2G  is another wide Gaussian representing the mean-decreasing 

sub-units in the same figure.   

5.1 A Simple Model for the Non-classical Receptive Field Structure 

If the positive sub-units of the non-classical receptive field are primarily considered, then in 
one dimension, following Ma and Li, one can construct a fourth order derivative filter as a 

linear combination of three Gaussians. For this, let us define a function kh2 using the 

primitive Gaussian filter ),( σxg as:
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Here jα ’s are the weight functions. Ma & Li  showed that kh2 is a ( )k2 -th order derivative 

filter if  the jα ’s satisfy the following equations : 
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is not singular. Here kgm 2,  is the thk)2( order moment of the function ( )xg .

Thus, for second order derivative, taking 1=k , one gets 
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Here 0α  is a ratio of scale parameters. For a scale ratio t , i.e. if σσ =1  and σσ t=0
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Similarly, for fourth order derivative filter, let us define a function  
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where 10 ,αα  and 2α  satisfy the following equations 
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Solving these equations, we get: 
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In this case, for the two scale ratios t  and p , i.e. if σσ =2 , σσ t=1 and σσ p=0 , then: 
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If we take a look at the final values of the three coefficients, 10 ,αα  and 2α as given by 

Equation (13), we find that a fourth order derivative filter as given in Equation (10) is 
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essentially a non-classical 1GDoG +  model as mentioned in the previous section. Moreover, 

experimental observations on non-classical receptive fields (Passaglia et al., 2001), indicate 

that the central region is much smaller than the extended surround, or in other words 0σ  is 

negligible in comparison to 2σ . Based on these, we can consider the ratio 20 :σσ to be very 

small and hence apply a condition 0→p  in Equation (13). Then using Equation (10), we 

arrive at: 
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where, /σ  and //σ  are two arbitrary scales and m  is an amplitude scale factor and ( )xh2  is 

given by Equation (9). 
In the same way if we incorporate the negative sub-units of non-classical receptive field, 
then following the same procedure: 
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If we again take a look at the final values of the four coefficients, 10 ,αα , 2α and 3α , we find 

that the corresponding expression matches the 21 GGDoG −+  model described in the 

previous section. Then once again following the same procedure described above we 

assume 30 :σσ  to be very small and apply a condition 0→r in Equation (16). Putting these 

values in Equation (15), after some algebraic manipulation, we finally arrive at: 
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Then applying Equation (14) in Equation (17), we get: 
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Here ////// ,, σσσ are all arbitrary and hence do not represent any particular scale at any 

stage of the derivation. So in two dimensions:  
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Any of these equations viz. Equation (10), (14), (15) or (19) may be considered to be our 
proposed model for non-classical receptive field, which means the receptive field will not be 
represented by LOG only whose equivalent physiological model is given by Equation (8), 
but rather by a linear combination of even order isotropic Gaussian derivatives. So the 
advantage of economy of computation that was applicable for LOG remains valid, while at 
the same time apart from the scale of the Gaussians, the factor m can also play a role in 

visual information processing at low level. To understand this more clearly we have to again 
resort to a corresponding receptive field like spatial organization as before for such a 
mathematical function and see whether it also reflects the disinhibitory extended surround 
in such a form of representation.   

5.2 Derivation of a Kernel for the Non-classical Receptive Field 

First of all we discuss on the construction of a computationally handy kernel for the 4∇

operator following the methodology of construction of the convolution matrix for the 2∇

operator, using finite difference approximation as discussed in section 4. Clearly,  
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Utilising the finite difference approximation of the fourth order partial derivative, the kernel 

for 44 x∂∂ in discrete domain can be represented by the kernel: 

By transposing this kernel we may construct the corresponding vector for 44 y∂∂ , add 

these, so that we get the corresponding matrix for a linear combination of these two terms, 

i.e. for   
4
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Using the expressions for 22 x∂∂  and 22 y∂∂ in section 4 we may arrive at a 55×  matrix 
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Then from equation (20), we arrive at the following kernel for the Bi-Laplacian operator: 

                                  

As in the case of deriving the Laplacian kernel the diagonal directions are now incorporated 

by taking the co-ordinates along the diagonals through a 4π  radian rotation. The new 

kernel thus obtained is then added as before, to the above kernel so that we arrive at the 
mask: 

But, unlike the Laplacian, this being a 55× mask, the asymmetry still remains and in order 

to arrive at an omnidirectional mask for the isotropic 4∇  operator, we apply another 8π

radian rotation so that we may also incorporate the off-diagonal elements. Then once again 
adding the new kernel thus obtained to the above mask, the final form that the Bi-Laplacian 
mask assumes is:                            
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Fig. 10  The two benchmark images (a) and (d) used in section 4, have been enhanced with 
the discrete Laplacian mask in (b) and (e) and by the derived digital mask in (c) and (f). 

Since, the non-classical receptive field has been modelled by Equation (19) in the previous 
sub-section, therefore we shall now try to arrive at a new omnidirectional mask that is 
comparable to the omnidirectional Laplacian mask and at the same time whose spatial 
organization reflects the disinhibitory extended surround as an added feature to the lateral 
inhibition evident in the spatial organization of the Laplacian mask. We show below one 
such possiblity. We choose the value of m in Equation (19), so that  if we combine the 

Laplacian and the Bi-Laplacian masks by a ratio of 1:9 , we arrive at such a new 

55× discrete filter comparable in simplicity to the 33×  Laplacian mask:  

Correspondingly, by including the original intensity distribution to such a derivative 
opeartor, as a modification to the proposal of Mach given by Equation (5), we get a new 
spatial organization for the non-classical receptive field that includes disinhibitory inputs 

-1 -1 -1 -1 -1 

-1 3 3 3 -1 

-1 3 -8 3 -1 

-1 3 3 3 -1 

-1 -1 -1 -1 -1 

(a) (b) (c)

(d) (e) (f)
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from the surround extended from the classical excitatory-inhibitory organization of 
receptive field: 

This is the new omnidirectional mask whose performance in enhancing edges, we can now 
compare with the omnidirectional Laplacian mask.  From visual inspection (Fig. 10) it is 
clear that this new discrete filter derived from a combination of Laplacian and Bi-Laplacian, 
indeed performs better compared to the discrete Laplacian mask. The Mach bands have 
been further enhanced by the new discrete filter as compared to the discrete Laplacian filter, 
which leads to better segregation of objects from background and hence better edge 
enhancement. The incorporation of disinhibition has therefore further improved edge 
enhancement. 

5.3 Explanation of Complex Brightness-contrast Illusions 

As we have already seen that the Mach band illusion can be well explained by the DOG 
model of classical receptive field. Some other brightness-contrast illusions like the 
Simultaneous brightness-contrast effect or the grating induction effect can also be explained 
by the  classical model. The Simultaneous brightness-contrast is usually described as a 
homogenous brightness change within an enclosed test patch such that a gray patch on a 
white background looks darker than an equally luminous gray patch on a black background 
(Fig. 11a). This phenomenon is also well explained by the isotropic DOG model, as shown in 
Fig. 11b, where we have drawn a horizontal profile through the two test patches in the 
image that is obtained by convoluting the original image with the DOG function given by 
Equation (8).

Fig. 11(a) The Simultaneous Brightness-contrast illusion (b) Explanation by convolution with 
DOG model along a horizontal line profile through the equiluminant test patches in the 
convolved image, showing the difference in brightness perception. 

-1 -1 -1 -1 -1 

-1 3 3 3 -1 

-1 3 -7 3 -1 

-1 3 3 3 -1 

-1 -1 -1 -1 -1 
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Grating Induction, on the other hand, refers to a periodic apparent contrast induced in 
uniform fields by adjacent gratings. This image displays a brightness effect that produces a 
spatial brightness variation (a grating) in an extended test patch (Fig. 12a). This effect can  

Fig. 12 (a) The Grating Induction illusion. (b) Explanation by convolving the image with 
DOG model along two horizontal line profiles, one through the constant intensity test patch 
(solid line) and one through the grating (dotted line) in the convolved image. 

Fig. 13 (a) The White effect illusion. (b) Attempted explanation with conventional isotropic 
DOG function along a horizontal line profile through the equiluminant gray segments in 
convolved image, gives results in brightness perception contrary to our visual sensation. 

also be similarly explained by the DOG model as has been shown in Fig. 12b, by drawing 
two horizontal profiles one through the test patch and the other through the grating. 
However, many other brightness-contrast illusions like the White effect and the 
checkerboard illusion cannot be explained using the classical DOG model. In the White 
effect, for example in a square grating of black and white bars, if identical gray segments are 
used to replace part of the black bars and also part of the white bars, then the former gray 
segments look brighter than the later (Fig. 13a). Conventional isotropic DOG filters, fail to 
simulate this illusion and produce results contrary to our perception (Fig. 13b). The effect is 
specifically interesting because it does not depend on the amount of dark or white border in 
the vicinity of the test patch. True, that the effect may be generated if lateral inhibition 
shows directional properties i.e. inhibition is supposed to be stronger along the bars than 

(a)
 (b) 

 (a)  (b) 
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across them, but such a supposed anisotropy in lateral inhibition is not observed in White’s 
effect on checkerboard (Fig. 14a), a symmetric image that cannot be explained with the  

Fig. 14 (a) The checkerboard illusion. The horizontal line profiles through the two test 
patches of the image obtained after convolution with DOG model. From the horizontal line 
profiles it is clear that the test patch on the left in darker neighbourhood (solid line 
representation) appears brighter compared to the one on right (dotted line representation), 
which is opposite to our perceptual experience. 

   
Fig. 15 Explanation of the White effect illusion by convolving the image with the 

1GDoG + model which produces results that match our brightness perception. 

isotropic DOG model as well (Fig. 14b). Gestalt theorists believe that White effect can be 
understood only in terms of perception at a higher level and hence such illusions are often 
considered as more complex brightness-contrast phenomena that fall beyond the scope of 
low-level vision. Thus to probe whether the explanation of the White effects could have a 
basis in the retinal physiology, it would indeed be tempting to use the model of non-
classical receptive field in the simulation of the White effects (Ghosh et al., 2006). We find 
that the White effect illusions, for both the anisotropic and isotropic (checkerboard) cases, 
where the DOG model failed completely, can be faithfully explained by convoluting the 

images with the function given by Equation (10), i.e. by the non-classical 1GDoG + model. 

This has been shown in Fig. 15 and Fig. 16. 

(a) (b)

 (a)  (b) 
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Fig. 16 Explanation of the checkerboard illusion by convolving the image with the 

1GDoG + model producing results similar to our brightness perception.  

5.4 A Possible Explanation of the Filling-in Mechanism in Retinal Blind Spot 

It is well-known that human beings have a blind spot in each of their eyes. This blind spot is 
nothing but the area of the visual space that corresponds to the area on the retina, where all 
the optic nerves emanate from the retina (Fig. 17). It is called a blind spot because at this 
corresponding position, the retina is devoid of any rod or cone cell for receiving visual 
information.  The area in visual space, marking the blind spot for one eye, is covered by the 
retina of the other eye. Curiously however, even in monocular vision, no hole is perceived in 
the visual field. This phenomenon is referred to as “filling-in” of the blind spot. According 
to many vision scientists (Ramachandran, 1992), the blind spot is not ignored, but “filling-
in” is continually performed by the human visual system, constructing a representation 
based on the visual stimulation of the area surrounding the blind spot. Such an information 
processing based approach bears resemblance to David Marr’s (Marr, 1982) computational 
investigation of human representation and processing of visual signals.  Marr speculated 
that the computational theory of vision should cover three different possible phases in 
information processing: a) an early primal sketch of which “raw primal sketch” or detection 
of edges is the fundamental step, b) surface interpolation or the filling-in of colour and 
texture leading to the “two-and-half dimensional sketch” and c) object reconstruction and 
classification being the final step. So according to this theory, interpolation is an integral 
part of image retrieval in vision. In a bid to understand the process of interpolation, 
Ramachandran has performed some psychophysical experiments to come up with very 
interesting results on the “filling-in” of blind spots. He has shown that this “filling-in” 
process must occur as early as the detection of edges in the simple cells of primary visual 
cortex.  However such interpolation cannot be explained by the classical DOG function of 
low-level receptive field. For any kernel h(x) to qualify for an interpolator it must obey the 
following conditions:  
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Fig. 17 A rough schematic of the eye that demonstrates the existence of the blind spot in the 
retina of each of the eyes from where the optic nerves emerge out towards the brain. 

Secondly, it must also comply with the condition for dc-constancy, which implies that the 

sum of the samples of the interpolator should be unity for any displacement 10 <≤ d  i.e.: 

1)( ≡+

∞

−∞=

dch

c

                                     (22) 

Functions that do not fulfill Equations (21) and (22) are called ‘approximators’ and do not 
represent the ideal interpolators. The ideal interpolation function for convolution is the sinc 
function:

)(sin
)sin(

)( xc
x

x
xh ideal ==

π

π

It has an infinite support having innumerable zero-crossings. This needs to be truncated to 
obtain a finite support interpolation kernel. From this consideration, the DOG response 
function of the classical receptive field given in Fig. 18a, should be an unlikely contender for 
performing the task of interpolation. This is because by comparing the kernel, with the 
second condition in Equation (21), we easily realize that this interpolator can have only one 

zero-crossing at 1=x , and can therefore at best mimic the highly truncated sinc interpolator 

within the interval 11 ≤≤− x . It will thus behave poorly in frequency domain and invariably 

produce erroneous results, unlike our almost perfect visual experience in the filling-in of 
blind spot. So as in the case of the complex brightness-contrast illusions, we again feel  
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Fig. 18 (a) The DOG kernel in one dimension can have only one zero-crossing at 1=x . It is 

therefore not possible to design a good interpolator with such a function. (b) The 

21 GGDoG −+ kernel is being shown here as a near ideal interpolator with 3 zero-crossings 

at 3,2,1=x and 1)( =xh at 0=x

tempted to investigate if our model of non-classical receptive field can suit the purpose of 
near ideal interpolation in low-level vision. For this we use Equation (15) as the convolution 

function for interpolation or in other words the 21 GGDoG −+ model of non-classical 

receptive field. From Fig. 18b we find that four zero-mean Gaussians representing the non-

classical receptive field, can produce 3 zero-crossings at 3,2,1=x  (Sarkar et al., 2005). 

This kernel, it is easy to verify will have excellent frequency domain as well as dc-constancy 
behaviour (Fig. 19) and is therefore a reasonably good contender for performing near ideal 
interpolation in the blind spot of the retina. Hence the proposal, put forward from the 
observations on the psychophysical experiments (Ramachandran, 1992) that information 

(a)

(b)(b)
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corresponding to the blind-spot can be interpolated out at an early stage of visual 
processing, is also vindicated, since the interpolation function used here is a low-level 
receptive field model only. 

6. Conclusion 

The theory of edge detection and the treatise on low-level vision presented in this chapter in 
the light of the non-classical receptive field of retinal ganglion cells is a straightforward 
continuation of the approach of David Marr and his group. The appeal of the present 
approach lies in its simplicity and easy implementation, although it should be kept in mind 
that no non-linear model of the extended surround has been proposed here, which could be 
an interesting direction of future work. Potential applications of the algorithm will include 
apart from areas of general edge enhancement, designing new robust visual capturing or  

Fig. 19 Representative curves for the interpolation kernel constructed using 

the 21 GGDoG −+ function (a) Fourier spectrum of the kernel and (b) dc constancy bahaviour 

of the kernel 

(b)

(a)
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or display systems and automatic detection and correction of perceived incoherence of 
luminance in video display panels, where accurate perception of intensity level is critical. 
Such applications will be important particularly in mission-critical domains such as aircraft 
display panel design.  Also, the concept of disinhibition introduced into the low-level 
receptive field structure, can be extended in future to higher brain functions such as 
categorization and memory. It is possible that a close analysis of cortical horizontal 
connections and their physiology under the disinhibition framework can provide us with 
new insights on their functions. This in turn will allow us to apply the general concept of 
disinhibition in advanced intelligent systems, firmly based on biological observations. 
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