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1. Introduction 

p53 was discovered in 1979 in SV40-transformed cells as a cellular protein that forms a 
complex with the large T antigen (DeLeo et al., 1979; Kress et al., 1979; Lane and Crawford, 
1979; Linzer and Levine, 1979). It was originally identified as an oncoprotein, but was shown 
to be a tumor suppressor ten years later by both in vitro experiments and human tumor sample 
studies (Baker et al., 1989; Finlay et al., 1989; Hinds et al., 1989; Nigro et al., 1989). 

Since then, an impressive body of work has been performed to decipher the functions and 

regulation of p53. The crucial role of p53 in tumor suppression is demonstrated by the fact 

that the TP53 gene is mutated in 50-70% of human sporadic cancers (Levine, 1997), and that 

genes encoding the p53 regulators Mouse Double Minute 2 (Mdm2) and Mdm4 (also known 

as MdmX) are often mutated in the other tumors (Toledo and Wahl, 2006). Furthermore, 

germline TP53 mutations account for the Li-Fraumeni syndrome, a familial cancer 

predisposition syndrome characterized by a high tumor penetrance and early tumor onset  

(Malkin et al., 1990).  

More than 27 000 somatic mutations and close to 600 germline mutations of TP53 were 
reported (according to the TP53 mutation database (Petitjean et al., 2007) of the International 
Agency for Research on Cancer (IARC) ; release R15, November 2010). In this review, we 
summarize what TP53 point mutations may reveal about p53 function and cancer 
development, and further address the prognostic and predictive values of TP53 point 
mutations or SNPs in the p53 pathway. 

2. Effects of point mutations in p53: Data from tumors and mouse models 

In response to diverse oncogenic stresses, the transcription factor p53 promotes transient or 
permanent cell cycle arrest (the latter also known as senescence), or apoptosis, hence 
preventing cells with a damaged genome to proliferate (Vogelstein et al., 2000). In addition, 
p53 regulates various processes that may contribute to its tumor suppressive functions, 
including glycolysis, autophagy, cell mobility, microRNA processing, ageing and 
suntanning (Aylon and Oren, 2010; Cui et al., 2007; Vousden and Ryan, 2009). 

Due to its detrimental activities to cell proliferation, p53 needs to be tightly regulated. 
Mdm2 and Mdm4 are the main p53 inhibitors (Wade et al., 2010), and their essential role is 
demonstrated by the p53-dependent lethality of Mdm2-deficient and Mdm4-deficient 
mouse embryos, which die from apoptosis or proliferation arrest, respectively. Mdm2 is a E3 
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ubiquitin ligase that can lead to the degradation of p53 by the proteasome (Brooks and Gu, 
2006), whereas Mdm4 inhibits the activity of p53 mainly by occluding the p53 
transactivation domain (Marine et al., 2006). But the regulation of p53 is much more 
complex, as more than 160 proteins interact with p53 to regulate its activity and stability 
(Toledo and Wahl, 2006). 

The transcription factor p53 is a 393-amino acids protein composed of 5 domains : a N-
terminal transactivation domain (TAD), a proline-rich domain (PRD), a core DNA binding 
domain (DBD), a tetramerization domain (4D) and a C-terminal regulatory domain (CTD) 
(Fig. 1A). Single-base substitutions in the TP53 coding sequence, leading to missense 
mutations, nonsense mutations or frameshifts, are the principal mode of p53 alteration in 
human cancers (Olivier et al., 2010).  

 

Fig. 1. TP53 missense mutations are clustered in the DNA binding domain. (A) Schematic 
representation of the 5 domains of p53. (B) The number of missense somatic mutations in 
human cancers for each codon, according to the IARC TP53 mutation database R15, was 
plotted against the p53 map. Data are from 20256 tumor missense mutations. The 7 most 
frequently mutated residues are indicated. (C) The transactivation activity of 2314 missense 
mutants tested in yeast and plotted against the p53 codon map. The capacity of mutants to 

transactivate 8 target genes (p21/WAF1, Mdm2, Bax, 14-3-3, AIP1, GADD45, Noxa and 
p53R2) relative to that of wild-type p53 is presented. (Modified from Toledo and Wahl, 2006). 
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2.1 TP53 mutations in human cancers cluster in the DNA-binding domain 

The functional importance of the p53 DNA-binding domain (DBD) is demonstrated by the fact 
that more than 70% of TP53 mutations are missense mutations affecting residues within this 
domain (Fig. 1B), and leading to a decreased capacity in target gene transactivation (Fig. 1C).  

Crystallographic studies showed that the p53 DBD consists of a central -sandwich that 
serves as a scaffold for the DNA binding surface, composed of 2 structural motifs. The first 
loop-sheet-helix motif including loop L1 binds to the DNA major groove. The other half of 
the DNA binding surface contains two large loops L2 and L3, which interact with the DNA 
minor groove and can be stabilized by a zinc ion (Fig. 2). Compared to its paralogs p63 and 
p73, the p53 DBD has evolved to be more dynamic and unstable, with a melting 
temperature around 44-45°C (Joerger et al., 2006; Joerger and Fersht, 2008). Among the 7 
residues most frequently mutated in human cancers, 6 are located at or close to the DNA 
binding surface (Fig. 2). Depending on their nature, these hotspot mutants can be classified 
as « contact » or « structural » mutants (Cho et al., 1994).   

 

Fig. 2. Structure of the p53 DNA binding domain bound to DNA. The two strands of bound 
consensus DNA are shown in blue and magenta. The bound Zinc ion is shown as a golden 
sphere, and the 7 residues that are frequently mutated in human cancers are highlighted in 
orange (Modified from Joerger et al., 2006). 

2.1.1 Contact mutants 

Contact mutants affect the residues that interact directly with the DNA helix : residues R248 
and R273 (Fig. 2). Crystallographic studies showed that R248 interacts with the minor 
groove of target DNA, whereas R273 contacts with the phosphate backbone at the center of 
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a p53 binding half-site (a p53 response element is composed of 2 binding half-sites separated 
by 0-13 base pairs, each half site corresponding to the consensus sequence 5’-
RRRCWWGYYY-3’, with R = G/A ; W = A/T and Y = C/T). This group of mutants 
encompasses hotspot mutations R248Q, R248W, R273H and R273C. Two of these were 
thoroughly studied in mouse models, in which each mutation was targeted at the p53 locus 
by using homologous recombination in embryonic stem cells.  

The mouse model p53R270H (equivalent to human p53R273H) revealed the dual property of the 
mutant protein (Olive et al., 2004). The p53R270H protein could exert dominant negative 
effects on the wild-type protein by hetero-oligomerization. Compared to their p53+/- 
counterparts, p53R270H/+ mouse embryonic fibroblasts (MEFs) exhibited a faster cycling rate,  

and p53R270H/+ thymocytes exhibited a decreased apoptotic response to -irradiation. 
Furthermore, p53R270H/+ mice showed an increased incidence of spontaneous B-cell 
lymphomas and carcinomas with frequent metastases, a tumor spectrum distinct from that 
observed in p53+/- mice. In addition, mutant p53R270H exhibited gain-of-function phenotypes, 
as evidenced by the observation of a much higher incidence of various tumor types in 
p53R270H/- mice, including high-grade carcinomas with epithelial origin and 
hemangiosarcomas, which are rarely found in p53-/- mice. The authors attributed this gain-
of-function effects to the inhibition of p63 and p73 functions by the mutant p53 protein. 

In another study, the two most common p53 cancer mutations, R248W and R273H, were 

evaluated in mice after their independent targeting at the humanized p53 knock-in (p53hupki) 

allele. This humanized allele encodes a human/mouse chimeric protein containing human 

p53 residues 33-332 flanked by murine N-terminal and C-terminal p53 sequences (Song et 

al., 2007). Both mutants had lost p53-dependent cell-cycle arrest and apoptotic responses, 

and each showed a more complex tumor spectrum than p53-/- mice, suggesting a gain-of-

function. Indeed, by interacting with the Mre11 nuclease and preventing the binding of the 

Mre11-Rad50-NBS1 complex to DNA double-strand breaks, the mutant proteins were found 

to disrupt a critical DNA-damage response pathway, and thus to promote genetic 

instability. 

2.1.2 Structural mutants 

The mutations of residues that are not in direct contact with DNA but function to stabilize 

the DNA binding structure are referred to as structural mutants. In contrast to contact 

mutants, structural mutants affect the overall architecture of the DNA-binding surface and 

change the conformation of the protein (Cho et al., 1994). Human cancer hotspot mutations 

R175H, Y220C, G245S, R249S and R282W belong to this category.  

The residue R175 is the third most frequently mutated p53 codon in human cancers (Fig. 

1B). Two different mutations affecting this residue were analyzed in vivo. Mouse models 

expressing a p53R172H protein (corresponding to p53R175H in humans) were found to be 

extremely tumor-prone. p53R172H led to the loss of both cell cycle control and apoptosis. In 

addition, a dominant-negative function of the mutant protein over wild-type p53 and the 

acquisition of an oncogenic function through p63 and p73 inactivation were reported (Lang 

et al., 2004; Olive et al., 2004). Another mouse model affecting the same residue is p53R172P . 

This mutant was found unable to induce apoptosis, although it retained partial cell cycle 

control. Compared to p53-/- mice, p53R172P/R172P mice exhibited a delayed tumor onset ; this 
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indicated that apoptosis is not the only p53-dependent cellular response essential for 

tumour suppression, and that the maintenance of chromosomal stability is also important 

(Liu et al., 2004). More recently, further analyses of this mutant, in combination with a 

deficiency in Mdm2, revealed the importance of p53 and reactive oxygen species (ROS) in 

the regulation of pools of hematopoietic stem cells (Abbas et al., 2010). 

The mutation R249S is often found in human hepatocellular carcinomas associated with 
exposure to aflatoxin (as detailed below). A targeted mutation leading to the expression of a 
murine p53R246S (equivalent to human p53R249S) has, so far, only been described in embryonic 
stem cells (Lee and Sabapathy, 2008): this revealed a dominant negative effect of the mutant 
protein. Transgenic p53R246S mice, described earlier, suggested that this mutant might act as 
a promoting agent for aflatoxin-induced hepatocarcinogenesis (Ghebranious and Sell, 1998).  

The properties of this group of mutant proteins were also proposed to result from their 
increased propensity to aggregate. The mutants R175H, R249S and R282W could 
coaggregate, in the cytoplasm, with wild-type p53, p63 or p73, causing deficient induction of 
target genes (Xu et al., 2011).  

Finally, p53 was recently found to facilitate the maturation of a subset of primary miRNAs, 
by forming a complex with Drosha and p68. p53 point mutations in the DNA binding 
domain, such as R175H and R273H, were shown to disrupt the interaction between Drosha 
and p68 and lead to attenuated miRNA processing, suggesting another oncogenic property 
acquired by these p53 mutants (Suzuki et al., 2009). 

2.2 Mutations in other domains of p53 

In vitro and transfection studies suggested that post-translational modifications in the 
transactivation domain (TAD), proline-rich domain (PRD) and C-terminal domain (CTD) 
are important for p53 activity. Although mutations affecting these domains are extremely 
rare in human cancers, mouse models carrying such mutations have provided insight into 
p53 regulation. 

2.2.1 Mutations in the Transactivation Domain (TAD) 

The N-terminal p53 TAD, containing the major site of interaction with Mdm2, was initially 
defined as encompassing the first 40 residues of the protein. Phosphorylation of serines in 
the TAD were thought to be crucial for p53 activation and stabilization, by preventing 
Mdm2 binding and promoting p300 binding, but when mutations of such residues were 
targeted at the murine locus and evaluated in vivo, unexpected phenotypes were observed. 
Mutations S18A or S23A (corresponding to human S15A and S20A respectively) 
independently led to no or mild alterations in p53 stability, transactivation, cell cycle control 
and apoptosis (Chao et al., 2003; Sluss et al., 2004; Wu et al., 2002). However p53S18A,S23A 
mice, carrying mutations of the two residues, were deficent in inducing apoptosis and 
developped various types of late onset tumors (Chao et al., 2006). Furthermore, transfection 
studies led to propose that human p53 mutations of leucine 22 and tryptophan 23 into 
glutamine and serine (L22Q and W23S) would disrupt Mdm2 interaction and prevent the 
recruitement of transcription co-activators, leading to a stabilized p53 protein with reduced 
transactivation capacity (Lin et al., 1994). This hypothesis was confirmed in a mouse model 
expressing the equivalent mutant protein p53L25Q,W26S (referred to as p5325,26 below) : p5325,26 
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protein was very stable due to the lack of Mdm2 binding, and its ability to transactivate 
target genes in response to acute DNA damage was impaired. Its increased stability and 
residual activity led to early embryonic lethality (Johnson et al., 2005).  

The work of Zhu et al. led to propose the existence of a secondary TAD domain (TAD2), 
adjacent to the first TAD, roughly corresponding to residues 43 to 63 (Zhu et al., 1998). The 
role of the two transactivation domains was further studied in a recent work, which 
compared the p5325,26 mouse model to the mouse p5353,54, with 2 mutations in the TAD2 
(L53Q and W54S), and to the quadruple mutant p5325,26,53,54 (Brady et al., 2011) (Figure 3). 
The similarity of p5353,54 MEFs, but not p5325,26 nor p5325,26,53,54 MEFs, to wild-type cells in 
target gene induction after acute genotoxic stress suggested that the p53 DNA damage 
response relies on an intact TAD1. However, in a model of KrasG12D–induced lung 
tumorigenesis, p5325,26 could suppress tumor formation as efficiently as wild-type p53, 
whereas the quadruple mutant acted as a p53 null protein. Thus, an intact TAD1 is required 
to achieve an acute genotoxic response, but TAD1 and TAD2 can function redundantly to 
supress tumors. This may explain why mutations in the TAD are rare in human cancers. 

 

Fig. 3. Schematic representation of the murine p53 protein and the targeted mutations 
(outside of the DNA binding domain) that were generated. TAD (1 & 2): transactivation 
domain ; PRD : proline-rich domain ; DBD : DNA binding domain ; NLS : nuclear 
localization signal ; 4D : tetramerization domain ; CTD : C-terminal domain (Modified from 
Toledo and Wahl, 2006). 

2.2.2 Mutations in the Proline-Rich Domain (PRD) 

Human p53 lacking residues 62-91 in the PRD was found to be more sentitive to Mdm2-

mediated degradation, and this was proposed to result from the loss of an essential prolyl 

isomerase PIN1 binding site within the PRD (Berger et al., 2005; Berger et al., 2001; Dumaz et 

al., 2001). The PRD might also ensure optimal p53-p300 interactions through PXXP motifs 

(Dornan et al., 2003).  Consistent with in vitro findings, mouse model p53P, lacking the 

amino acids 75-91 with all PXXP motifs and putative PIN1 sites deleted, displayed reduced 

protein stability and transactivation capacity (Toledo et al., 2006). However, p53P was 

deficient in cell-cycle control but retained a partial pro-apoptotic capacity, in striking 

contrast to what transfection studies had suggested. This surprising phenotype was 

confirmed by the observation that p53P rescues Mdm4-null but not Mdm2-null embryos. 

Another mouse model of the PRD, p53mpro, expressing a p53 lacking residues 58-88, was 

reported later (Slatter et al., 2010). p53mpro retained a capacity to control the cell cycle in 

bone marrow cells, but it was not analyzed in MEFs like the p53P mutant, and attempts to 
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rescue Mdm2-null or Mdm4-null embryos were not performed in a p53mpro context. Thus, 

further analyses are needed to evaluate the similarities or differences between the p53P and 

p53mpro mutants.  

Mouse mutants with more subtle mutations in the PRD were also reported (Toledo et al., 
2007). p53TTAA, with threonines 76 and 86 mutated into alanines, removed only the putative 
PIN1 binding sites in the PRD. These mutations partially affected p53 stabilization upon 
DNA damage, but the mutant protein remained as active as wild-type p53, suggesting that 
PIN1 binding sites in the PRD participate in p53 stability control, but exert little effects on 
p53 function. In the mutant p53AXXA, prolines 79, 82, 84 and 87 were mutated into alanines, 
to remove both PXXP motifs of the murine p53 PRD. The stability and activity of this mutant 
did not differ significantly from that of WT p53, suggesting either that the PRD has mainly a 
structural role, or that PXXXXP motifs present in the p53AXXA protein are sufficient to ensure 
protein-protein interactions.  

2.2.3 Mutations in the C-terminal region of the protein 

Several kinases may phosphorylate serines 315 and 392 in human p53. Unlike other serines 
or threonines in p53 that are phosphorylated by stress-related kinases, serine 315 is 
predominantly phosphorylated by cell cycle-related kinases. Furthermore, whether this 
phosphorylation regulates p53 functions positively or negatively appeared controversial 
after in vitro studies (Fogal et al., 2005; Qu et al., 2004; Zacchi et al., 2002; Zheng et al., 2002). 
Two mouse models expressing p53S312A (equivalent to a S315A mutation in human p53) 
were recently reported (Lee et al., 2010; Slee et al., 2010). This mutation did not affect the 
survival of mice under normal physiological conditions and appeared to have only mild 
effects on stress-responses in fibroblasts. However, the irradiation of p53S312A/S312A mice 
revealed their predisposition to develop thymic lymphomas and liver tumors, and a 
decreased p53 response was demonstrated in liver tumors (Slee et al., 2010). As for serine 
392, in vitro studies revealed its phosphorylation in response to UV irradiation, correlated 
with p53 activation (Kapoor and Lozano, 1998; Lu et al., 1998). Mice with an equivalent 
mutation (S389A) were resistant to spontaneous tumors with a normal p53 stability, but 
presented a slightly reduced apoptotic response after UV irradiation, and a slightly higher 
UV-induced skin tumor occurrence (Bruins et al., 2004).  

Human p53 contains 6 lysine residues in its C-terminal domain, subjected to various post-
translational modifications including acetylations and ubiquitinations, long thought to be 
crucial for the regulation of p53 protein activity and stability (Nakamura et al., 2000; 
Rodriguez et al., 2000). However, mouse models expressing a p53 with 6 or 7 C-terminal 
lysines mutated into arginines (referred to as p53K6R or p537KR, respectively) appeared rather 
similar to wild-type mice, suggesting that these residues only participate in the fine-tuning of 
p53 responses (Feng et al., 2005; Krummel et al., 2005). More recently, p537KR mice were found 

to be hypersensitive to -irradiation, due to defects in hematopoiesis (Wang et al., 2011). 

2.2.4 Mutations in non-coding regions 

Cancer related-mutations in intronic sequences were not studied as extensively as those in 
exons. Mutations in non-coding regions may affect splicing sites, potentially resulting in 
truncated protein products or reduced protein levels (Holmila et al., 2003). For example, an 
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A-to-G transition in intron 10 that eliminates a splicing acceptor site and causes a frameshift 
was recently reported in a pediatric adenocortical tumor (Pinto et al., 2011). In silico analyses 
suggested that the resulting mutant protein may be misfolded or may aggregate, accounting 
for a loss in tumor suppressor capacity. 

3. p53 mutations and the etiology of human cancers 

The distribution of TP53 missense mutations in human cancers correlates with their functional 
impact, as the most frequent mutations severely impair sequence-specific DNA binding and 
transactivation. Importantly, the frequencies and types of mutations in TP53 reflect both the 
selective growth advantage they confer to mutated cells, and the mutability of a particular 
codon to endogenous metabolites or exogenous carcinogens. Spontaneous deamination and 
environmental carcinogens are considered to be the main sources of mutagenesis.  

3.1 Spontaneous C to T transversion 

CpG dinucleotides in TP53 are highly methylated in normal tissues, and the 5’-methylated 
cytosine undergoes spontaneous deamination at a higher rate than an unmethylated base, 
leading to a cytosine to thymidine transition. 33% of TP53 DBD mutations occur at 
methylated CpG sites, affecting 5 major hotspot mutations (codons 175, 245, 248, 273 and 
282), and this is considered as a main source of internal cancers (Gonzalgo and Jones, 1997).  

3.2 Mutations induced by exogenous carcinogens 

3.2.1 Aflatoxin & p53R249S mutations 

The incidence of hepatocellular carcinoma (HCC) correlates well with the occurrence of two 

principal etiologic factors : hepatitis B or C infections and exposure to aflatoxins in the diet, 

causing a G to T transversion at codon 249 (R249S) (Aguilar et al., 1993). In high incidence 

areas for HCC, the molds Aspergillus flavis and Aspergillus parasiticum contaminate maize 

and peanuts producing aflatoxins that, once metabolized by the liver, may generate DNA 

adducts at several guanines in TP53, leading to G to T transversions. In fact, the aflatoxin 

adducts occur at a few codons, and the high frequency of R249S (AGG  AGT) mutation 

results from its clonal selection during hepatocellular carcinogenesis. 

3.2.2 Smoking & lung cancer 

p53 mutations are common in lung cancers, with a frequency of 75% in smokers, showing a 

strong correlation between smoking and p53 mutations. Human lung cancers from smokers 

display a distinct TP53 mutation pattern with a predominant G to T/A transversion, 

whereas C to T transitions are enriched in other cancer types. These smoking-induced 

transversions, caused by the benzo(a)pyrene metabolites in the tobacco smoke, are often 

observed in methylated CpG sequences at codons 157, 158, 245, 248 and 273 (Le Calvez et 

al., 2005). Intriguingly, the majority of G to T transversions occur on the nontranscribed 

strand, suggesting that the benzo(a)pyrene adducts on that strand are less efficiently 

removed. Thus, the distribution of TP53 mutations in lung cancers results from the 

combined effects of site preference for adduct formation, differential DNA strand repair 

efficiencies, and clonal selection of the mutations that most affect p53 function. 
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3.2.3 UV & skin carcinomas 

The major cause of nonmelanoma skin cancers is sunlight. In basal and squamous cell skin 
carcinomas, a high frequency of C to T transitions in TP53 is observed, including tandem CC 
to TT transitions, considered to be the mutagen fingerprint of ultra-violet (UV) irradiation. 
The tandem CC to TT transitions would result from UV-induced pyrimidine dimers that 
escape nucleotide excision repair (NER). Consistent with this, skin tumors from Xeroderma 
pigmentosum patients, deficient in NER, exhibit a high frequency of CC to TT transitions in 
tumor suppressor genes such as TP53 and PTCH1 (Bodak et al., 1999). Importantly, the 
mutagen fingerprint of UV on the TP53 gene suggests that farmers, fishermen and forestry 
workers are predisposed to basal cell skin carcinomas because of their occupational 
exposure to sunlight (Weihrauch et al., 2002). 

4. Effects of Single Nucleotide Polymorphisms (SNPs) in the p53 pathway 

By definition, a single nucleotide polymorphisms (SNP) affects at least 1% of a population. 
Numerous SNPs are present at the TP53 locus and in genes involved in the p53 network. 
They may increase cancer risk and affect response to therapeutic regimens.  

4.1 SNPs in TP53 and TP73 

4.1.1 Codon 72 Pro/Arg 

The most studied SNP in TP53 is the Proline/Arginine variation at codon 72 (referred to as 
p53-72Pro or p53-72Arg, respectively). This SNP is due to a change in the DNA sequence 
encoding the proline-rich domain of p53 (CCC or CGC). Experiments in human cell lines 
have suggested that the variant p53-72Arg is more efficient in inducing apoptosis, whereas 
p53-72Pro would be more efficent in transactivating p21 and inducing cell cycle arrest 
(Dumont et al., 2003; Pim and Banks, 2004; Salvioli et al., 2005; Sullivan et al., 2004). Studies 
of the association of these polymorphic variants with cancer risk have been controversial 
however (Whibley et al., 2009). Several models of ‘humanized’ mice designed to reproduce 
the p53-72Pro/Arg polymorphism were recently reported (Azzam et al., 2011; Frank et al., 
2011; Zhu et al., 2010). These models revealed tissue-specific effects of the codon 72-
polymorphism, which may explain the controversial findings in human studies. 

4.1.2 Codon 47 Pro/Ser 

The SNP p53-47 Proline or Serine (referred to as p53-47Pro or p53-47Ser hereafter), resulting 
from a C to T substitution at position 1 of codon 47, has been reported in populations of 
African origin (Felley-Bosco et al., 1993). The variant p53-47Ser, which was described to 
decrease the induction of some pro-apopotic genes by reducing the phosphorylation level at 
the adjacent serine 46 residue (Li et al., 2005), deserves further investigation.  

4.1.3 Codon 217 Val/Met and codon 360 Gly/Ala 

The SNP p53-217 Valine/Methionine is the only polymorphism found in the p53 DBD, 
which could be expected to affect p53 activity. Its function has only been tested in yeast and 
the p53-217Met variant showed an increased transactivation capacity (Kato et al., 2003). The 
SNP p53-360 Glycine/Alanine is located in the linker region adjacent to the p53 4D, and a 

www.intechopen.com



 
Point Mutation 

 

310 

yeast assay indicated that induction of some p53 target genes are slightly decreased with the 
p53-360Ala variant (Kato et al., 2003). Further studies of these SNPs in a mammalian system 
are required to address their role in human cancers. 

Importantly, additionnal SNPs that appear specific to Chinese populations were recently 
reported, but their impact on cancer risk remains to be evaluated in large cohorts (Phang et 
al., 2011). SNPs that could influence cancer risk need to be precisely evaluated in other p53 
family members as well. At present, one  SNP likely relevant for cancer research has been 
found in TP73. Table 1 summarizes the identified SNPs in members of the p53 family.  

 

Gene Function SNP 
Molecular 
description 

Clinical association 

TP53 

Tumor suppressor, 
transcription factor ; 

induces cell cycle 
arrest and apoptosis 
in response to stress

72Arg/Pro 

See text 
47Pro/Ser 

217Val/Met 
360Gly/Ala

TP73 

Transactivates p53 
target genes, some 

isoforms inhibit p53 
functions 

G4C14/ 
A4T14 

Two linked 
intronic SNPs, 

upstream of the 
translation starting 

site in position 4 
and 14 

A4T14 allele : increased 
risk of squamous cell 

carcinoma of the head and 
neck, gastric, colorectal 

and endometrial cancers ;  
G4C14 allele : increased 

risk of lung cancer in 
Chinese population 

Table 1. Cancer-related SNPs in the p53 family. Data collected from (Chen et al., 2008; De 
Feo et al., 2009; Hu et al., 2005; Kaghad et al., 1997; Niwa et al., 2005; Pfeifer et al., 2005). 

4.2 SNPs in the p53 pathway 

Genes encoding p53 regulators, and p53 target genes also exhibit single nucleotide 
polymorphisms, which may affect p53 responses and synergize with SNPs or mutations in 
TP53 to alter cancer risk and clinical outcome. The current informations on SNPs in p53 
regulators and p53 target genes are summarized in Tables 2 and 3 respectively. 

5. Future perspectives : The importance of p53 isoforms 

Recent studies have shown that TP53 has a complex gene structure, much like the genes 
encoding its family members p63 and p73. Human TP53 encodes 12 isoforms due to the 
presence of multiple promoters, translation initiation sites and alternative sites of splicing 
(Bourdon et al., 2005; Marcel et al., 2010a). These isoforms are expressed in normal tissues in 
a tissue-specific manner, and at least some of them appear to participate in the regulation of 
full length-p53 (FL-p53) and to play a role in tumor progression (Bourdon, 2007).  

The 12 human p53 protein isoforms are illustrated in Figure 4. 40p53, an isoform lacking 

the first transactivation domain (TAD1), can be obtained by alternative splicing of intron 2 

or by the use of alternative translation initiation (Courtois et al., 2002; Ghosh et al., 2004; Ray 

et al., 2006). Under endoplasmic reticulum (ER) stress, 40p53 expression is increased,  
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Gene Function SNP Molecular description Clinical association 

Mdm2 
Regulates p53 

stability 
SNP309 

T/G in intron 1. G 
creates a Sp1 binding 
site, increasing Mdm2 

expression 

G : increased risk for early 
onset tumors, particularly 

in young females 

Mdm4 
Regulates p53 

activity 
SNP34091

A/C in the 3’UTR 
region. Mdm4-C allele 
is a target of hsa-miR-
191 but not Mdm4-A

C : later onset of ovarian 
carcinomas and increased 

response to 
chemotherapy 

ATM 

Phosphorylates 
and activates p53 

upon DNA 
damage 

1853 
Asp/Asn 

Asp or Asn at codon 
1853. Asn leads to 

decreased activation of 
p53 

Asn :  increased colorectal 
cancer risk and reduced 

melanoma risk 

NQO1 
Stabilizes p53 upon 

oxidative stress 
187 Pro/Ser

Pro or Ser at codon 
187. Ser leads to loss of 

activity 
Ser : increased cancer risk 

 

Table 2. Cancer-related SNPs in regulators of p53. Summarized data for SNPs in Mdm2 
(Bond et al., 2004; Bond and Levine, 2007; Post et al., 2010), Mdm4 (Wynendaele et al., 2010), 
ATM (Barrett et al., 2011; Jones et al., 2005; Maillet et al., 1999; Thorstenson et al., 2001), 
NQO1 (Asher and Shaul, 2005; Jamieson et al., 2007; Ross and Siegel, 2004). 

 
Gene Function SNP Molecular description Clinical association 

CDKN1A 
(p21) 

Regulator of 
G1-S cell cycle 

progression 

31 
Ser/Arg 

Ser or Arg at codon 
31 

Ser : increased 
esophageal, breast 
cancer risk ; Arg : 
increased type-C 

chronic lymphocytic 
leukemia 

CDKN1B 
(p27) 

Regulates cell 
cycle 

-79C/T 
C/T in 5’UTR, 79 nt 

upstream of the 
translation start site 

T : increased prostate, 
breast, thyroid cancer 

risk 

BAX pro-apoptotic 
-125 
G/A 

G/A in the promoter, 
125 nt before 

transcription start site 

A : increased risk for 
head and neck 

carcinomas and 
chronic lymphocytic 

leukemia 

CASP8 pro-apoptotic 
302 

Asp/His
Asp or His at codon 

302 
His : reduced breast 

cancer incidence 
 

Table 3. Cancer-related SNPs in p53 target genes. Summarized data for SNPs in p21 (Ebner 
et al., 2010; Johnson et al., 2009; Yang et al., 2010), p27 (Chang et al., 2004; Driver et al., 2008; 
Landa et al., 2010; Ma et al., 2006), Bax (Chen et al., 2007; Lahiri et al., 2007), Caspase 8 (Cox 
et al., 2007; MacPherson et al., 2004; Palanca Suela et al., 2009). 
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leading to G2 arrest (Bourougaa et al., 2010). Transgenic mice overexpressing 40p53 exhibit 
an increased cellular senescence, a slower growth rate, memory loss, neurodegeneration and 
accelerated ageing (Maier et al., 2004; Pehar et al., 2010). 

133p53 and 160p53 isoforms are expressed from an evolutionary conserved promoter 
located in intron 4 (Bourdon et al., 2005). Studies in human cells and zebrafish indicated that 
this internal promoter is transactivated by FL-p53 (Aoubala et al., 2011; Chen et al., 2009; 

Marcel et al., 2010b). Human 133p53 and zebrafish 113p53, isoforms lacking the TAD and 
part of the DBD, have an anti-apoptotic role (Bourdon et al., 2005; Chen et al., 2009). In 

addition, overexpression of 133p53 was found to extend cellular replicative lifespan by 

inhibiting p21 and miR-34 (Fujita et al., 2009). 133p53 is absent in normal mammary tissues, 
but present in breast cancers, and its overexpression is correlated with the progression of colon 

cancer from adenomas to carcinomas. The 160p53 isoform results from an alternative 

translation intiation site, within the same mRNA transcript that encodes 133p53 (Marcel et 
al., 2010a). The function of this isoform, identified very recently, is presently unknown. 

  

Fig. 4. TP53 encodes 12 putative isoforms. (A) TP53 gene structure with 2 promoters (P1 and 
P2), 4 translation initiation sites (ATG1, ATG40, ATG133 and ATG160) and 3 C-terminal 

alternative splicing sites (,  and ). (B) 12 protein isoforms of human p53 with their name 
and molecular weight listed on the left and right, respectively. The functional domains and 

the specific C-terminal sequences for the  and  variants are indicated.  
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The use of alternative splicing sites in intron 9 results in the production of 2 isoforms with 

distinct C-terminal domains : p53and p53 (Bourdon et al., 2005). These 2 isoforms lack the 
oligomerization domain, but are proposed to work independently of FL-p53 by 
transactivating p53 target genes in a promoter-specific manner, or together with FL-p53 to 

modulate its target gene expression. Luciferase assays indicated that p53could increase 

p53-dependent expression of p21, consistent with the observation that p53cooperates with 

FL-p53 to accelerate replicative senescence of human fibroblasts (Fujita et al., 2009). p53 
may enhance p53 transcriptional activity on the BAX promoter (Bourdon et al., 2005). In a 

study of 127 randomly selected primary breast tumors, the expression of the p53 and p53 
were found to associate with oestrogen receptor (ER) expression and mutation of TP53 gene, 
respectively (Bourdon et al., 2011). Patients expressing only mutant p53 had a poor 
prognosis, as expected. Interestingly however, patients with mutations in TP53 expressing 

p53 had low cancer recurrence and an overall survival as good as that of patients with 
wild-type p53. These results suggest that the expression status of p53 isoforms should be 
precisely determined in human cancers, to evaluate their relevance in cancer therapy and 
prognosis. Consequently, it becomes important to determine the impact of each point 
mutation in TP53 on the synthesis of p53 isoforms.   
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