
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



8 

Spatio-Temporal Disease Surveillance 

Ross Sparks, Sarah Bolt and Chris Okugami 
CSIRO Mathematics, Informatics and Statistics, Sydney, 

Australia 

1. Introduction 

Concern over bio-terrorism has led to a demand for automated methods for the surveillance 
of disease counts with the ability to rapidly detect outbreaks of disease. While traditional 
statistical process control methods such as control charts have been found to have early 
detection properties when monitoring univariate disease counts, these are often inadequate 
for detecting bio-terrorism events. 

There are two principal impediments in statistical process control methods for the detection 
of bio-terrorism events: firstly, these methods aggregate over space by examining total 
counts and thus ignore the spatial dimension of the task and secondly they fail to adjust for 
the usual (seasonal) behaviour of diseases (e.g., Steiner et al., 2011 where the focus is early 
detection of the start of influenza outbreak). If disease outbreaks were expected to be spread 
relatively uniformly in space, then the former reason is unimportant. However, since bio-
terrorism attacks are likely to be introduced to specifically targeted locations, then the 
resulting disease instances are likely to cluster in space. Consequently, monitoring total 
counts is likely to reduce the signal-to-noise ratio of this outbreak by aggregating over 
regions where there is no outbreak. Exploiting the spatial clustering should be able to 
provide additional power and efficiency in detecting the outbreak.  

There is much ongoing work in developing methods that are efficient at detecting outbreaks 
in a spatial context but these methods may still fail to deal with the latter fault mentioned 
above. When surveillance for bio-terrorism involves the monitoring of diseases or 
syndromes already present in the population then the detection of an attack may be delayed 
if it is introduced during a period of normal seasonal increased activity. For example, 
respiratory complaints are often much more frequent in the cooler months so detecting an 
intentional disease outbreak with respiratory symptomatology would need to differentiate 
between the usual and an unusual increase in cases. Therefore, it is often necessary to 
remove the influence of the expected behaviour of a disease to detect the signal of an 
introduced strain early.  

Before presenting the method we are proposing in this chapter to deal with both of the 
above concerns, we begin by outlining some of the existing spatial disease detection 
methods. The current benchmark in spatio-temporal surveillance is the spatial SCAN 
statistic (Tango, 1995, Kulldorff, 1995, 1997, 2001, 2005). This method is a spatio-temporal 
moving average plan that systematically scans the target space applying a test to all 
windows of data up to a given fixed size in time and space. This presents an intuitive 
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approach but has received some criticisms by Woodall et al. (2008) and Han et al. (2008), 
including: firstly that it is not as efficient as the cumulative SUM (CUSUM) (see Raubertas, 
1989, and Rogerson and Yamada, 2004) for outbreak detection and secondly that its ability 
to detect outbreaks most effectively is dependent on the choice of shape and size of the 
scanning window. In addition, in some of the literature on the SCAN statistic, the focus is on 
whether diseases cluster rather than on early detection.  

Some control chart methods have also been proposed such as the Multivariate Exponentially 

Weighted Moving Average (MEWMA) control chart method proposed by Joner et al. (2008). 

This approach could be extended to the lattice structure of counts discussed below but 

involving all cell counts in the lattice making it a high dimensional application of the 

MEWMA plan which is difficult to implement. Exponential weighted moving averages 

(EWMA) have also proved valuable in the early detection of persistent disease outbreaks 

(Steiner et al, 2010 and Sparks et al 2010a). However these methods are frequently unable 

to account for underlying changes that occur in the observation of disease instances 

through health services such as day-of-the-week or holiday effects. The removal of known 

trends, called nuisance variables, would reduce the noise in the departures of counts from 

expected, and as such provides the surveillance plans with a increased chance of early 

detection.  

A bio-terrorist attack is likely to be initiated at several simultaneous disconnected locations 

causing clustered outbreaks of different size and shape. Having a technology that has the 

flexibility of finding outbreaks started at several disconnected locations is essential in this 

setting. 

In this chapter, we explore the method EWMA Surveillance Trees that addresses the concerns 

outlined above and that has this flexibility. The approach taken here is to divide the 

geographical regions into a lattice structure so that the expected numbers of cases within the 

cells are as similar as possible. Expected counts are achieved by firstly building a model that 

describes the usual behaviour of disease counts (including any usual seasonal increases) and 

then using this model to produce a one day-ahead forecast for the expected counts (see 

Sparks, et al. 2010a). The method proposed then: 

 Builds temporal memory of the disease process by smoothing the time series of cell 

counts using MEWMAs.  This allows the method to build up memory of the process to 

detect slowly evolving changes. 

 Uses exponentially weighted spatially smoothing of these temporal EWMA cell counts 

by smoothing across both the rows and columns of the lattice (very similar to 

MEWMA).   

 Detects departures from expected value in the spatio-temporally smoothed lattice 

counts using a binary recursive partitioning approach that focuses in on specific areas 

of concern. 

 Prunes these partitions in a way that leaves only the outbreaks, that is areas of 

significant departure from expected.  

So this method should be able to detect outbreaks of varying size and shapes and 

incorporate the benefits of EWMA smoothing for early detection. Its performance will be 

measured against an implementation of the SCAN statistic. 
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The EWMA Surveillance Tree method proposed here also applies a smoothing in the spatial 
sense. If smoothing has the advantage of reducing spatial noise and more easily exposes 
spatial trends in disease outbreaks, then this could translate into earlier detection properties. 
This chapter will also evaluate when it is beneficial to spatially smooth counts for the early 
detection of diseases. 

We will continue by giving a detailed overview of the spatial SCAN statistic. We will then 
propose the EWMA Surveillance Tree methodology in more detail and discuss the results of 
some simulation studies comparing this method to the SCAN statistic. Lastly we will briefly 
discuss the extension of these methods to a broader multivariate context which is the key in 
applications of these methods to syndromic surveillance for emerging diseases. 

2. The SCAN statistic 

Scan statistics are so described because they arise from the scanning of time and/or space 

looking for clusters of events. This section will present the details for an implementation of 

the spatial SCAN statistic that will be used as the benchmark in the simulation studies to 

follow. The SCAN statistic is similar to a spatio-temporal moving average plan that looks at 

the number of observations in cylinders of spatio-temporal space (e.g., see Figure 1), where 

the height of the cylinder is time. The SCAN plan used in this chapter is indistinguishable 

from the approaches used in Glaz et al. (2001) in the spatial dimension but uses a moving 

window for the temporal dimension. As such the results from Chen and Glaz can be used to 

get efficient starting estimates for the threshold used in the surveillance plan. For other 

literature on the SCAN plan see Tango (1995), Kulldorff and Nagarwalla (1995), Kulldorff 

(1997), and Kulldorff, M. (2001), Kulldorff et al. (2005), Woodall et al (2008) and Han et al. 

(2008).  

 

Fig. 1. Example of the scanned region – circular area is scanned and the depth is the number 
of days that counts are aggregated over. 

The SCAN plan in this chapter is applied to a fixed lattice structure over the target area of 
the data for reasons which will become obvious later. Although this lattice structure may 
not be regular as in Figure 2 below, it is convenient at this stage to make it regular. In other 
words, in this lattice, individual cells are not taken to have a fixed volume; they are 
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constructed so that the marginal total across each row/column spatial dimension has 
approximately the same expected number of counts. In addition the horizontal and vertical 
dividers of cells may be curved giving the design greater flexibility.  

The lattice structure reduces the amount of multiple testing by forcing the scanned area to 

always include complete spatial (“square”) cells. However, if a bio-terrorism event spans 

parts of some cells then some information about its signal is lost. The time window is 

arbitrarily taken as 10 days in this chapter, but could be taken as 7 days or 14 days to do 

away with the need for accounting for the influence of day-of-the-week effects. 

The SCAN plan counts the number of disease cases within the scanned space-time 

window and compares this count to its expected count, assuming a Poisson distribution. 

Often autocorrelation of counts is ignored in this process which does cause inefficiencies 

in the inference of detecting bio-terrorism events. In this chapter we will also ignore the 

autocorrelation in the temporal counts. Since the SCAN plan involves significant amounts 

of multiple testing, we need to establish the false alarm rates for the level of multiple 

testing. 

 

Fig. 2. The target region for assessing outbreaks is 20 by 20 cells by time and the scanned 
area is all 5 by 5 cells by time volumes - one example of which is illustrated in grey. 

In this paper, we use a 40 by 40 cell target region. We examined two levels of spatial 

memory in the SCAN plans applied later in the chapter. The spatial cells scanned are 

either 5 by 5 or 10 by 10 both with a moving time window of 10 days. The 5 by 5 cell scan 

involves 36x36=1296 different (but overlapping) scanned regions, and the 10 by 10 cell 

scan involves 961 different (but overlapping) scanned regions. Clearly, the 10 by 10 cell 

scan involves fewer tests and so its level of significance for the fixed false alarm rate is 

larger than the 5 by 5 cell scan. This means that it should detect an outbreak close to 10 by 

10 in dimensions earlier than the 5 by 5 cell scan. Therefore if the dimension of a future 
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bio-terrorism outbreak is known in advance then it is best to use these dimensions 

precisely in designing the scanning window, unless the outbreak is sparse within the 

region. In this case a smaller window is needed (see Sparks, 2011c) to exploit this sparsity. 

Unfortunately, we seldom know the dimension of bio-terrorism outbreaks, and therefore 

we need methodology that is flexible enough for detecting unknown outbreaks quickly. 

The next section discusses such flexible technology that is not as dependent on the shape 

and size of the outbreak. 

3. EWMA surveillance trees 

The EWMA Surveillance Tree method proposed here for comparison against the SCAN 
plan uses an EWMA approach by smoothing counts first temporally to build in temporal 
memory of the process, and then spatially to average counts locally in space. Smoothing 
can also be viewed as an approach that reduces the noise in counts without reducing the 
signal too much. This makes the signal-to-noise ratio larger and therefore has early 
detection advantages. There are many examples of EWMA temporal smoothing of counts 
data aimed at early detection of diseases, for example see Sparks et al. (2010a) and Stiener 
et al. (2010) for Poisson counts, and Sparks et al. (2010b) and Sarka (2011) for negative 
binomial counts. There is no literature on spatial exponentially weighted moving 
average smoothing although there is some work by Rogerson et al (2006) using 2 
dimensional kernel smoothers. The smoothed counts are then used in an outbreak 
detection procedure.  

The EWMA smoothing process has computational advantages because only the last 

temporally smoothed cell counts are retained rather than the last 10 days as is necessary in 

the SCAN plan discussed in the previous section. Areas are searched for outbreaks by 

comparing their smoothed observed counts to their respective smoothed expected counts. 

An outbreak is signalled when the difference between observed and expected counts in a 

window exceeds a threshold. The value of the threshold is chosen to control the false alarm 

rate.  Note that EWMA smoothed counts are no longer Poisson distributed, however EWMA 

smoothing (spatial and temporal) helps improve the approximation to a normal distribution 

of the smoothed counts. 

The method consists of three major steps: 

1. EWMA based smoothing of observed and expected counts, first temporally then 

spatially; 

2. Growing a surveillance tree of departures from expected value in the spatio-temporally 

smoothed counts using a binary recursive partitioning approach 

3. Pruning the surveillance tree to reveal outbreaks and control the false alarm rate. 

Each of these steps is detailed in subsections 3.1, 3.2 and 3.3 respectively. 

3.1 EWMA temporal and spatial smoothing 

Define 40 by 40 matrices of counts and expected values for day t by ( , , ){ }t k tY y   and 

( , , ){ }t k t    respectively. Temporal smoothing examines the exponentially weighted 

moving average (EWMA) to the counts according to 
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1(1 )t t tY Y Y      

( 0 1Y   ) and similarly smooths the matrix of expected values of these counts using 

1(1 )t t t         

where 0 1   , and 0<<1 is a constant that determines how much memory to retain in the 

averages. Larger values of  retain less temporal memory.  

Once the counts have been smoothed temporally, we then smooth over space to average 

counts locally. So the temporal smoothed counts and temporal smoothed expected values of 

tY  and t  respectively are now spatially smoothed using smoothing matrix defined by 
40| | | |

1
{ } {(1 ) / (1 ) }i j i j

ij j
A   


   . The spatial smoothing of counts is defined by 

t
t tY AY A  

and the spatial smoothing of their expected values is defined by 

t
t tA A  

.
 

This EWMA spatial smoothing has the advantage over other smoothers of computational 
simplicity and is efficient in terms of early outbreak detection. Alternative spatial smoothing 
involving two dimensional kernel smoothers (Riedel, 1993, Rogerson et al. 2006) or splines 
(Currie et al. 2003, Lee and Durban, 2009) are more complex computationally. The EWMA 
smoother is similar to a kernel smoother using a double exponential distribution. The main 
reason for this choice is computational speed. We ignore the boundary problems with this 
EWMA smoothing approach. It is clear that the spatial smoothing employed here smooths 
boundary cell counts less. In addition, the recursive partitioning approach does not adjust 
for the differential smoothing. Therefore the surveillance trees detect outbreaks that hug a 
boundary very quickly. For this reason no clusters are considered that hug boundaries in the 
simulation section, because this would exaggerate the performance of surveillance trees.  

3.2 Growing the surveillance trees 

The recursive partitioning approach applied in this paper is very similar to that in Yu (2009) 
and identical to Sparks and Okugami (2010b). Surveillance trees generate offspring by 
recursively partitioning either longitudinal cells or latitudinal cells into rectangular regions. 
We start by finding the best partition of longitudinal cells in terms of having the highest 
signal to noise ratio, and then the best partition of latitudinal cells. Thereafter, select the 
partition with the highest signal-to-noise ratio between the best longitudinal cell partition 
and the best latitudinal cell partition.   

The choice of the signal-to-noise ratio as the measure of departure from expected value was 
decided based on the fact that the square root of the smooth counts has roughly a constant 
variance and its mean is equal to the square root of the smoothed mean.  

The mathematical summary of this process for the first generation of offspring is as follows: 

denote .i ijj P
Y Y


  and . j iji P

Y Y


  where P defines the parent space, e.g., at the root 
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node the parent space is { : 1,2,..., 40}P k k   for both i and j ( .i  and . j  are similarly 

defined) 

1. Latitudinal (row oriented) partitions: Calculate . .1 1

k k
k i ii i

r Y
 

      and 

40 40
` . .1 1k i ii k i k

r Y
   

     for 1,2,...,39.k   

2. Longitudinal (column oriented) partitions: Calculate . .1 1j jj j
c Y

 
    


   or 

40 40
~ . .1 1j jj j

c Y
   

     
   for 1,2,...,39.  

3. Select the best partition:  Partition on  

a.  Row 1 to k and k+1 to 40 if ~ ~max( , ) max( , )k kr r c c    for all  and  

~ ~max( , ) max( , )k k i ir r r r for all i k . 

b. Column 1 to   and  +1 to 40 if ~ ~max( , ) max( , )k kc c r r   for all k and

~ ~max( , ) max( , )j jc c c c   for all j   . 

4. Define 1 ~ ~max( , , , )k kz c c r r    as partition score for the right-hand partition and let the 

other offspring have signal-to-noise ratio ~1z .  If 1 ~z c   then ~1z c   ;  if 1z c   then 

~1 ~z c   ; 1 kz r  then ~1 kz r ; and if 1 kz r then ~1 kz r . 

Now we repeat the process for the next generation of offspring by considering each 

offspring of the partition above as a parent space made up of p rows and q columns defined 

by rows 1 1, 1,..., pi i i  and columns 1 1, 1,..., qj j j . Then a further two offspring are 

generated by the following steps: 

1. Latitudinal partitions: Calculate 
1 1

. .
k k

k i ii i i i
r Y

 
      and 

~ . .1 1
p pi i

k i ii k i k
r Y

   
     for 1 1, 1,..., 1.pk i i i    

2. Longitudinal partitions: Calculate
1 1

. .j jj j j j
c Y

 
    


   or 

. .1 1
q qj j

j jj j
c Y

   
     

   for 1 1, 1,..., 1.qj j j    

3. Select the best partition: Partition on: 

a. Row 1i to k and k+1 to pi if ~ ~max( , ) max( , )k kr r c c    for all  and 

~ ~max( , ) max( , )k i ir r r r  for all 1 1( , 1,..., )pi k i i i   . 

b. Column 1j  to   and  +1 to qj  if ~ ~max( , ) max( , )k kc c r r   for all k and 

~ ~max( , ) max( , )j jc c c c   for all 1 1( , 1,..., )qj j j j   . 

4. Define ~ ~max( , , , )g k kz c c r r    as partition score for the right-hand partition and let the 

other offspring have signal-to-noise ratio
 ~gz . 

The process is repeated for each new generation and only stops when the smooth counts are 

either 

 Too small to alarm an unusually high count (this is discussed in more detail later). 

 All cells in the parent space are less than expected.   
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 The best longitudinal partition and best latitudinal partition are both the parent space. 

 

Fig. 3. An example of in-control counts when cell means are correlated. 

 

Fig. 4. An example of a hypothetical bio-terrorism event. 

An example, of the recursive partitioning when there is no smoothing of counts is now used 

to demonstrate the growing process for a 20 20  grid. Assume that the in-control Poisson 

counts for each cell in the grid (except boundary cells) have a mean of 2,5. An example of in-
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control counts is presented in Figure 3. Latitude (La) cells are numbered from the bottom of 

row as 1 to the top row as 20. Longitude (Lo) cells are numbered 1 (left) to 20 (right). 

Correlated cell counts are noted from Figure 3 by higher than expected cell counts (greater 

than 2,5) clumping together even when in-control, e.g., latitude number rows 18, 19 and 20 

(La>17) and longitude columns 7, 8, 9 and 10 (6<Lo<11). This makes it more difficult to 

identify bio-terrorism events.  

 

Fig. 5. Presenting offspring for 5 generations using recursive partitioning 

We use transitional Poisson regression models to forecast the expected counts one day 
ahead. We assume that these forecasts, when no bio-terrorism event is present, produce 
unbiased estimates of the cell means. Therefore, in our application, the in-control count 
departures from the forecasts are assumed uncorrelated because the dependence is removed 
by the model forecasts, and the forecast errors are assumed spatially uncorrelated when in-
control. The assumption here is that all the spatial correlation is in the mean of the Poisson 
counts, and the day ahead forecast is an unbiased estimate of this mean. As such, the 
differences between functions of counts and forecasts will be assumed to be uncorrelated. 
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Even if this is not true; provided the bootstrap population used to estimate the threshold is 
accurate, the simulation process will produce an unbiased estimate of the threshold (see 
Sparks et al. 2010b). 

Figure 4 presents another representation of counts illustrated in Figure 3, except in Figure 4 

a bio-terrorism event is simulated by adding additional (out-of-control) counts at Latitudes 

16, 17, 18 and 19 (15 20)La   and longitude 10, 11,…, 19 (10 20)Lo  . The additional 

counts were assumed to have a mean of 2 per cell.  Red is used to highlight the simulated 

bioterrorism outbreak region in Figure 4. It is clear that the counts in red are higher than the 

counts for any other part of the 20 20  target region. We now demonstrate the recursive 

partitioning process in trying to find this outbreak.  

The recursive partitioning starts by searching for the best partition of longitude and latitude 

in terms of maximizing the departure of the region’s total counts from their expected value, 

i.e., maximising kr and c  values, respectively. These are defined by rules La>15 and Lo>9, 

respectively. Generally the region with the greatest fraction of red will be the one with the 

highest departure from expected and this is true in this case. The best first partition of La>15 

is represented by the black line in the top left-hand table in Figure 5. This first generation of 

offspring become parents for the next generation of offspring. Each region now grows two 

offspring by finding the partition that is best for each parent. For the parent region with 

La>15, it is clear that the best partition is Lo>9 (see the black line in top right-hand table of 

Figure 5 that separates the red counts from the black counts as best as possible). For the 

region with La<16, the best partition is less obvious – it turns out to be Lo>17. The bottom 

left-hand table in Figure 5 gives the next generation of offspring, and the bottom right-hand 

table in Figure 5 gives the generation that completely specifies the simulated outbreak. The 

z-score for the red region is gz 10,6
 
which is higher than any other partitioned region in 

the table of Figure 5. An exhaustive search of all regions of all different shapes and sizes in 

 

Fig. 6. Surveillance tree representation of the recursive partitions in Figure 5. 
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Figure 5 revealed that this gave the highest z-score of target region. Recursive partitioning 
is like stepwise variable selection when building parsimonious regression models – it does 
not always produce the same result as an exhaustive search. In this example, we have 
demonstrated that recursive partitioning found the largest outbreak area using 
significantly smaller number of computations than for example the SCAN statistic with 
multiple size windows. This balance between computational and detection efficiency is 
the most attractive feature of the recursive partitioning approach besides its ability to 
adapt with size and shape of the outbreak. 

Figure 6 is a tree based representation of the recursive partitions made in Figure 5. Note that 

the terminal node defined by rules La>15, Lo<10 and Lo>7 does not have any offspring. The 

gz  for this node is ( 36 25) 1   where 36 3 5 3 4 3 3 4 4 4 3           and 

25 2,5 10  . No partition of this space produces a higher z-score than the parent node’s z-

score of 1. The closest to this is ( 5 4 3 4 3 5 2,5 0,825       . Ideally we would like to 

stop recursive partitioning at this node. In practice, the decision to stop unnecessarily 

growing of the tree is difficult. Generally we would keep partitioning until some stopping 

rule applies. 

Once partitioning has stopped, then recursive pruning of the terminal nodes commences. 

The pruning process is outlined in the next section.  

3.3 Pruning the surveillance tree to deliver a particular false alarm rate 

The aim of pruning is to recursively trim away all terminal nodes with smoothed counts that 

do not differ significantly from their expected values. If all nodes in the tree are pruned 

away to leave no tree, then no outbreak is signalled. However, if terminal nodes remain 

after pruning, then an alarm is given. The geographical location of the outbreak is diagnosed 

by the set of partitioning rules for the remaining terminal nodes. This could involve several 

non-overlapping locations.   

Pruning only starts after growing the tree has stopped. The pruning process is very simple. 

We prune terminal nodes recursively starting with the last generation offspring in the tree, 

and then repeat the process recursively with each remaining generation.  Only branches 

with significantly higher than expected counts survive pruning. We prune the least 

significant offspring if ~g zz h  and prune and the generation if g zz h  where zh  is a 

positive constant designed to deliver a specified false alarm. Pruning is used to control the 

false alarm rate measured by either specifying an in-control Average Run Length (ARL) or 

an in-control Recurrence Interval (RI). The Recurrence Interval (RI) is used to indicate the 

steady state false alarm rate. ARL and RI are defined more clearly in the simulation section 

(see Section 4). Pruning starts with the highest values of g (generations) and stops when 

either all generations are pruned or when at least one generation (terminal node) survives 

the pruning process.  

The pruning process leaves only generations with smoothed counts significantly higher 
than expected, e.g., if we started pruning from generation 4 in Figure 5 then only two 
offspring containing the outbreak regions plus their parents, grandparents, etc would 
survive the pruning process. If pruning was applied to a tree for the data in Figure 3 with 
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no outbreaks, then each generation in turn would be pruned away until no offspring 
remain. Even the target region (the original parent) would be pruned indicating no 
significant outbreak.  

3.4 Using the example to demonstrate the stopping rules for the tree growing process 

It is useful to stop partitioning when it is known that the threshold will not be exceeded 

with further partitions. Assume that the threshold is 4,45zh  then the node defined by 

rules La>15, Lo<10 and Lo>7 should be terminal because ( 36 2.5) 4, 4  . No partition of 

this parent space is going to be greater than the threshold of 4,45. Two other nodes would 

terminate in generation three Figure 5 using 4,45zh  . These would be: 

a. Lo>9 and La>19 where  

( 4 3 2 2 3 2 2 1 0 0 1 2,5 ) 2,9 4, 45             . 

b. La<3 and Lo>17 where 

( 3 2 1 4 2 1 2,5) 2,0 4, 45        . 

Such a stopping rule stops the unnecessary growing of the surveillance tree, because all 

offspring will be pruned later. Generally this rule can be defined as stopping when the 

square root of the total of cell counts for a region is smaller than the threshold plus square 

root of the smallest cell mean in the region. If the threshold is quite low, then having a 

threshold on the lower limit for the smoothed count is sensible. Assume that our 

threshold turns out to be 1,15zh  then the above stopping rule does not help much in 

reducing the partitioning complexity. In the above example, it is sometimes helpful to 

specify when you would fail to respond, e.g., no response is made for any outbreak with 

counts less than 5 above expected per day. We would then stop if smoothed counts were 

below 7,5.  

3.5 Lattice with cell means that are spatially non-homogeneous 

Until now, we have assumed that all cells follow the same model. What if the same time 

trends persist across cells, e.g., the seasonal trend remains the same for each cell but the 

mean counts change from cell to cell? How does this influence the threshold for when the 

model is not homogeneous across all cells? Here we examined the in-control ARL and RI 

properties as we move the cell mean rate from an average of 0,7 to the current value used of 

1,2 by examining its in-control ARL and RI using the same threshold of zh  1,15. The results 

are recorded in the Table 1 for counts generated using the R function in Appendix A with 

overall mean mu=0,1, day-of-the-week influences given by bweekday=( -0,025, -0,025, -

0,025, -0,025, -0,025,0,05,0,075), seasonal influences given by bcos=0,1, bsin=-0,1, transitional 

influences of blags=(0,1,0,06,0,02,0,01), and k=-4. 

This plan is also reasonably robust to changes in spatial non-homogeneity in means whereas 

other plans are not. From Table 1 it is clear that the in-control RI values are reasonably stable 

across a range of mean values. If these mean changes are not systematic as in table above, 
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but random in space then these changes are expected to be ironed out by the spatial 

smoothing. Adaptive plans can be derived using the results in Table 1 based on Sparks 

(2000) and Sparks et al (2010a). 

Average counts 0,7 0,8 0,9 1,0 1,1 1,27 

zh  
1,15 
1,2 

1,25 

1,15 
1,2 

1,25 

1,15 
1,2 

1,25 

1,15 
1,2 

1,25 

1,15 
1,2  
1,25 

1,15 
1,2 

1,25 

In-control ARL 
55,4 
72,4 
81,1 

62,5 
84,4 
91,8 

73,7 
100,2 
111,4 

78,7 
106,4 
119,2 

83,1  
109,7 
126,2 

88,7 
117,9 
149,3 

In-control RI 
50,3 
61,0 
75,0 

51,6 
63,9 
83,6 

52,3 
68,7 
86,5 

56,1 
72,4 
 88,9 

60,1 
68,7  
86,5 

69,3 
82,5 
97,4 

Table 1. In-control ARLs and RIs for specified thresholds of 1,15, 1,2 and 1,25 

4. Simulation study 

This section provides the results of simulation studies comparing the performance of the 

SCAN statistic with that of the EWMA Surveillance Trees for two outbreak shapes and 

locations using Average Time to Signal and Average Run Length as the measures of 

performance. When the size and shape of the scanning window matches that of the outbreak 

in the SCAN plan, then it remains optimal. However, the flexible partitions of EWMA 

Surveillance Trees result in robust performance across a range of outbreak dimensions, 

without being optimal for any specific outbreak size or shape.  

We simulate uncorrelated Poisson counts on a 40x40 spatial grid using the R function in 

Appendix A as described in Section 3.4, with the exception that the mean value is bounded 

at a minimum of one (i.e., k=0) which makes the counts more homogeneous. Denote these 

counts by ,i jc  for row i and column j. These counts are then aggregated locally as follows 

for non-boundary cells: 

, i,j i-1,j i,j-1 i 1,j i,j 1 i-1,j-1 i-1,j 1 i 1,j 1 i 1,j 1floor(c +0,3 (c +c +c +c )+0,1 (c +c +c +c ) )i jc           

where floor means round down to the nearest whole number. Boundary cells have smaller 

means and their counts are defined as in Table 2. 

This generates more realistic spatially correlated in-control counts for infectious or 

contagious diseases. Note that these counts are not expected to be Poisson distributed, but 

tend to be under-dispersed counts relative to the Poisson distribution. We assume no 

knowledge of this under-dispersion in trying to forecast counts. We model the trends in the 

counts using transitional Poisson regression model and assume that if the counts are in-

control then the one day ahead forecast errors are uncorrelated. In situations where spatial 

correlation persists in the forecast errors for in-control situations, an alternative approach is 

models which account for this spatial correlation, such as seeming unrelated Poisson 

regression models (King, 1989, and Grijalva, T., Bohara, et al. 2003), and multivariate Poisson 
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regression model (Karlis and Meligkotsidou, 2005, and Bermudez and Karlis, 2011). 

However, here we model each of the 1600 cells separately using Poisson regression models 

very similar to that used in Sparks et al. (2010a) and Sparks et al. (2011a) that use explanatory 

variables: logarithm of lag counts plus 1, day-of-the-week, public holidays and harmonics. 

These models are used to produce one-day ahead forecasts which estimate the “Poisson” 

means for the next day.  

 

1i  , 1 40j   1, 1,j 1,j 1 1,j-1 2,j 2,j 1 2,j 1floor(c +0,3 (c +c +c )+0,1 (c +c ) )jc       

40i   , 1 40j   40, 1,j 40,j 1 40,j-1 39,j 39,j 1 39,j 1floor(c +0,3 (c +c +c )+0,1 (c +c ) )jc       

1 40i  , 1j   ,1 i,1 i 1,1 i-1,1 i,2 i-1,2 i 1,2floor(c +0,3 (c +c +c )+0,1 (c +c ) )ic      

1 40j   , 40j   ,40 i,1 i 1,40 i-1,40 i,39 i-1,39 i 1,39floor(c +0,3 (c +c +c )+0,1 (c +c ) )ic      

1i  , 1j   1,1 1,1 2,1 1,2 2,2floor(c +0,3 (c +c )+0,1 c )c     

40i  , 40j   40,40 40,40 39,40 40,39 39,39floor(c +0,3 (c +c )+0,1 c )c     

Table 2. The process used to simulate cells counts that are spatially correlated. 

The recursive partitioning process is then applied to the temporal or spatio-temporal 

smoothed counts. The gz  statistic is used to assess the departure of smoothed counts from 

smoothed day ahead forecasted counts. When in-control, gz  has mean zero and 

approximately a constant variance. The convenience of the statistic is discussed in Sparks et 

al. (2010b) and has been demonstrated to compare very well with the SCAN statistic. 

The simulation process generated in-control counts. Simulated bio-terrorism outbreaks are 
generated by adding to these in-control counts additional Poisson counts for a fixed 
rectangular region. The outbreak region is then hidden and we examined how early the 
plans alarm this outbreak. Rectangular outbreak regions were generated involving either 
10x4 cells or 20x2 cells. Zero-state in-control ARLs and the Recurrent Interval (RI) were 
estimated as follows: 

 Start the Run Length (RL) at 1. Generate in-control cell counts for the first day, and 
perform the surveillance tree process. If no tree results after pruning then go to the next 
step. 

 Increase the RL by 1. Generate in-control cell counts for the next day, perform the 

surveillance tree process, and if no tree results after pruning, then go to the next step. 

 Repeat the previous step until some branches of the surveillance tree survive the 

pruning process. Record the RL (denote this 1RL ) and go to the next step. 
 Generating in-control cell counts for the several consecutive days until there are at least 

7 consecutive days with no tree surviving, then set RI=7.  

 Increase the RI by 1. Generate in-control cell counts for the next day, perform the 
surveillance process, and if no tree results after pruning, then go to the next step. 

 Repeat the previous step until some branches of the surveillance tree survive the 

pruning process. Record the RI (denote this 1RI ) and go to the next step. 

 Repeat all steps above 1600 times to give ( , ), 1,2,...,1600i iRL RI i  . Average these to give 

the in-control ARL and an estimate of the expected RI. 
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The 1600 simulations were selected balancing both computational effort and estimation 
accuracy. Traditionally, the standard deviation for RL with an in-control ARL=100 is about 
100. The standard deviation from the in-control ARL is expected to be roughly 
100 / 1600 2,5 .  

The out-of-control ARL are calculated in the same way as the in-control ARL, except with 
each run additional counts with the same mean are added to the outbreak region. The 
results are reported in Table 1. The recurrence interval for out-of-control situations was not 
very interesting because generally when a plan signalled it did not stop signalling. The  
out-of-control ARLs are therefore the zero state out-of-control ARLs. Reporting the in-
control RI values provides readers insight into the steady state in-control performance. 
 

Outbreak 

Recursive partitioning 
with temporal smoothing

( 0,1  ) 

1,255zh   

Recursive partitioning 
with temporal smoothing

( 0,1  ) 

1,404zh   

Recursive partitioning with 
spatio-temporal smoothing 

 ( 0,7,  0,1  ) 

1,15zh   

Rows 
Columns 

10:19
16:19 

10:11
1:20 

10:19
16:19 

10:11
1:20 

10:19
16:19 

10:11 
1:20 

ARL/RI 
 108,9 / 37,5 108,9 / 37,5 201,5/70,6 201,5/70,6 108,3 / 69,6 108,3 / 69,6 

1 11,88 11,95 13,25 12,00 15,42 16,26 

2 6,78 4,86 7,96 4,91 5,61 6,39 

3 4,51 3,55 5,12 4,11 3,94 3,95 

4 3,72 2,76 3,80 3,20 2,94 2,93 

5 3,02 2,35 3,24 2,55 2,65 2,44 

6 2,51 2,12 2,72 2,19 2,10 2,11 

7 2,44 1,70 2,50 1,77 1,97 1,79 

8 2,40 1,55 2,41 1,60 1,70 1,53 

9 2,34 1,45 2,36 1,50 1,56 1,45 

10 2,10 1,31 2,12 1,32 1,20 1,30 

11 2,02 1,12 2,04 1,16 1,15 1,16 

12 1,91 1,05 1,91 1,07 1,04 1,08 

Table 3. ARL performance of the surveillance tree plans when the outbreak spans regions of 
40 cells δ is the increase in mean for cells in the outbreak region. 

Recursive partitioning does well when the outbreak is located on the boundary of the target 
region, partially because fewer partitions are necessary to find it. Another reason is that the 
boundary cells are where counts are smoothed less and the mean rates are lowest on the 
boundary, and therefore the signal is the highest. In other words, boundary outbreaks are 
easier to find using recursive partitioning because fewer generations are needed to find 
them and the signal-to-noise ratio on the boundary in this simulation process is higher. 

The robust performance of plans, i.e., when nothing is known about the shape and size of 
the outbreak, is an important consideration because in bio-terrorism nothing is known about 
the size or shape of the outbreak. Therefore, Table 3 looks at a variation in rectangular 
shaped outbreaks. The recursive partitioning plan’s flexibility in partitions strengthens its 
robust performance across a range of outbreak sizes (see Sparks et al. 2011c). In other words, 
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if the outbreak dimensions are known, then the SCAN plan can always be trained to be 
more efficient than the recursive partitioning plan, and therefore it is preferred in these 
circumstances. But when nothing is known about its size and shape recursive partitioning is 
a more flexible and robust approach than the SCAN plan. 

Table 3 demonstrates that spatial smoothing prior to applying recursive partitioning of 
temporally smoothed counts has early detection advantages for the same in-control RI 

values of approximately 70, e.g., for large shift in mean counts of 12 per cell the ARL is 1,04 
as opposed to 1,91 (almost a day later). The spatial smoothing also closes the gap between 
the in-control ARL and in-control RI, and therefore it is likely to have equivalent steady state 

early detection advantages.  

The future research challenges are to investigate what levels of spatial smoothing are best 
for early detection. In these studies we only tried 0,7.   In addition, there may be an 
interaction between the temporal smoothing and spatial smoothing. Therefore this needs to 
be investigated in future work.  

The SCAN plan was applied using two separate scanning window sizes: 5 by 5 cells and 10 
by 10 cells.  As nothing is known about future outbreaks, therefore we consider square m by 
m scans – for at least the first outbreak considered in Table 4 the 5 by 5 cells scans is close to 
the m by m scanning plan with the smallest out-of-control ARLs. Unlike the recursive 
partitioning for the scan plans the expected values were taken as known, and therefore this 
gives an advantage to the SCAN plan in this comparison. Note that there was less of a 
difference between the in-control ARL and in-control RI for the scan plans than the 
surveillance tree plan. This mostly occurs because of the way we estimated the RI. In 
addition, by not allowing a signal in the first 7 values after a outbreak signal means that 
there are only a correlation of 0,3 between the signalled time point and the start of the RI for 
the scan plan, whereas in plans using the temporal EWMA smoothing with 0,1  this is 
0,48. Hence the way we estimated RI is going to be more influenced by the previous signal 
in the surveillance tree plan and therefore its RI is smaller. Clearly, the more the outbreak 
matches the scanning region the earlier the SCAN plan detects outbreaks, but it is clear that 
it lacks the flexibility in terms of detecting outbreaks of unknown shape and size. It is worth 
noting that when the SCAN plan does perform better than the surveillance trees (comparing 
Tables 3 and 4), the surveillance trees are not far behind in performance whereas the reverse 
is not true. Figure 7 provides a graphical comparison of the ARL properties. From Figure 7, 
the SCAN plan 5 by 5 by 10 days is best on average for detecting a 10 by 4 outbreak which is 
near the centre of the target region but significantly worse for the 2 by 20 outbreak. The 2 by 
20 outbreak is quite feasible, e.g., this shaped outbreak would result if the outbreak was 
started in railway carriages travelling along a specific route. 

5. Conclusions 

The recursive partitioning approach can easily be extended to deal with more than two or 
three dimensions. It is ideal for finding disease outbreaks which cluster in multivariate space 
that could also include variables such as triage category (severity), age or gender, whereas the 
SCAN plans become computationally infeasible in higher dimensions. However further 
research is required to determine whether we can extend the benefit found from spatial 
smoothing to other dimensions that are not spatial, for example smoothing over age groups.  
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An advantage of the ability to extend to higher dimensions is that Surveillance Trees could 

be used to monitor several related diseases or symptoms jointly using disease category as a 

variable searched over in the recursive partitioning process. This would mean having one 

false alarm rate for all disease groups being monitored. Such planning may be beneficial in 

terms of managing the effort an epidemiological unit can devote to investigating false 

alarms. Similarly the method could also be used for syndromic surveillance – the 

surveillance of public health records such as Emergency Department visits. Detecting 

increases in ill-defined syndromes that may indicate the use of new and unknown biological 

agents.  

Because of the efficiency of computation, another advantage of recursive partitioning is that 

it could be implemented using a hand-held mini-computer in the field to assess whether say 

counts have increased more than expected for any cluster of a target region. It does not need 

a sophisticated computer, as opposed to the SCAN plan.  

Ultimately the EWMA Surveillance Tree methodology is a promising tool for detecting 

spatio-temporal outbreaks when the size and location of the outbreak is unknown.  

By incorporating the benefits of temporal and spatial smoothing with a tool for efficiently 

locating outbreaks, the method is well suited for the surveillance of bioterrorism events. 

 
 

Outbreak 
SCAN plan for 5 by 5 scans 

Threshold p-value=0,9999999999999991
 

SCAN plan for 10 by 10 scans 

Threshold p-value=0,999999999999994
 

Rows 

Columns 

10:19 

16:19 

10:11 

1:20 

10:19 

16:19 

10:11 

1:20 

ARL/RI 

 94,5 / 77,2 94,5 / 77,2 80,5/65,6 80,5/65,6 

1 14,22 49,66 32,38 59,95 

2 5,63 8,14 5,80 15,26 

3 3,85 5,31 4,08 5,97 

4 2,99 4,39 3,28 4,88 

5 1,79 3,55 2,54 3,99 

6 1,60 3,07 2,23 3,39 

7 1,54 2,63 1,85 2,92 

8 1,30 2,30 1,78 2,53 

9 1,22 2,09 1,56 2,31 

10 1,15 1,98 1,43 2,11 

11 1,05 1,78 1,30 1,91 

12 1,01 1,68 1,19 1,72 

 

 

Table 4. ARL performance of the SCAN plan when the outbreak spans regions of 40 cells. 

www.intechopen.com



 
Bioterrorism 176 

 
 

 

Fig. 7. In-control and out-of-control ARL for the SCAN plan and Surveillance Tree plan 

6. Appendix 

Inputs to the function are mu=overall mean; bweekday=day-of-the-week influence; bcos 
and bsin = influence of the season; blags = is the influence of previous counts; nob= number 
of counts generated; k is the threshold specifying the lowest expected count allowed 
(Poisson counts are truncated at times). 

transitionalPoisson<-function(mu,bweekday,bcos,bsin,blags,nob,k){ 
nlag<-length(blags) 
lcounts<-rep(0,nlag) 
dw<-1 
for(i in 1:nob){ 
temp<-
mu+bweekday[dw]+bcos*cos(2*pi*i/365.25)+bsin*sin(2*pi*i/365.25)+sum(blags*log(lcounts
+1)) 

  a)                                                                     b) 
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temp[temp<k]<-k 
if(i==1)ncount<-rpois(1,exp(temp)) else ncount<-c(ncount,rpois(1,exp(temp))) 
lcounts[2:nlag]<-lcounts[1:(nlag-1)] 
lcounts[1]<-ncount[i] 
dw<-dw+1 
if(dw>7)dw<-1} 
ncount} 
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