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1. Introduction  

Gene therapy holds substantial promise for the treatment of a broad class of overwhelming 
human diseases such as cancer and AIDS (Verma & Somia, 1997). An essential procedure in 
gene therapy program involves the delivery of encoded plasmid genes into the patient’s 
somatic cells so as to express therapeutic proteins. An ideal strategy for successful gene 
delivery depends on safe and efficient gene delivery vectors (El-Aneed, 2004). Generally, 
gene delivery vectors are classified into two categories: viral vectors and non-viral vectors. 
Viral vectors are derived from natural viruses such as adenovirus and retrovirus with 
eliminated pathogenicity. Because of their unique capability in cell infection, viral vectors 
are most popular for gene delivery in vitro and in vivo. Unfortunately, clinical practice of 
viral vectors is seriously hampered by a few inherent issues including random insertion into 
the host genomes, immunogenicity, gene-carrying capacity limitation, and small-scale 
production (C.E. Thomas et al., 2003). In the past decades, these safety concerns on viral 
vectors have led to accelerated advancement in non-viral vectors (S. Li & Huang, 2000). 
Non-viral vectors such as lipids and polymers take more advantages over conventional viral 
vectors, including low immunogenicity after repeated administration, easy manufacture, 
large-scale production and low cost. However, current non-viral systems typically fail to 
give rise to as efficient gene transfection as powerful viral vectors (Pack et al., 2005). Thus, 
the availability of highly potent non-viral gene delivery vectors still remains a big challenge. 

Among different non-viral vectors, cationic polymers have received much attention because 
they can be prepared by different polymerization methods and easily modified to introduce 
different bio-functional groups (Luo & Saltzman, 2000). In the past two decades, a few 
traditional cationic polymers such as chitosan, polyethylenimine (pEI), poly(L-lysine) (pLL), 
polyamidoamine (PAMAM) dendrimer (Figure 1) have been studied widely as non-viral 
vectors for gene delivery (de Smedt et al., 2000). These cationic polymers can self-assemble 
with negatively-charged genes to form polymer/gene complexes (polyplexes) and induce 
detectable gene transfection efficiency in vitro. However, these first-generation polymeric 
gene vectors are not yet applied further for clinical practice, mainly due to low transfection 
efficiency and/or high cytotoxicity (Anwer et al., 2003; Merdan et al., 2002). In the past few 
years, extra- and intracellular gene delivery barriers have been identified that may seriously 
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hamper efficient gene transfection (Nishikawa & Huang, 2001; Wiethoff & Middaugh, 2003). 
To overcome these barriers, on-going research works are devoted to molecular design of 
cationic polymers with multiple properties for circumventing the gene delivery barriers. It 
has been aware that the structures of polymers play an important role in gene transfection 
efficiency (Jeong et al., 2007).  

O

*

O *

NH2

OH

OH

n

N
N

*

H
N

*

n

O

H2N

N

HN

N
O

NH
O

NH2

NH

O

H2N

N

HN

N

O

NH

O

NH2

NHO

NH2

NH

N

O

NH

O

H2N

NH O

NH2

NH

N
O

NHO

NH2

HN

O

NH2

*
N
H

*

n

NH2

HN

chitosan

linear PEI

PLL

branched PEI PAMAM dendrimer (G2)  

Fig. 1. Typical examples of current cationic polymers as non-viral gene delivery vectors 

A lot of evidences have indicated that biodegradable cationic polymers are new-generation 

polymeric gene vectors because of their favourable low cytotoxicity profiles (Luten et al., 2008). 

Particularly, bioreducible cationic polymers, containing the disulfide bond as a bioreducible 

linker in polymeric main chain or side chain, are of interest. It has been well known that 

disulfide bond is relatively chemically stable in the extracellular environment, but can be 

rapidly biodegradable inside the cells due to the presence of a high amount of reducing 

enzymes and sulfhydryl components such as glutathione (Ganta et al., 2008; G. Wu et al., 

2004). By intracellular biodegradation, smart disulfide-based cationic polymers are able to 

efficiently unload genes in the nucleus (Soundara & Oupicky, 2006), thereby giving rise to high 

levels of gene expression. Meanwhile, the biodegradation also induces relatively low 

cytotoxicity by avoiding the accumulation of high molecular weight cationic polymer inside 

cells. These efforts are now actively striving to reach safe and potent polymeric gene vectors. 

In this chapter, we aim to contribute the understanding of current status on biodegradable 

cationic polymers for non-viral gene therapy. Fundamental knowledge on the mechanism of 

polymer-mediated gene delivery is described briefly. Then, first-generation polymeric gene 

vectors and their pros and cons are outlined. Bioreducible polymers are finally reviewed to 

highlight current advancement and the challenge in near feature. 

2. Cationic polymer-mediated gene delivery pathway 

DNA is a flexible, negatively-charged biomacromolecule under physiological conditions. It 
can be electrostatically repelled by negatively-charged cellular membranes and thus fails to 
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efficiently enter the cells. Moreover, naked gene is prone to degradation by enzymes in the 
cells. Cationic polymers are able to condense gene into nanoscale polyplexes, deliver the 
genes into the cells and protect DNA from the enzymatic degradation. Therefore, for the 
availability of safe and potent polymeric gene delivery vectors, it is essential to understand 
cationic polymer-mediated gene delivery pathway. 
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Fig. 2. Schematic illustration on cationic polymer-mediated gene delivery 

A schematic gene delivery mediated by a cationic polymer is illustrated in Figure 2. First, 

cationic polymers bind DNA via electrostatic self-assembly to form compact polymer/DNA 

complexes (polyplexes). An excess amount of cationic polymer is normally needed to 

neutralize negative DNA and cause resulting polyplexes with net positive surface charge. 

Then, the positive polyplexes can interact with cellular membrane and are internalized into 

the cells through adsorptive endocytosis or receptor-mediated endocytosis. After they enter 

cells, the polyplexes normally undergo an undesirable degradation pathway from the early 

to later endosomes and finally locate in the lysosomes. DNA is easily degraded by enzymes 

in the acidic endosomes or lysosomes (pH 5~6). In this situation, cationic polymeric vectors 

can protect DNA from degradation and induce efficient endosomal escape by a mechanism 

like “proton sponge” effect (Boussif et al., 1995). After endosomal escape, polyplexes stay in 

the cytoplasm and move towards the nucleus by passive diffusion. At this stage, it is still 

unclear whether the genes should be unloaded in the cytoplasm. The polyplexes with the 

particle size below 25 nm may freely diffuse through the nuclear pore in the nuclear 

membrane (Suh et al., 2003), but the polyplexes with bigger particle size have to undergo a 
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nuclear translocation process aided by the nuclear pore complex proteins in the nuclear 

membrane (Gorlich & Kutay, 1999; Ryan & Wente, 2000). When the genes are free from 

polyplexes in the nucleus, translation and transcription are conducted by gene expression 

system to produce therapeutic proteins. 

3. Non-degradable cationic polymers as non-viral gene delivery vectors 

This section reviews typical non-degradable cationic polymers as non-viral vectors for gene 
delivery. Although these polymer systems normally have low transfection capability in vitro 
and/or high cytotoxicity, from the studies on these systems, a few fundamentals on gene 
delivery properties have been well understood, which are valuable in the design of safe and 
potent polymeric gene delivery vectors. 

3.1 Polyethylenimine 

Polyethylenimine (PEI) was investigated as a non-viral gene delivery vector in 1995 (Boussif 
et al., 1995). It is a high charge density polycation, in which every three atom is present with 
a protonable amino-nitrogen. Linear PEI only has secondary amino group that is almost 
protonated under physiological conditions. By contrast, branched PEI has not only the 
primary and secondary amine, but the tertiary amine. As such, only about two-thirds of 
amino groups in PEI are protonable under physiological conditions. It has been indicated 
that transfection ability of PEIs depends on their molecule weights, PEI nitrogen/DNA 
phosphate charge ratios (N/P) and cell types. For 800-Da PEI, it can mediate the delivery of 
pGL2-Luc gene into NIH 3T3 cells with an optimal gene expression level of 2X106 RLU/mg 
protein at an N/P of 8/1. However, for 25-kDa PEI, the level is increased to 109 RLU/mg 
protein at the same N/P ratio. The polyplexes of PEI may transfect different types of cell 
lines, with the levels of gene expression in the range from 105 (MCR-5 cells) to 108 RLU/mg 
protein (COS-7 cells).  

Currently, high molecular weight PEI (e.g. 25kDa) is regarded as one of the most potent 
gene transfection agents. This superior gene transfection is explained by so-called “proton 
sponge” hypothesis (Boussif et al., 1995). In brief, the protonation of PEI in the endosomes 
induces a massive influx of chloride ions into the endosomes, which triggers the entry of 
water molecule into the endosome to balance the ion concentration. The entry of massive 
ions and water thus results in osmotic swelling of the endosome and subsequent membrane 
disruption. After that, genes are released into the cytoplasm. Buffer capacity (defined as the 
percentage of amino groups becoming protonated from pH 7.4 to 5.1) is regarded as an 
important parameter of cationic polymers to determine their ability to mediate endosomal 
escape, and is correlated with the pKa of protonable nitrogen in the polymers. Thus, cationic 
polymers containing protonable amino groups of a low pKa (5-7) commonly have good 
buffer capacity. This may explain why branched PEI can mediate better gene transfection 
than linear PEI because the former has one-third of protonable tertiary amino groups. 

Also, a lot of investigations on biophysical properties of PEI-based polyplexes have been 
made to clarify PEI-mediated gene transfection (Sirirat et al., 2003). Dynamic light scatting 
and zeta-potential meters are typically applied to determine the particle size and zeta-
potential of polyplexes. In general, nano-scaled polyplexes below 150nm can be found with 
different molecular weight of PEI in the range of 2-25k at N/P ratios of 1-10. Notably, only 
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at the N/P ratios above 4/1, the polyplexes with a high surface charge (+10~35mV) can be 
obtained. Small particle sizes and positive surface charges are highly desirable for efficient 
cellular endocytosis, which may be the reason why PEI is potent for highly efficient gene 
transfection. 

An inherent disadvantage of PEI is its high cytotoxicity in vitro. Depending on cell line type, 
the IC50 value of PEI is typically below 30 μg/mL. In PEI-mediated transfection process, a 
two-stage cytotoxicity mechanism is discovered (Godbey et al., 2001; Moghimi et al., 2005). 
In the first stage, free pEI may destabilize the cellular membrane, inducing necrosis-related 
cytotoxicity. The removal of free PEI from the polyplexes of PEI indeed can lead to lower 
cytotoxicity (Boeckle et al., 2004 ). In the second stage, free PEI that is dissociated from the 
polyplexes inside the cells can interact with negatively-charged mitochondrial membrane, 
inducing harmful cellular apoptosis. Thus, the cytotoxicity in this stage could be diminished 
after cationic polymers are intracellularly degraded into small pieces. 

3.2 Polyethylenimine derivatives 

Low molecular weight PEI (below 2 kDa) normally displays lower cytotoxicity, but inferior 

transfection capability as compared to high molecular weight counterparts. Klibanov et al. 

modified the primary amines of 2k-Da PEI with dodecyl or hexadecyl iodides (M. Thomas & 

Klibanov, 2002). The transfection efficiencies of these alkylated 2k-Da PEI are surprising. In 

the transfection towards COS-7 cells, dodecylated or hexadecylated 2k-Da PEI can induce a 

high level of gene expression in the presence of serum, that is, 5-fold higher than that of 25k-

Da PEI. The cytotoxicity of these alkylated PEI is much lower as compared to 25k-Da PEI 

(100% vs. 80% cell viability). 

The incorporation of poly(ethylene glycol) (PEG) into PEI may yield PEGylated PEI with 
reduced cytotoxicity (C.-H. Ahn et al., 2002). PEGylated PEI copolymers can be synthesized 
by coupling activated PEG (2000 Da) with low molecule weight PEI (600, 1200 or 1800 Da). 
An optimal PEI-PEG copolymer is found that has 87 units of PEI1800 and 100 units of 
PEG2000. Again, the copolymer can efficiently bind plasmid DNA to form nanoscale 
polyplexes with positively surface charge (+20~+40mV) (average diameter 120~150nm) at 
N/P ratios from 1/1 to 4/1. The transfection efficiency of these polyplexes towards 293T cell 
is 3-fold higher than that of parent PEI1800. The cytotoxicity is very low with 80% cell 
viability. It should be noted that PEGylation often leads to reduced transfection efficiency in 
vitro. This is because PEGylated PEI-based polyplexes have low surface charges which 
impair efficient cellular internalization and also efficient endosomal escape of polyplexes 
(Mishra et al., 2004). Thus, the molecular weight of PEG and the composition ratio between 
PEI and PEG must be optimized. 

3.3 Poly(L-lysine) 

Poly(L-lysine) (PLL) is one of mostly studied cationic polymers for non-viral gene delivery 
(G.Y. Wu & Wu, 1987). It is a linear polypeptide with L-lysine residues in repeat units. The 
commonly used PLL as a non-viral gene delivery vector is with the molecular weigh of 25.7 
kDa. The transfection efficiency of PLL is much lower than that of PEI since it displays a low 
buffer capacity, which is not efficient for proton sponge effect. Another disadvantage of PLL 
is that transfection efficiency of PLL is significantly influenced by serum probably due to the 
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rapid binding of PLL polyplexes with negatively-charged serum (C.H. Ahn et al., 2004). In 
PLL-mediated gene transfection against 293T cells, for example, the gene expression level is 
remarkably reduced by 10 times in the presence of 10% serum. The cytotoxicity profile of 
PLL is not satisfactory with about 60% cell viability at a tested concentration of 10 μg/mL. 
Thus, modification of PLL is needed to improve transfection ability and meanwhile decrease 
cytotoxicity. 

Because the low transfection efficiency for PLL is attributed to its poor buffer capacity, 
Langer et al. introduced imidazole group (pKa ~6.5) into PLL to improve buffer capacity, 
thereby enhancing transfection efficiency (Putnam et al., 2001). The modified PLL was 
synthesized by the coupling of amino groups of PLL (34Ka) with 4-imidazoleacetic acid 
using an EDC/NHS activation. As expected, transfection efficiency of imidazole-modified 
PLL was increased with increasing amounts of imidazole groups and was much better than 
that of native PLL. The PLL with the highest imidazole content (86.5%) could mediate the 
best gene transfection, with gene expression level close to that of polyethylenimine. Low 
cytotoxicity is another merit for these imidazole-modified PLL (100% cell viability at 30 μg 
/mL). The PEGylation of PLL can also improve the transfection ability and cytotoxicity 
profile of PLL (C.H. Ahn et al., 2004). For example, a group of PLL-PEG multi-block 
copolymers were synthesized with molecular weight in the range from 32k to 65kDa. An 
optimal copolymer, PLL26-co-PEG32, was found highly efficient to transfect 293T cells. The 
low cytotoxicity of these copolymers was also observed with more than 95% cell viability. 
The PLL26-co-PEG32 copolymer could mediate almost the same transfection efficiency both 
in the absence and presence of 10% serum. 

3.4 Poly(amido amine) (PAMAM) dendrimer 

Poly(amido amine) dendrimers are a family of well-defined cationic polymers (Tomalia et 
al., 1990). Szoka et al. firstly investigated PAMAM cascade polymers as non-viral gene 
delivery vectors (Szoka, 1993). These polymers have an ammonia initiator core and different 
generation (G2-G10) of amido amine repeat units. In the transfection against CV-1 cells, an 
optimal level of gene expression (1x1010 RLU/mg protein) was observed for the sixth 
generation PAMAM (G6, MW 43451) at an N/P ratio of 6/1, but with 64% cell viability. 
However, 108 RLU/mg protein could be obtained for the PAMAM G5 at N/P=3, 6 or 10 
with more than 90% cell viability. This high level of gene expression is due to a high buffer 
capacity of PAMAM since pKa value is 3.9 for internal tertiary amines and 6.9 for terminal 
amines. Another report showed that PAMAMs with an EDA initiator core can also mediate 
efficient gene transfection towards different mammalian cells (Kukowska-Latallo et al., 
1996). The polyplexes of PAMAM G7 can transfect several types of cells with high gene 
transfection efficiency (≥1x1010 RLU/mg protein), which is even better than that that of 
Lipofectamine 2000. The cytotoxicity of these PAMAMs is however terrible. It appeared that 
the initiator core of PAMAM may influence their transfection efficiency. 

In a further study, Szoka, et al. found that when intact PAMAM dendrimers were treated by 
heating in a solvent such as water or butanol, the resulting dendrimers can surprisingly 
induce higher transfection efficiency as compared to parent PAMAM (Tang et al., 1993). The 
efficiency is affected by the generation number of dendrimer and degree of degradation. For 
example, after the sixth-generation dendrimer initiated with tris(2-aminoehyl)amine 
(TAEA), termed as 6-TAEA, was degraded in the n-butanol for 43 hours, the resulting 
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degraded PAMAM, denoted as “fractured” dendrimer, could lead to enhanced transfection 
efficiency by 3 orders of magnitude compared to that of native PAMAM. This pronounced 
transfection efficiency is likely due to increased flexibility which results in apparent volume 
swelling of fractured dendrimer in the endosomes and thus efficient endosomal escape. 

3.5 Chitosan 

Chitosan is a naturally cationic polysaccharide and is degradable by lysozyme in the body. 
Chitosan is composed of ǃ1→4 linked glucosamine, partly containing N-acetylglucosamine 
and has an apparent pKa value of 6.5. This indicates that chitosan could be used as non-viral 
vectors for gene delivery (W.G. Liu & Yao, 2002). Mumper et al. was the first to report 
chitosan as gene delivery vectors (Mumper et al., July 30-August 4, 1995). The molecular 
weight of chitosans influences their transfection efficiency. Generally, an optimal molecular 
weight is in the range of 10-50 kDa for efficient gene transfection. Also, both pH and serum 
largely influence the transfection efficiency of chitosan. It was shown that the transfection 
efficiency at pH 6.9 was higher than that at pH 7.6. Moreover, the transfection efficiency was 
2 to 3 times higher in the presence of serum than that in the absence of serum. The 
enhancement with serum may be caused by the cell function raised by the addition of serum 
since major components in serum like albumin and globulin have little effect on the 
transfection efficiency of chitosan–based polyplexes (Sato et al., 2002). 

Because chitosan is only soluble in acidic solution at pH 1~6, it readily self-aggregates under 
physiological conditions. A few chemical modifications on chitosan were thus performed to 
obtain improved solubility. One is to modify chitosan by introduction of a soluble moiety, for 
example, PEG, and the other is quaternization of the amine groups of chitosan (Thanou et al., 
2002). A modification is also made to enhance the thermal stability of DNA by incorporating 
dodecylate chain into chitosan (F. Li et al., 2002). This modified chitosan displayed enhanced 
transfection capability with low cytotoxicity. However, the transfection efficiency of chitosan-
based derivatives reported so far is normally not superior to that of PEI. 

4. Hydrolysable cationic polymers as non-viral gene delivery vectors 

This section reviews hydrolysable cationic polymers as non-viral gene delivery vectors. In 

the past decade, hydrolysable cationic polymers (Figure 3) have been studied as non-viral 

gene delivery vectors since they display lower toxicity as compared to their non-degradable 

counterparts. These research works accelerate the availability of safe and efficient non-viral 

gene delivery vectors. 

4.1 Poly(4-hydroxy-L-proline ester) (PHP) 

Poly(trans-4-hydroxy-L-proline ester) (PHP) is the first hydrolysable cationic polymers for 
non-viral gene delivery (Lim et al., 1999). Since hydroxyproline is a component in collagen, 
gelatin, and other proteins, hydroxyproline-based materials are considered low cytotoxic. 
PHP ester were synthesized by the polymerization of cbz-protected 4-hydroxy-L-proline to 
generate poly(4-hydroxy-N-cbz-L-proline), followed by the treatment of formic acid and 
Pd/C. As expected, PHP is degradable under physiological conditions, but very fast with 
degradation half time of 2 hours. Moreover, PHP can efficiently bind DNA to form positive 
polyplexes with average diameter below 200 nm. The polyplexes could transfect CAPE cells 
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at a high polymer/DNA ratio of 50/1(w/w) with transfection efficiency of 1.5 times higher 
than that of PLL. Importantly, this polymer has very low cytotoxicity compared to 25-kDa 
PEI. It is worthy pointing out that the transfection of PHP is not influenced by serum, 
indicating this polymer is biocompatible for non-viral gene delivery. 

 

Fig. 3. Typical examples of hydrolysable cationic polymers as non-viral vectors 

4.2 Poly[α-(4-aminobutyl)-L-glycolic acid] (PAGA) 

Poly[ǂ-(4-aminobutyl)-L-glycolic acid] (PAGA, 3.3kDa) is an analogue of PLL (Lim et al., 

2000). Since the amide bonds in PLL are replaced with ester bonds, PAGA is degradable 

under physiological conditions. PAGA is rapidly degraded at pH 7.4 and 37°C with the 

degradation half time of 30 min. The presence of primary amine in the side chain of PAGA 

renders this polymer highly efficient for gene binding. As such, at a low N/P ratio of 5/1, 

nanoscale polyplexes from PAGA/DNA (~326nm) can be formed [34]. The transfection 

efficiency of PAGA is comparable with that of PLL. At an optimal N/P of 40/1, the 

transfection efficiency of the polyplexes of PAGA is 3-fold higher compared to those of 4- 
kDa PLL. The cytotoxicity of PAGA is much low in comparison with that of PLL (100% vs. 

20% cell viability). Although PAGA is not as efficient as PEI for gene transfection, the study 

on the PAGA indicates that biodegradable cationic polymers are relatively safer due to low 

cytotoxicity as compared to non-degradable cationic polymers.  

4.3 Poly(β-aminoester)s (PAE) 

Poly(ǃ-amino ester)s (PAEs) are a family of degradable cationic polymers that are prepared via 
Michael-type addition between bisacrylates and amines. Since these reactive monomers are 
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versatile, a large number of PAEs with different functional groups can be designed (Lynn & 
Langer, 2000). Due to the presence of multiple ester bonds in polymer main chain, PAEs are 
degradable and normally possess relatively low cytotoxicity. A particular example is that 
Langer et al. examined a library containing more than 2000 PAEs for non-viral gene delivery 
(Anderson et al., 2003). Also, the structure-activity relationships were investigated. The 
conclusions from the study are: 1) Bisacrylate monomers with strongly hydrophobic residues 
are almost always present in the 50 best-performing PAEs; 2) Linear, bis(secondary amines) 
are over represented in the hit structures; 3) Mono- or dialcohol side group in PAE is an 
important functional entity for efficient gene transfection. One PAE from this library showed 
transfection ability, with the level of gene expression 5-fold higher than that of 25- kDa PEI 
against 3T3 cell lines under optimal conditions. The studies on PAEs strongly support the idea 
that degradable cationic polymers are very promising for safe and efficient gene delivery. 

4.4 Polyphosphoester (PPE-EA) 

Poly(2-amioethyl propylene phosphate) (PPE-EA) is a degradable cationic polymer which 

can yield ultimate low-toxic degradation products including ǂ-propylene glycol, phosphate, 

and ethanolamine. This polymer is synthesized through ring-opening polymerization of 4-

methyl-2-oxo-2-hydro-1,3,2-dioxaphospholane, followed by two-step chemical modification 

(Wang et al., 2001). The transfection of PPE-EA (30 kDa) gives 100-fold higher levels of gene 

expression at an N/P ratio of 6 as compared to that of 27- kDa PLL at an N/P ratio of 5. 

Importantly, PPE-EA has low cytotoxicity towards COS-7 cells with more than 80% cell 

viability up to a tested concentration of 1000 μg/mL. However, this polymer has poor 

ability of endosomal escape since the presence of chloroquine (100 μM), a reagent known to 

disrupt endosomal membrane, may lead to remarkably enhanced transfection efficiency. 

4.5 Polyphosphazene (PPA) 

Polyphosphazenes (PPAs) are cationic polymers derived from poly(dichloro)phosphazene 
(Luten et al., 2003). They are degradable slowly under physiological conditions with a half-
life of more than 10 days, but relatively faster at pH 5 with a half-life of 4-5 days. The PPAs 
(>100 kDa) can condense genes into nanoscale polyplexes at low polymer/DNA mass ratios 
of 3~5, with a high positive surface charge (+ 40mV). The transfection of PPA was 
comparable with that of PEI towards COS-7 cells. The optimal transfection efficiency of PPA 
was observed at a polymer/DNA mass ratio of 6, however, with a high cytotoxicity profile 
(~50% cell viability). The pronounced cytotoxicity could be due to high molecular weight 
and slow degradation profile inside the cells. 

5. Bioreducible cationic polymers as non-viral gene delivery vectors 

In the design of hydrolysable cationic polymers for non-viral gene delivery, a contradiction 
has to be found that the polymers are expected to be rapidly degradable intracellularly as 
one hand, but chemically stable extracellularly as another hand. In order to avoid this issue, 
disulfide bond as a bioreducible linker has received much attention in recent years. The 
disulfide bond is chemically stable in the blood plasma, but intracellularly bio-cleavable by 
reducing enzymes like glutathione reductase and sulfhydryl components like glutathione 
since the concentration of these reducing species is much higher in the cytoplasm than the 

www.intechopen.com



 
Biomedicine 

 

94

blood plasma (intracellular vs. extracellular glutathione concentration, 0.5-10 mM vs. 2-20 
μM) (G. Wu et al., 2004). Thus, this feature makes the disulfide very valuable in the design 
of biodegradable cationic polymers for triggered gene delivery. Figure 4 shows a schematic 
illustration on intracellular gene delivery mediated by disulfide-based cationic polymers. 
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Fig. 4. A conceptual illustration of DNA binding and subsequent intracellular release: (a) 
formation of the polyplexes of bioreducible cationic polymers, which are relatively stable in 
the extracellular environment, (b) intracellular cleavage of disulfide linkages in the polymer 
of the polyplex, and (c) intracellular DNA release from the degraded polymer. 

This section reviews current progress in disulfide-based cationic polymers as non-viral gene 
delivery vectors. The topics are focused on the synthesis of bioreducible cationic polymers, 
unique biophysical properties of the polyplexes based on the polymers. 

5.1 Preparation of bioreducible cationic polymers as non-viral gene vectors 

Bioreducible cationic polymers can be designed and synthesized that contain disulfide bond 
either in polymer main chain or side chain. In earlier studies, the disulfide was introduced in 
the polymer side chain to conceptually confirm the role of the disulfide in gene delivery. A 
typical synthesis route is the preparation of cationic polymers with pyridyldithio residue, which 
is then modified with suitable thiol compounds via an exchange reaction (Figure 5a). By this 
method, the pLL containing disulfide linkages in the polymer side chains (termed as poly[Lys-
(AEDTP)]) was prepared through chemical modification of the primary amines in pLL with N-
succinimidyl-3-(2-pyridyldithio)propionate, followed by an exchange reaction with 
mercapthoethylamine (Pichon et al., 2002). The polyplexes of poly[Lys-(AEDTP)] can transfect 
HeLa cells with a level of gene expression 10-fold higher than that of parent pLL. This thus 
implies that disulfide linker plays a pivotal role in improved gene transfection. In another work, 
PAEs with pyridyldithio groups in the polymer side chains were synthesized via Michael-type 
addition reaction between diacrylates and 2-(pyridyldithio)-ethylamine. These polymers were 
further modified with mercaptoethylamine or thiol peptide such as RGD, yielding the PAEs 
with disulfide linkers in the side chains (SS-PAEs) (Zugates et al., 2006). The polyplexes of SS-
PAEs could transfect HCC cells with the efficiency comparable to that of 25-kDa PEI. 
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Fig. 5. Typical methods for the preparation of bioreducible cationic polymers as non-viral 
gene delivery vectors 

Alternatively, one route to generate bioreducible cationic polymers is the polyoxidation of 

dithiol-based monomers having amino groups (Figure 5b). Typical examples are disulfide-

containing cationic polymers based on pEI , pLL and pDMAEMA (SS-PEI, SS-PLL and SS-

PDMAEMA, respectively, in Figure 5). In general, the preparation of these dithiol-based 

oligoamines is time-consuming and these compounds can not be stored for long term due to 

oxidation of thiol groups by air. As typical examples, Park et al. reported on the synthesis of 

dithiol-containing oligoamines via organic synthesis involving protection and deprotection 

of amino groups (Lee et al., 2007). Oupický et al. described the preparation of well-defined 

dithiol-based PDMAEMA oligomers via reversible addition-fragmentation chain transfer 

polymerization (You et al., 2007). Seymour et al. produced dithiol-based oligopeptides (Cys-

Lys10-Cys) via solid-phase organic synthesis (Oupicky et al., 2002). These dithiol-based 

oligoamines can be oxidized by DMSO as an oxidant agent to yield disulfide-containing 

cationic polymers. Also, different dithiol-bearing groups, e.g. nuclear localization sequences 

comprising two cysteine residues, can be incorporated in the oxidation reaction, giving rise 

to disulfide-containing copolymers with multiple functionalities (Read et al., 2005). 

A simple approach for the availability of disulfide-based cationic polymers is the chemical 
coupling of amine compounds with disulfide-containing reagents, such as cystamine 
bisacrylamide (CBA) in a Michael addition reaction (Lin et al., 2006, 2007a; Lin et al., 2007b; 
Lin et al., 2008; Lin & Engbersen, 2008) (Figure 5c), and dithiobis(succinimidyl propionate) 
(DTSP) or dithiobispropionimidate (DTBP) in a polycondensation reaction (Figures 5d&e). 
These reactions can generate linear or branched disulfide-containing cationic polymers with 
different molecular structures (Figure 6). Lee et al. firstly prepared disulfide-containing 
branched pEI by the crosslinking of low molecular weight PEI with DTSP or DTBP (Gosselin 
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et al., 2001; Gosselin et al., 2002). Recently, disulfide-containing poly(amido amine) (SS-
PAA) (co)polymers were synthesized through Michael-type addition reaction of CBA to 
primary amines, secondary diamines or PEI oligoamines. The structural effects of these SS-
PAAs on gene delivery properties were systematically investigated. It was shown that the 
SS-PAA with the hydroxybutyl or hydroxypentyl side groups led to higher transfection 
efficiencies and lower cytotoxicity in COS-7 cells than 25-kDa branched PEI. Herein, we 
summarize those typical bioreducible cationic polymers in Table 1 and their performance in 
gene transfection efficiency against different cell lines. 

 

Fig. 6. Typical examples of bioreducible cationic polymers as non-viral gene delivery vectors 

5.2 Intracellular fate of disulfide-based polymeric gene vectors 

It is assumed that higher efficient transfection induced by disulfide-based cationic 

polymers is at least partly due to intracellular degradation via the cleavage of the 

disulfides in the reducing intracellular environment. In order to obtain experimental 

evidences, polyplexes of fluorescently labelled P(CBA-ABOL) containing disulfide bonds 

and P(BAPABOL) lacking disulfide bonds (Figure 7) were used for gene transfection 

against COS-7 cells at the same polymer/DNA mass ratio of 12/1. Dynamic light 

scattering and zeta-potential measurement showed that polyplexes of P(CBA-ABOL) and 

p(BAP-ABOL) had comparable average particle size and surface charge (128 nm vs. 82 

nm; +20.2 mV vs. +19.2 mV), allowing good comparison of the transfection activity of 

both types of polyplexes. The intracellular distributions of the two polymers, labelled by a 

Rhodamine dye, are clearly different under fluorescence microscopy (Figure 7). For 
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P(CBA-ABOL), a homogeneous dispersed fluorescence was observed both in the 

cytoplasm and the nucleus. By contrast, for the p(BAP-ABOL) lacking the disulfide 

linkages, many micro-sized aggregated clumps were found in the perinuclear space and 

only a few weak fluorescence was observed in the nucleus. These results may serve as an 

indication that P(CBA-ABOL) is intracellularly degradable faster by reducing cleavage of 

the disulfide bonds, resulting in a diffuse distribution of fluorescently labeled polymer 

fragments inside the cells. Slow degradation of p(BAP-ABOL) may, however, contributes 

to the formation of the aggregation. 
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Fig. 7. Intracellular distribution of the polyplexes from bioreducible P(CBA-AOBL) (left) and 
non-degradable P(BAP-ABOL) lacking disulfide bonds (right), observed under confocal 
laser scanning microscopy. The polymers are shown in green and the nucleus in red. 

 

Disulfide-based 
polymers 

Plasmid Cell 
line/animal 

Transfection Ref. 

DTSP or DTBP-
crosslinked PEI 

pCMV-Luc CHO Comparable to  
25-kDa PEI 

(Gosselin 
et al., 2001) 

PEGylated PEI 
crosslinked with 
DTSP 

pCMV-Luc Mice enhanced plasmid 
blood levels up to  
60 min. 

(Neu  
et al., 
2007a) 

Crosslinked PEI with 
DSP 

pCMV-Luc, 
32P-labeled 
plasmid 

NIH-3T3/ 
Balb/c mouse 

3-fold higher than 
25-kDa PEI, 
considerable gene 
expression in the 
liver and lung 

(Neu  
et al., 
2007b) 
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Disulfide-based 
polymers 

Plasmid Cell 
line/animal 

Transfection Ref. 

Linear SS-PEI pCMV-Luc HepG2, HeLa comparable to 
ExGen 500 (25kDa l-
PEI) 

(Lee  
et al., 2007) 

DTSP-Crosslinked 
linear PEI (2-4kDa) 

pCMV-EGFP CHO, HepG2, 
NIH-3T3, 
HeLa, HCT116, 
COS-7, 
HEK293 

5-7 times higher than 
Lipofectamine 2000, 
JetPEI, FuGENE6, 
40-70 eGFP+% 

(Breunig  
et al., 2007) 

PEI-SS(x) from 
thiolated 800-kDa 

pCMV-Luc, 
pCMV-EGFP 

HeLa, 293T 10-fold higher than 
25- kDa PEI (HeLa), 
3-fold higher 
eGFP+% (293T) 

(Peng  
et al., 2008) 

listeriolysinO-
conjugated reducible 
25kDa-PEI (LLO-SS-
PEI) 

pCMV-NGVL3 
(both GFP and 
Luc) 

HEK293 Comparable to 25-
kDa PEI 

(Choi & 
Lee, 2008) 

SS-PEI in the presence 
of RGD 

pCMV-Luc and 
pEGFP 

293T, HeLa Comparable (293T), 
8-fold higher (HeLa) 
than 25 kDa PEI 

(Sun  
et al., 2008) 

BPEI-SS-PEG-cNGR 
(cNGR: cyclic NRG 
(CNGRCK) peptide) 

Luciferase gene 
pDNA 

HEK293, 
HT1080 

100-fold higher than 
that of 1.2kDa-BPEI 

(Son  
et al., 2010) 

branched 
poly(ethylenimine 
sulfide) (b-PEIS) 

pCN-Luc or 
pEGFP 

HEK293, HeLa, 
NIH3T3, 
C2C12, 
HUVECs 

1000-fold higher 
than 6-kDa l-PEI, but 
comparable to 25-
kDa BPEI 

(Koo  
et al., 2010) 

CBA-crosslinked 
reductable 
polyspermine 

pEGFP A549 4-fold higher than 
25-kDa PEI 

(Jere  
et al., 2009) 

Reducible PEI (PEI-SS-
CLs) via “click” 
chemistry 

pLuc, pEGFP 293T, HeLa 5-10 times higher
than 25-kDa PEI 

(J. Liu  
et al., 2010) 

Linear PAA grafted 
with 
polyamidoamines 

pLuc, pEGFP 293T, HeLa Comparable (293T) 
or a little higher 
(HeLa) than 25-kDa 
BPEI

(Xue  
et al., 2010) 

CBA-crosslined 
reducible polyamines 
(pLPEI/pTETA/pSPE)

qWIZ-Luc (6.7 
kb), qWIZ-GFP 
(5.7 kb) 

murine brain 
capillary 
endothelial 
bEnd.3 cells 

2.3-4.9 fold higher 
than ExGen500 

(Zhang & 
Vinogradov, 
2010) 

linear disulfide-based 
“click” polymer (RCP)

iMDR1-pDNA,
pEGFP

MCF-7, MCF-
7/ADR

Comparable to 
25kDa- BPEI 

(Gao  
et al., 2010) 

Table 1. A summary of bioreducible cationic polymers and their transfection efficiencies in 
different types of cell lines. 
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It appears that disulfide degradation mainly proceeds in the cytoplasm and in the nucleus. 
However, a few recent studies showed that, depending on the cell line type and the polymer 
constructs, the disulfide could also be degradable in those microenvironments such as the 
cellular surface, the endosomes and the lysosomes (Blacklock et al., 2009; Morre & Morre, 
2003). Thus, further studies are certainly needed to understand the factors influencing the 
degradation at specific locations. 

6. Conclusion 

Cationic polymers with multiple functionalities are promising as non-viral vectors for gene 
transfection. Since more and more extracellular and intracellular gene delivery barriers are 
identified that seriously hamper efficient gene transfection, a number of cationic polymers 
have been designed that are capable of overcoming one or more gene delivery barriers, thus 
leading to detectable gene transfection efficiency. From those conventional non-degradable 
cationic polymers to current bioreducible cationic polymers, peoples have more and more 
reached virus-like, safe and potent polymeric gene delivery vectors. Further understanding 
on structure-activity relationships of cationic polymers and their intracellular fate should be 
indispensable, in order to achieve polymer systems that can exhibit multiple gene delivery 
properties for highly efficient gene transfection. 
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