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1. Introduction 

The problem of image similarity has become a challenging task in the field of computer 
vision through the last two decades. The assessment of (dis)similarity between color (or 
multichannel, in general) images or parts of images has been studied on several image 
processing application domains such as image indexing and retrieval, classification and 
unsupervised segmentation (Rubner et al., 2001). The basic operations that need to be 
carried out in order to estimate the similarity between two color images are three-fold 
(Stricker & Orengo, 1995): first, choose an appropriate color space for image representation; 
then, extract a signature for each image (using, commonly, low-level features) to construct a 
theoretically valid distribution; finally, establish pairwise comparisons based on these 
signatures. Each signature constitutes the content description of a corresponding image. It is 
summarized based on pixel attributes and provides a representation of the image in a 
multidimensional feature space. There, a proper (dis)similarity measure is defined in order 
to act as a general rule for comparing any given pair of images. 
In these directions, several (dis)similarity measures have been developed and used as 
empirical estimates of the distribution of image features, confirming that distribution-based 
measures exhibit excellent performance in all areas (Rubner et al., 2001). In the context of 
visual image similarity, we make use of a nonparametric test from the field of multivariate 
statistics that deals with the “Multivariate Two-Sample Problem”, originally presented by 
Friedman and Rafsky (1979). The specific test is a multivariate extension of the classical 
Wald-Wolfowitz test (WW-test) and compares two different samples of vectorial 
observations (i.e. two sets of points in RP) by checking whether they form different branches 
in the overall minimal spanning tree (MST) (Zahn, 1971). It provides an aggregate gauge of 
the match between color images, taking into consideration all the selected characteristics, 
while alleviating correspondence issues. The output of this test can be expressed as the 
probability that the two point-samples are coming from the same distribution. We have 
proven that this is a powerful measure for image similarity, relying on the statistical 
comparison of content representations in a properly defined feature space (Theoharatos et 
al., 2005). 
Here, the above distributional-‘metric’ is introduced in conjunction with a prototyping 
method that dramatically speeds up the execution of the involved computations and results 
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in an efficient overall methodology (e.g. so as to be used in highly demanding applications 
such as image retrieval tasks). The current proposal incorporates the use of a computational 
intelligent module for content representation based on self-organizing neural networks 
(SONNs), the Neural-Gas algorithm (Martinez et al., 1993), which is responsible for 
generating a parsimonious description of the color distribution of each image. The 
multivariate distributions representing the individual images are then compared via the 
standard WW-test, providing enhanced performance when evaluated via a query-by-
example image retrieval scheme (Theoharatos et al., 2006a). 
Finally, we are discussing the applicability of the same distributional distance in order to 
compare images following a standard JPEG-format (Wallace, 1991) and with the scope to 
emphasize texture characteristics during the visual search. Color and texture features are 
directly extracted from the DCT-compressed domain, in the form of an ensemble of feature 
vectors that are the inputs to a standard WW-test. The emerging indexing scheme is found 
to be robust, providing invariant similarity results when image rotation is considered 
(Theoharatos et al., 2006b). 

2. Background and related work 

Research on image similarity has expanded lately, mainly due to the increased interest of 
content-based image retrieval (CBIR), which constitutes a highly challenging research area 
with the emerging techniques sharing many advantages (Smeulders et al., 2000). Even 
though the focus of interest for image similarity and retrieval has recently shifted towards 
the identification of high-level semantics from the content of the images (Eakins, 2002), not 
much success has been achieved so far. This is mainly due to the great difficulties in the 
derivation of semantically meaningful information at a general level (Sheikholeslami et al., 
2002). As a consequence, nowadays methods are still constrained to use low-level visual 
features such as color, shape and texture to represent the image content. 
Considerable investigation has been carried out on the basis of color content (Schettini et al., 
2001). Color information has been recognized as the most important indicator of the general 
‘mood’ of an image and is considered to capture, to a certain extent, image semantics. In the 
existing literature, researchers have experimented with different color spaces such as RGB, 
CIE-Lab, etc. (Castelli & Bergman, 2002), various color descriptors such as color histogram 
(Swain, & Ballard, 1991), color moments (Stricker & Orengo, 1995) and chromaticity 
moments (Paschos et al., 2003), and also miscellaneous similarity measures such as 
histogram intersection (Swain & Ballard, 1991), quadratic form distance functions and 
statistical indices (Rubner et al., 2001). The most popular representation of color information 
is the global histogram, which statistically denotes the joint probability of intensities of the 
three-color channels, thus describing the global color distribution in an image. In general, 
the color histogram provides useful clues for the subsequent expression of similarity 
between images, due to its robustness to background complications and object distortion. 
Moreover, it possesses translation, scale and rotationally invariant characteristics. A 
profound number of (dis)similarity measures have been proposed for computing the 
distance between histograms from two different images. In their work, Rubner et al. (2001) 
distinguished these measures generally into four categories: heuristic histogram distances, 
nonparametric test statistics, information-theory divergences and ground distance ones. In 
the context of image indexing and retrieval, the different variants of the color histogram-
related methodology have provided satisfactory results, especially in practical situations in 
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which the feature extraction step needs to be accomplished as simply and promptly as 
possible. Soon it became popular, since it was very simple to implement and exhibits fast 
retrieval response time, making it a good candidate for real-time applications. However, the 
performance of this technique was not found to be high enough, mainly due to the 
necessary trade-off during the binning procedure. An adequate compromise could be 
achieved via the use of an adaptive binning procedure (e.g. Leow & Li, 2004), in which the 
histogram bins would adapt to the actual distribution of colors in images. Apart from the 
facts that bin-adaptation can be a computational demanding task and, in general, is still 
considered an open issue in the field of image processing, existing systems adopt fixed-
binning histograms since most dissimilarity measures are unable to cope with histograms 
build over different sets of bins (Rubner et al., 2001). 
In order to overcome the above limitation, an attempt was made recently by Rubner et al., 
(2000) to combine the benefits from the use of a distribution distance with a flexible 
description of color-content that adapts its resolution to individual images. The innovative 
work mentioned above introduced the Earth Mover’s Distance (EMD), a computational 
demanding task based on the solution of the well-known transportation problem. In 
summary, a representation scheme suitable for color distributions and based on Vector 
Quantization (VQ) preceded the computation of EMD between pairs of distributions. In this 
scheme, after the complicated k-d trees algorithmic procedure for cluster analysis, each 
distribution was represented by means of a number of cluster-centroids and the 
corresponding proportions of image pixels with colors within the identified groups. The 
EMD-related technique was shown to be more robust than histogram-matching techniques, 
since it could operate on variable-length representations of the distributions that were 
avoiding quantization problems related with the binning procedure. In short, higher 
performance was achieved at the expense of computational efficiency. However, the 
integrated representation design is not related directly to the reliability of color distribution. 
Although the efficiency of k-d tree algorithm is generally recognized, their effectiveness for 
clustering data of complex distributions or data with high correlations among variables is 
questionable. Moreover, there is lack of supporting evidence in the field of statistics that 
EMD is indeed an appropriate measure for comparing multivariate distributions, apart from 
the theoretical benefit that correlates with perception when applied in the CIE-Lab space. 
In the context of textural features, these are also represented using histogram-based 
methodologies. Indexing, similarity and retrieval of compressed images have recently 
become a very active research area, since the great amount of digital images provided on the 
WEB are stored in JPEG format (Wallace, 1991). In particular, the JPEG compression 
standard applies DCT transform in order to achieve a large amount of compression, 
significantly reducing the image size. Such compression is suitable for Internet-based 
applications, reducing the storage space while increasing the downloading speed. Thus, 
measuring image similarity directly in the compressed domain becomes more and more 
beneficial, compared to the pixel-based one. To bridge the gap between compressed- and 
pixel-space, where the majority of image processing algorithms are developed, recent 
research is now starting apace to develop content feature extraction algorithms working 
directly in the compressed domain (e.g. Zhong & Jain, 2000; Ngo et al., 2001; Jiang et al., 
2004).  Since the inverse DCT (IDCT) is an embedded part of the JPEG decoder and the DCT 
itself is one of the best filters for feature extraction working directly on the DCT domain, it 
has proven to be a well-promising area for image similarity in the compressed domain. DCT 
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has, to a certain extent, unique scale invariance and zooming characteristics, which can 
provide insight into objects and texture identification (Ngo et al., 2001). In addition, it 
exhibits a set of good properties such as energy compaction and image data decorrelation 
and, therefore, is naturally considered to be a potential domain in mining visual 
information. Thus, direct feature extraction from DCT domain can provide better solutions 
in characterizing the image content, apart from its advantage of eliminating any necessity of 
decomposing an image and detecting its features in the pixel domain (Jiang et al., 2004). 
The rest of the presentation is organized as follows. Section 3 provides an overview of the 
proposed distributional-‘metric’ for comparing multivariate data, including the graph-
theoretic framework of MST and the multivariate WW-test. Color image similarity is 
presented in Section 4, using the Neural-Gas network for expressing the image content-
signature. In Section 5, visual similarity in the compressed domain is analysed by extracting 
color and texture attributes directly from the DCT-space. Finally, conclusions are drawn in 
Section 6, along with an outline of our future research objectives in Section 7. Throughout 
our study, image similarity is evaluated via a query-by-example image retrieval scheme 

3. The Distributional ‘Metric’ for Comparing Multivariate Data 

A nonparametric test dealing with the “Multivariate Two-Sample Problem” (Friedman & Rafsky, 
1979) is proposed for measuring image similarity in a reliable and more sophisticated way. 
The specific test is a multivariate extension of the classical statistical test of Wald and
Wolfowitz and compares two different samples of vectorial observations (i.e. two sets of 
points in RP). The output of the test can be expressed as the probability that two point-
samples are coming from the same distribution. Its great advantage is that no a-priori 
knowledge about the distribution of points in the two samples is a prerequisite (Theoharatos 
et al., 2005). This model-free assumption stems from the graph-theoretic origin of the WW-
test, which is actually based on the concept of the MST-graph (Zahn, 1971). For this reason, a 
compact description of MST is preceded first. 

3.1 MST-Graph Representation 

Given the establishment of a systematic procedure for extracting low-level characteristics 
from a color (or multivariate, in general) image that are individually represented as vectors 
in a predetermined space, one can rely on graph theory to provide a collective perspective 
that captures the essence of the visual content of the image under study. Graph theory, by 
putting emphasis on the structural relationships between the extracted characteristics, 
provides robust descriptions against noise degradation widely and randomly spread over 
the field and simple transformations like image scaling. Specifically the MST-graph appears 
as an extremely useful condensation of the bulk of information conveyed within the 
ensemble of image characteristics. In addition, the MST provides a compact description of a 
point set. It contains the ‘nearest neighbor’ information about each point and the ‘shortest 
linkage’ information about subsets of points (Laskaris & Ioannides, 2001). In his study, Zahn 
(1971) established another advantage of MST, the determinacy, meaning that the results from 
the application of a method working with MST-graph do not depend on random choices or 
the order in which points are scrutinized, but are affected solely by the point set provided as 
input. Overall, the MST structure is unchanged under transformations like translation, 
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rotation and non-linear ones, preserving the ordering of edge lengths (Theoharatos et al., 
2005).
Graph theory sketches the MST structure with the following definitions (Zahn, 1971). A 

graph ( )EVG ,  is a mathematical structure for representing pairwise relationships among 

data. It consists of a set of points called nodes { } NiiVV :1==  (or vertices) and a set of links 

{ } ji≠= ijEE  between nodes called edges (or lines). An edge links two nodes defining it, when 

it is incident on both of them. The degree id  of a node is the number of edges incident to it. 

When a weight ije  is assigned to each link, a weighted-graph is formed and in the particular 

case that jiij ee =  this graph is called undirected weighted graph. A connected graph has a path 

between any two distinct nodes and a tree is a connected graph with no cycles. A subgraph of 
a given graph is a graph with all of its nodes and edges in the given graph. A spanning tree T

of a (connected) weighted graph ( )EVG ,  is a connected subgraph of ( )EVG ,  such that: (i) it 

contains every node of ( )EVG , , and (ii) it does not contain any cycle. The MST is a spanning 

tree containing exactly 1−N  edges, for which the sum of edge weights is minimum. 

Suppose now that −N pixels are randomly selected from an image and the corresponding 

RGB vectors are represented as an ensemble of points in the feature space. The specific 
points are used as the nodes of the original (fully-connected) graph, while the interpoint 
Euclidean distances as the weights of the corresponding edges. Using a standard algorithm 
(Prim, 1957), the MST is evolved from the original graph, offering a parsimonious 
description of the low-level information in an image. Given a second image, the color 
content of which is to be compared with the content of the first one, we can proceed with the 
selection of pixels as previously and transform the comparison between feature-contents 
into a comparison between the corresponding MST-graphs (Theoharatos et al., 2005). To 
perform such a comparison, a well-defined statistical test is available in the literature of 
multivariate statistics. 

3.2 The Multivariate WW-Test 

Consider samples of size m and n respectively from distributions xF  and yF , both defined in 

RP. The hypothesis 0H  to be tested is whether they are coming from the same distribution, 

thus yx FF = . We are interested in the rejection of the original hypothesis, which is the 

alternative hypothesis yx FF ≠ . In the univariate case ( 1=p ), the WW-test begins by sorting 

the nmN +=  univariate observations in ascending order. Friedman and Rafsky (1979) 

proposed the use of MST as a multivariate generalization of the univariate sorted list, 
introducing in this way a methodology to define the two-sample test statistics based on the 
MST in analogy with those based on the sorted list. 

In the multivariate case, the hypothesis 0H  to be tested is whether two multidimensional 

point samples { } miiX :1=
 and { } niiY :1=

 are coming from the same multivariate distribution. In 

this general case, the WW-test can be summarized with the following steps (Friedman & 

Rafsky, 1979): (i) Consider samples of size m and n respectively from distributions xF  and 

yF , both defined in RP, (ii) Construct the overall MST without encountering the sample 

identity of each point (iii) Delete the edges for which the defining nodes originate from 

different samples. Then, based on the sample identities of the points the test statistic R  is 
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computed, defining the total number of runs, while a run is defined as a consecutive 

sequence of identical sample identities. R  can be also defined as the number of disjoint 
subtrees that finally result. In order to illustrate the WW-test for ease in understanding, two 

randomly selected samples of size 5=m  and 8=n  are used in the 2-D of Fig. 1. After 

deleting those edges coming from different distribution, the number of disjoint subtrees is 

calculated and found equal to 5=R . It must be pointed out here that, the MST possesses 

two significant properties which make it appropriate for application to the multivariate two-

sample problem (a) it connects all the −N nodes with 1−N  edges, which comes from the 

fact that the MST is a spanning tree and (b) the node pairs defining the edges represent 
points that tend to be close together, which stems from the requirement that the sum of the 
edge weights is minimum. 

(i) (ii) (iii)

Fig. 1. Visual configuration of the multivariate WW-test algorithmic procedure for two 
randomly sampled distributions: (i) consider the two sample-distributions, (ii) construct the 
overall MST and (iii) delete the edges of the nodes originating from different distributions. 

The null distribution of the test statistic is derived, based on the combinatorial analysis 

given by Friedman and Rafsky (1979). Let nmN += , C be the number of edge pairs of MST 

sharing a common node, and id  be the degree of the ith node. Then, ( )
=

−=
N

i ii ddC
1

1
2
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It has been shown that the quantity: 

[ ]
[ ]RVar

RER
W

−
=  (2) 

approaches (asymptotically) the standard normal distribution while [ ]RE  and [ ]RVar  are 

given in closed form based on the size of the two samples (Friedman & Rafsky, 1979). The 
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importance of the previous is that by using simple formulae, the significance level (and p-

value) for the acceptance of the hypothesis 0H  can be readily estimated. 

4. Comparing Color Distributions via a self-organizing algorithm 

Regarding the plethora of methods and feature extraction techniques, image indexing and 
similarity is associated with different levels of image understanding. Provided that a 
number of feature vectors are given, the resulted feature space may not be uniformly 
occupied. Sheikholeslami et al. (2002) studied the way clustering individuates the sparse 
and dense pixel-areas in the image, revealing the underlying distribution of the feature 
space. In addition, a vector quantization scheme realizes a concise representation of the 
input data regardless of the actual meaning and significance of the clusters (Gdalyahu et al., 
2001). The resulting codebook vector can be considered as a compact description of the data 
distribution (e.g. the color information of database images), providing effective and 
alternative ways to portray image content. 
To avoid missing the generality of the approach and at the same time propose its 
efficient/intelligent version, the use of two sequential modules is illustrated in the specific 
domain of color image information management, which considers the RGB-vectors 
corresponding to individual pixels (i.e. points in R3). In a nutshell, using Neural-Gas based 
prototyping a data-summary will be produced, which constitutes a meaningful sampling 
from the underlying color distribution of each image. With the subsequent application of 
WW-test to compare samples of color prototypes, robust and economical comparisons 
regarding color content will be achieved (Theoharatos et al., 2006a). 

4.1 Representation of Color Distributions via Self-Organizing Networks 

Summarizing data distributions via prototypes has roots in the theory of VQ, which is a 
powerful strategy for data compression and can be accomplished via different techniques 

(Gray, 1984). Briefly, a vector quantizer encodes a data manifold V ⊆ RP utilizing only a 

finite set of reference or “codebook” vectors ∈jO RP , kj ,,1= , which are also called 

cluster centers. Each data vector ∈X  V is described by the best-matching reference vector 

( )XjO  for which the distortion error ( )( )XjOXd , , usually measured via the squared Euclidean 

distance, is minimal. The main core of the procedure depends on the division of the original 
manifold V into a number of subregions Vi called Voronoi polygons or Voronoi polyedra, 

out of which each data vector X  is described by the corresponding reference vector jO . The 

efficient application of VQ mainly depends on the codebook design, i.e. the proper selection 
of reference vectors. For this critical step, the use of traditional clustering algorithms like the 
k-means had been originally proposed. However, it was experimentally verified later that 

these algorithms often lead to a suboptimal choice of reference vectors jO  in the case of 

nontrivial data distributions, as well as in the case of an inappropriate selection for the 
number of reference vectors. Such a suboptimal solution can have a significant impact on 
the subsequent encoding of the data and even result to highly distorted representations. 
The tremendous development of neural theory of unsupervised learning and the related 
algorithms of Self-Organizing Neural Networks (SONNs) revitalized the field of VQ. The 
ability to efficiently deduce prototypes from the data, common in many SONNs like the 
Kohonen’s feature map (Kohonen, 1997) and the Neural-Gas (Martinez et al., 1993), could be 
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exploited in the reliable codebook design. For a thorough treatment of SONNs and their 
applications related with VQ, the interested reader can refer to the seminal study of 
Martinez and Schulten (1994). 
Stochastic presentation of the input data, competition among the neural nodes (to which 

weight vectors ∈jA RP have been assigned) and a ‘soft max’ adaptation rule are the 

common characteristics of these networks that guarantee the fast convergence to a set of 
weight vectors (i.e. prototypes), which can serve as a high-fidelity codebook. The resulting 
codebook vectors are allocated according to the probability distribution of data vectors over 
the manifold V, and in such a way that the average distortion error is minimized. The main 
difference between the SONN-algorithms compared to other traditional clustering 

methodologies is that not only the best-matching reference vector ( )XjO  is adjusted every 

time a data vector X  is presented, but also the reference vectors adjacent to it are updated 
accordingly. Among the SONNs, Kohonen’s feature map is the most popular mainly due to 
the accompanying visualization scheme that enables the projection of the input data 
nonlinearly onto a lower dimensional lattice (Kohonen, 1997; Haykin, 1999). Inspired by the 
possibility that some high level organization in the brain may be created during learning 
through self-organization, Kohonen (1997) presented a self-organizing learning algorithm 
that presumably produces feature maps similar to those occurring in the human brain. In 
this way, the self-organizing map (SOM) forms a nonlinear regression of the ordered set of 
reference vectors into the input space. The reference vectors constitute a low-dimensional 
network that follows the original data distribution; for this reason, it is also referred to as 
‘self-organizing semantic map’. However, to obtain efficient quantization results with 
Kohonen’s feature map algorithm, the topology of the lattice has to match the topology of 
the data manifold V that is to be represented. Since the primary interest in our study lies in 
the precise quantization of the data and not in dimensionality reduction, we avoided the use 
of Kohonen’s network. Instead, we resorted to Neural-Gas network, which had been proven 
to quickly converge to distortion-errors lower than the ones achieved using Kohonen’s 
algorithm or other classical clustering algorithms (Martinez et al., 1993). 

4.2 The Neural-Gas Algorithm for Vector Quantization 

For the purposes of vector quantization, the Neural-Gas algorithm is presented in this step 
and utilized in the dual segregation algorithmic procedure for our efficient image similarity 
methodology. It is a neural network algorithmic procedure that sustains specific properties 
that make it appropriate as a feature extraction scheme: (1) it converges quickly to low 
distortion errors, (2) it reaches a distortion error much lower than the corresponding using 
the K-means clustering and other traditional techniques or the one resulting from the SOM-
approach, and (3) it obeys a gradient descent on an energy surface, in contrast to the 
Kohonen’s feature map network (Martinez et al., 1993). 

In the Neural Gas network algorithm, a stochastic sequence of incoming data vectors ( )tX ,

max,,2,1 tt = , which is governed by the distribution ( )XP  over the manifold V, drives the 

adaptation step for adjusting the weights of the k neurons { }
kjjA
:1=

 (i.e. the reference vectors) 

( ) { }( )( ) ( )( ) max:1 ,,1,,,1,, ttkjAtXAtXfhA jkiijj =∀=−=∆
=λε  (1) 
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The function ( )yhλ  in the above equation has an exponential form λye−  and { }( )iAXf ,  is 

an indicator function that determines the ‘neighbourhood-ranking’ of the reference vectors 

according to their distance from the input vector X. For both parameters ε and λ, an 

exponentially decreasing schedule is followed, with maxt  being the final number of 

adaptation steps that can be defined from the data based on simple convergence criteria (for 
analytical details refer to Martinez et al. (1993), see also Martinez & Schulten (1994)). 
Martinez et al. (1993) mathematically proved that the asymptotic density distribution of the 

codebook vectors ( )AP  was proportional to the data density ( ) ( ) ( )2+∝ ddXPAP , where 

dd ≤  is the intrinsic dimension of the input data. This theoretical proposition along with the 

accompanying experimental evidence, showing that the Neural-Gas network is indeed 
capable of representing successfully data-manifolds with even intricate intrinsic geometries 
(Martinez & Schulten, 1994), motivated our conjecture that the designed codebook could 
serve as a faithful representation of the vectorial distribution in color-space. Therefore, it 
could be utilized in the subsequent comparisons regarding color content. 
Fig. 2 illustrates the color-content representation through Neural-Gas prototypes, which 
clearly evidences that the distribution of the codebook vectors follows very closely the 
corresponding color distribution (Theoharatos et al., 2006a). In the depicted figure, three 
images are included (two of which “look similar” to each other), while their RGB 
distributions corresponding to all the pixels are shown in the left column along with their 
representations using the associated codebooks. In addition, the entire set of pixels 
comprising each RGB-image is presented as a black dot-swarm. It is clearly evident that the 
distribution of the codebook vectors follows very closely the corresponding color 
distribution. Therefore, each codebook can be thought of as a properly “down-sampled” 
version of the original RGB-distribution (Laskaris & Fotopoulos, 2004). Aiming at higher 
computational efficiency, an intermediate step of subsampling has been introduced between 
embedding an image in RGB-space and Neural-Gas based prototyping. Within this step, 
only a small portion (~5 %) of the pixels in the image is selected using uniform random 
sampling, and the associated vectors are used as input data to the neural network. The 
comparison of the codebooks designed with (right column) and without (left column) the 
subsampling step, shows only slight differences. 

4.3 Comparing Color Signatures using the WW-test 

In order to assess the similarity between two color images, the WW-test is utilized as 

follows. Provided the two color codebooks { } k:1i=iA  and { } k:1i=iB  extracted from a pair of 

images, the WW-procedure follows, with the extracted prototypes playing the role of the 

input point-samples { } m:1i=iX  and { } n:1i=iY  respectively. W  is computed based on the 

involved codebook vectors and used as a similarity measure in a way that the more positive 
its value is, the more similar the color distributions in the two images are (Theoharatos et al., 

2005). The −W quantity computed between pairs of images plays the role of a 

“distributional distance” and therefore inherits interesting invariant-characteristics. In the 
past, a few other statistical indices have been proposed, as well, as means of measuring 
similarity between color distributions. These distances, for instance the Kolmogorov-
Smirnov distance (KS), the chi-square test ( 2-statistic), etc. (Rubner et al., 2001), measure 
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how unlikely it is that one distribution is drawn from the population represented by the 
other.

prototypes

prototypes

prototypes

Fig. 2. Codebook color representation based on the Neural-Gas algorithm. For each image, a 
point-distribution is formed using the RGB-vectors corresponding to all (left panel) or a 
small portion (right panel) of the pixels, summarized through 12 prototypes. 
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Fig. 3 provides a demonstration of the test performance using the images and the codebooks 
presented in Fig. 2. In both panels different labels are associated with each of the two images 

to be compared. The 12=k  color prototypes extracted from each image are located in the 

RGB-space and the points indicating their position have been labeled according to the image 
they are coming from. By contrasting the two MSTs, it becomes evident that in the case of 
similar images (Fig. 3a) there are many edges having different labeled nodes as endpoints, 
while only a few in the case of dissimilar ones (Fig. 3b). 
The unique benefit of WW-approach is that since it engages “distributional distance” acting 
on samples of image constituents, the emerging similarity measure possesses desirable 
invariant characteristics, such as rotation and translation invariance. Part of the flexibility is 
due to the statistical nature of the core procedure, the WW-test, and specifically its 
multivariate orientation. Theoharatos et al. (2005, 2006a, 2006b) have shown that not only 
different image characteristics can - in principle - be combined naturally in one type of 
query (i.e. color plus texture features), but also different types of queries can evolve 
independently and their results can be compared across types, as in the case of an image 
retrieval system. The latter is a direct consequence of the fact that the measured W-index 
relates directly to significance level and therefore can be used as an absolute measure to 
rank among the results of different types of query. Under these perspectives, the WW-test 
can be directly incorporated in retrieval processes from large image libraries, with the great 
advantage of being suitable for dealing with multivariate distributions. 

4.4 Experimental evaluation via a query-by-example image retrieval scheme 

In order to demonstrate and validate the effectiveness of the proposed methodology, a 
query-by-example image retrieval system was built. The image database included in the 

retrieval scheme contains a subset of 1000=D  color images from the Corel Collection. The 

utilized image-set was formed by pre-assigning the images into 20 distinct classes of 50=S

semantically similar images. A subset of 60=Q  query images from this heterogeneous set 

was also included in our retrieval system (three images per category). For the evaluation of 
the retrieval results, the precision (Pr) and recall (Re) indices (Castelli & Bergman, 2002) were 
adopted.
In the introduced methodology, the results are coming from different settings of the 
involved parameters. For different codebook sizes, the Precision was computed as a 
function of the number of RGB-vectors randomly sampled from each image and used as 
input data to the Neural-Gas network. The graphs obtained in this way showed that the Pr-
index approached a relatively high value very soon (~1% of the pixels) and remained 
practically constant beyond the number of approximately 5% of the pixels (Theoharatos et 
al., in press a), which was the typical value chosen used throughout our evaluation study. In 
addition, by experimenting with the size of codebook vectors k that need to be drawn from 

each color image, extensive measurements have confirmed that after extracting 25=k

prototypes the Pr-index remained almost constant (Theoharatos et al., in press a). These 
results show that our method reaches the maximum performance for a moderate size of 

codebooks ( 25≈k ) and therefore a more detailed representation of color distribution is 

unnecessary. This observation is very important for finding the best trade-off between 
effectiveness and efficiency when applying our algorithmic procedure. 
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Fig. 3. WW-test for a pair of similar images (a) and dissimilar images (b), based on the k=12 
color prototypes shown in Fig. 2. In the top panel, there are 19 edges having differently 
labeled nodes as endpoints and therefore splitting the overall MST into 20 subgraphs, thus 
R=20 (W=2.6523). On the contrary there are only 2 such edges in the bottom panel, thus R=3 
(W=-4.8361).

For the full justification of our proposal, precision measurements regarding query-by-
example search in the specific database are included. A plot of Pr-index as a function of the 

codebook size k is presented in Fig. 4, for the 10=T  top retrieved images of the selected list. 

The performance of the Neural-Gas based WW-test is compared to the one using the EMD-
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metric (Rubner et al., 2000) when applied upon the corresponding Neural-Gas based color-
signatures. Although the depicted curves follow - as theoretically expected - a relatively 

similar trend, the WW-test outperforms the EMD-measure; for 10=k  a satisfactory 

improvement of ~5% is apparent, while for 15≥k  a significant increase in performance 

(~10%) is depicted. In addition, the general trend of the depicted curve is very interesting. 
The Pr-index reaches a plateau pretty soon and remains almost constant above the codebook 

size of 25=k . This observation is of great importance regarding the involved computational 

load of our method and will be discussed in the last Section. The slightly decreasing trend 

that becomes apparent after the size of 40=k  is a by-product of the fact that the number of 

extracted codebook vectors is increased without increasing the number of sampled vectors 
from the image. Therefore the Neural-Gas network attempts a detailed representation that is 
adapted to the idiosyncrasies of the random sample and tends to capture stochastic 
variations as delicate data-structure (a common-place problem in neural networks, usually 
referred to as over-training). By experimenting with greater sample sizes (~10% of the 
pixels), this trend is drastically reduced. 
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Fig. 4. Precision measurements of the WW-test and the EMD-related metric based on the 
same color codebooks, as a function of codebook size k. 

The performance of the hybrid methodology as a method for accessing image databases was 
also evaluated following the standard procedure of constructing the Precision vs. Recall 
diagram. The Pr- and Re- indices were first evaluated for different sizes T of the selected list 

(for 30:5:5=T ), and the computed values were used in the plot of Fig. 5. The 

corresponding diagrams for other dissimilarity measures (HI, 2-test and JD using color 
histograms introduced in Rubner et al. (2000) and EMD applied on color signatures 
presented in Rubner et al. (2001)) have also been included in the same figure, enabling the 
direct comparison of the different approaches. It is clearly obvious that the WW-engine 
significantly outperforms all other methodologies. 
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Fig. 5. Precision vs. Recall diagrams for the new hybrid approach, in comparison to other 
related techniques. 

5. Visual similarity in the compressed domain 

The flexible character of the WW-methodology relies on the multivariate flavour of the core 
statistical procedure. By altering the feature-extraction implementation, complementary 
ways to portray the image content appear without scaling effects or different cardinalities of 
the feature sets. An attempt is described here to adopt our methodology so as to work in 
compressed image domains that have recently gained high popularity (e.g. Zhong & Jain, 
2000; Ngo et al., 2001; Jiang et al., 2004). This is expected not only to increase the efficiency of 
WW-based similarity scheme - by avoiding image decompression -, but also to constitute it 
suitable for novel applications like searching and retrieval in the World-Wide-Web - since 
the images of the Web are mostly included in a standard compressed format - (Jiang et al., 
2004). Within this part we focus specifically on images from the standard JPEG compression 
scheme (Wallace, 1991). Competent ways to extract feature vectors directly from the zig-zag 
DCT-coefficients of the images are explored and their effectiveness is studied when 
exploited within the general framework of WW-methodology (Theoharatos et al., 2006b). 
Color and texture features are utilized directly from the DCT-domain in the form of an 
ensemble of feature vectors represented in the YCrCb tri-chromatic model, in line with the 

JPEG standard (Wallace, 1991). In order to represent color information from each NN ×

pixel-block of a given image, all DC components are separately extracted and used as input 
vectors in the WW-engine to form a 3-D vector space. Texture features, on the other hand, 
can be defined as the spectrum energies in different localizations of a local block. Since the 

DC coefficient 0,0F  represents the average grayscale value of each NN ×  macroblock, it is 

not considered to carry any texture information. The remaining AC coefficients can be 
considered to characterize image texture and be used as texture features. Zhong and Jain 
(2000) pointed out that even though the DC component is used for color feature 
characterization and the remaining AC components for texture features, color and texture 

attributes are mixed together in the ( ) 1−× NN  coefficients contained inside a pixel-block. 
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Most of the times, it is extremely hard to draw an absolute line between color and texture 
attributes, since color variation results in color texture. In this way, color is expected to be 
present at several AC coefficients, packing most of its spectral energy in the fewest number 
of low-frequency coefficients at the upper left corner of the macroblock. Zhong and Jain 
(2000) proposed to compute the absolute values of the AC coefficients, selecting those M
lowest-frequency features carrying most of the energy. By rotating an image-block, the 
absolute values of the set of contained DCT coefficients remains unaltered, but their position 
along each zig-zag line is changed. However, by computing the distance between the 
corresponding matrices for the initial block and its rotated version, a totally false alarm is 
resulted in accordance with their perceptual similarity. 

Fig. 6. DCT coefficients in the case of an image macroblock im(A) and its rotated version 
im(B). Each diagonal line of the zig-zag scheme is considered as a vector. The corresponding 
vectors (gray-shaded) contain AC coefficients having equal absolute value, although they 
are located at different positions. However, their magnitudes are the same, as provided at 
the bottom panel. 
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In this section, an efficient indexing method is outlined (Theoharatos et al., 2006b). 

Primarily, −k vectors are extracted from the diagonal zig-zag coefficients of each block, 

where a vector is defined by the AC components contained inside each diagonal line of the 

zig-zag scheme. The −k magnitudes kV , 22,,2,1 −= Nk  of the corresponding zig-zag 

vectors are computed in the sequel, from 1Z  to kZ  (in the case of 88×  image block, 14=k

as presented in Fig. 6). This representation has been proven to be robust to image geometric 
transformations. That is, by applying the DCT transform to an image block and its rotated 
version, the set of the absolute values of the DCT coefficients is identical, whereas their 
positions in the zig-zag ordering scheme are different (Theoharatos et al., 2006b). This 

obvious advantage is illustrated in the example of Fig. 6, where an image block of size 88×

is extracted along with its 90o right-rotated version and labeled im(A) and im(B) respectively. 
By applying the DCT transform to both initial and rotated image block, the set of the 
absolute values of the DCT coefficients is identical, but their positions are different in the 
zig-zag ordering scheme (depicted by the shaded lines in both matrices). Estimating the 
simple Euclidean distance between the corresponding zig-zag vectors of im(A) and im(B)
using the proposed methodology, it was apparently found to be zero. 
A critical issue that has to be solved is the number of selected AC components that need to 
be extracted from each image block, so as to represent effectively and efficiently the color 
and texture attributes. Owing to the very nature of the DCT, the set of AC coefficients 

generated for each NN ×  block are considered approximately uncorrelated. For an NN ×

pixel-block, the general intention is to choose those −M features out of the total number of 
2N  DCT coefficients (except from the DC component that is always chosen as color 

attribute) that capture most of the spectral energy, while in our case, to select −k vectors out 

of the 12 −N  ones estimated inside an image block. The number of selected texture and 

color-texture features must be extracted separately from each image channel. By testing with 
several JPEG images and using standard statistical methods (Duda et al., 2001) such as 
entropy estimation, the number of extracted zig-zag vectors was approximately found to be 

3=k , therefore using the first three zig-zag vectors. It should be noticed here that the 

extraction of color and texture features (i.e. the DC component and the −k zig-zag vectors) 

from each chromatic frame, increases the dimensionality of the derived feature space. 
However the computational complexity is not increased due to the fact that the WW-test is a 
function of the number of input vectors and not of their dimensions. On the other hand, the 
similarity measure is optimized by the higher number of extracted image features. 
Additionally, the optimal number of extracted vectors from the Y- frame was experimentally 
found to be 8, increasing the dimensionality of the feature space to 16 (8-dimensions for the 
luminance Y-frame and 4-dimensions for each of the two chrominance channels). 
The performance of the proposed indexing scheme was evaluated on the same query-by-
example retrieval system, using the WW-test as the similarity measure and following the 
standard procedure of constructing the Precision vs. Recall diagram. The Pr- and Re-indices 

were first evaluated for different sizes T of the selected list ( 50:5:5=T ) and the computed 

values were used in the plot of Fig. 7. The corresponding curves for the other techniques 
presented earlier have also been included in the same figure. In all curves, the same number 
of color and color-textures features has been extracted from each image macroblock, 
enabling the direct comparison of the different approaches. As we can perceive, the 
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proposed methodology outperforms all other techniques, having in all cases of the selected 
list T of retrieved images significantly higher precision rate. 

0,0 0,1 0,2 0,3 0,4 0,5 0,6
0,4

0,5

0,6

0,7

0,8

0,9

P
re

c
is

io
n

Recall

 WW-test

 EMD

 JD

 x2 test

 HI

Fig. 7. Precision vs. Recall diagrams for the proposed compressed-domain retrieval scheme, 
in comparison to other related techniques also applied using the same indexing scheme in 
the compressed domain. 

6. Conclusions 

An intelligent strategy to visual information similarity is introduced based on the use of the 
nonparametric multivariate Wald-Wolfowitz statistical test. Our approach relies on a dual 
segregation-integration algorithmic step. The set of low-level characteristics is extracted in 
the form of an ensemble of feature-vectors and then ‘set-differences’ are computed between 
pairs of image representations. The new method is built on firm mathematical concepts, 
providing us with all the practical advantages of employing a suitable distributional 
distance. Its intelligent character stems from the fact that by altering the involved visual 
information, we can modify the flavour of formulated queries. By measuring the 
performance of the proposed distributional measure using some pre-defined feature 
extraction procedures, we show that it outperforms previously related ones that are 
considered as classical approaches for image similarity. The suggested methodology is 
evaluated within a query-by-example image retrieval scheme. 
The only seemingly weak point of the proposed scheme is that it relies on the formation of 
MST, which is known to be a computationally demanding procedure. To provide some 
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insight about the complexity, the MST construction requires computational time O(N2) using 
a standard algorithm (Laskaris & Ioannides, 2001), while the test statistic can be evaluated in 
time O(N), where N is the number of involved data points. The selection of a small number 
of input feature vectors can alleviate the computational load of the WW-engine and is fully 
justified by the presented experimental results. These results show that our method reaches 
the maximum performance for moderate size of visual attributes and therefore a more 
detailed distributional representation is unnecessary (Theoharatos et al., 2006a; Theoharatos 
et al., 2006b). Apart from this experimental fact, it should be noticed that, nowadays, the 
theory of randomized algorithms (Motwani & Raghavan, 2000) provides alternative fast 
approximations to the MST construction problem. Using such algorithms, the efficiency of 
the presented method might improve further. 

7. Future trends 

Future research remains to examine different/advanced representations of image content so 
as to be embedded in the WW-engine. For instance, blob representations of images 
emerging from a context-dependent segmentation algorithmic procedure could be 
incorporated in the retrieval scheme, also done within the EMD-framework (Greenspan et 
al., 2004). In this way, we will able to compare images that are considered to be semantically 
more relevant and which require the identification of specific types of objects and scenes. 
This can be accomplished by modifying the visual attribute-extraction process from that of 
primitive features (such as color, texture, shape or spatial location of image elements) to that 
of logical features (such as the identity of the objects depicted in an image). The most 
appealing and simultaneously straightforward adjustment is definitely the engagement of 
the recently proposed neuromorphic training scheme (Laskaris & Fotopoulos, 2004) that 
leads to image content representations that are highly relevant to human visual perception. 
The problem of modelling image semantics needs to be systematically examined, so as to be 
incorporated in the standard WW-framework. In this way, techniques that capture the 
semantic meaning of images have to be studied for perceptual categorization and WW-
based similarity of color images, using low-level descriptors derived from high-level 
semantic primitives. Recent research focuses on implementing perceptually motivated 
feature extraction algorithms into real-working environments. In their work, Mojsilovic and 
Rogowitz (2004) performed several subjective experiments in order to understand important 
semantic categories that drive our visual perception and, afterwards, extracted meaningful 
low-level descriptors from these semantic categories in order to perceptually characterize 
the database images. By integrating these features into our WW-engine, enhanced retrieval 
results and better organization of image databases can be achieved (Theoharatos et al., 
2007). Finally, other intelligent methodologies (Eakins, 2002) can be directly adopted in our 
system in order to improve the matching process and also provide the significance level of 
perceptual image similarity using semantically relevant visual attributes. 
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