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1. Introduction  

The stress-strain behaviour of metals under a cyclic loading is very miscellaneous and needs 
an individual approach for different metallic materials. There are many different models that 
have been developed for the case of cyclic plasticity. This chapter will address only so called 
phenomenological models, which are based purely on the observed behaviour of materials. 
The second section of this chapter describes the main experimental observations of cyclic 
plasticity for metals. Material models development for the correct description of particular 
phenomenon of cyclic plasticity is complicated by such effects as cyclic hardening/softening 
and cyclic creep (also called ratcheting). Effect of cyclic hardening/softening corresponds to 
hardening or softening of material response, more accurately to decreasing/increasing 
resistance to deformation of material subjected to cyclic loading. Some materials show very 
strong cyclic softening/hardening (stainless steels, copper, etc.), others less pronounced 
(medium carbon steels). The material can show cyclic hardening/softening behaviour during 
force controlled or strain controlled loading. On the contrary, the cyclic creep phenomenon can 
arise only under force controlled loading. The cyclic creep can be defined as accumulation of 
any plastic strain component with increasing number of cycles and can influence the fatigue 
life of mechanical parts due to the exhaustion of plastic ability of material earlier than the 
initiation of fatigue crack caused by low-cycle fatigue is started. 

The third section of this chapter deals with the cyclic plasticity models included in the most 
popular Finite Element packages (Ansys, Abaqus, MSC.Nastran/Marc). A particular 
attention is paid to the calibration of classical nonlinear kinematic hardening models. Stress-
strain behaviour of materials may be significantly different for proportional and non 
proportional loading, i.e. loading which leads to the rotation of principal stresses. In case of 
stainless steels an additional hardening occurs under non proportional loading. This 
additional hardening is investigated mostly under tension/torsion loading using the 
circular, elliptical, cross, star and other loading path shapes. Classical cyclic plasticity 
models implemented in the commercial Finite Element software are not able to describe well 
the non proportional hardening and correct prediction of multiaxial ratcheting is also 
problematic. This problem can be solved by implementation of more complex cyclic 
plasticity model to a FE code. As a conclusion there are briefly summarized 
phenomenological modelling theories of ratcheting. The main attention is focused on the 
most progressive group of cyclic plasticity models with a one yield surface only. The 
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AbdelKarim-Ohno model is also described, which gives very good prediction of ratcheting 
under uniaxial as well as multiaxial loading. 

Comparison of the AbdelKarim-Ohno model and classical models is presented through 
simulations in the fourth section. Numerical analyses were performed for various uniaxial 
and multiaxial loading cases of specimen made from the R7T wheel steel. It is shown that 
classical models can also get sufficient ratcheting prediction when are correctly calibrated.  

2. Experimental facts 

Good understanding the nature of particular effects of cyclic plasticity plays a key role in the 
phenomenological modelling. Main findings from this chapter will be useful for a reader in 
the field of understanding the calibration of cyclic plasticity models and for correct 
numerical analysis results evaluation. 

2.1 Bauschinger‘s effect 

Bauschinger‘s effect is a basic and well known phenomenon of cyclic plasticity. It describes 
the fact that due to uniaxial loading of a specimen above yield limit in one direction the limit 
of elasticity in the opposite direction is reduced. As an example can serve the stress-strain 
curve corresponding to the first cycle of strain controlled low cycle fatigue test of the steel 
ST52 (see Fig.1). If the yield limit is marked as Y, then the material during unloading from 
maximal axial stress state 1 behaves elastically up to the point, where the difference 
between maximal and immediate stress 1 – 2 is equal to the double of yield limit 2Y. 

 
Fig. 1. Presentation of Bauschinger’s effect. 

2.2 Cyclic hardening/softening 

Results of the micro structural changes in the beginning stage of cyclic loading are changes 
of physical properties and stress response in the material. Cyclic softening/hardening effect 
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relates to softening/hardening of material response or decreasing/increasing of resistance 
against material deformation under cyclic loading. Its intensity usually decrease with 
number of cycles until the saturated state is reached. During uniaxial cyclic loading, the 
condition is characterized by closed hysteresis loop. Transient responses in initial cycles 
caused by cyclic hardening/softening under plastic strain control and stress control are 
shown at the Fig.2. 

 
Fig. 2. Uniaxial fatigue test material response: Cyclic softening a) and cyclic hardening b) 
under plastic strain controlled loading and cyclic hardening c) and cyclic softening d) under 
stress controlled loading. 

Some materials show very strong cyclic softening/hardening (stainless steels, cooper, etc.) 
some less obvious (structural steels). There can be also notable cyclic hardening in certain 
cycles range and in the remaining lifetime cyclical softening. Properties of cyclic 
hardening/softening don‘t depend only on material microstructure, but also on loading 
amplitude or more generally on previous strain history. Such transient behaviour of 
material makes accurate stress-strain modelling more difficult. There is very often 
mentioned possibility of transient stress-strain behaviour estimation according to its 
strength limit and yield limit ratio, but also very simple hypothesis is used, claiming that 
hard material cyclically softens whereas soft material cyclically hardens. 
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From upper peaks of several hysteresis loops corresponding to half lifetime is possible to 
obtain cyclic strain curve (Fig.3), which is often used in engineering computations. 

 
 

Fig. 3. Cyclic stress-strain curve of ST52 steel. 

2.3 Non-masing behaviour 

A material obeys Masing behaviour when the upper branches of hysteresis loops with 
different strain ranges after alignment in lower peaks overlap. More accurately, in the ideal 
case, single solid curve is created. From microscopic point of view Masing behaviour 
indicates stable microstructure in fatigue process. Most steel materials haven’t Masing 
behaviour. Some engineering materials show Masing behaviour under certain testing 
conditions (Jiang & Zhang, 2008). As can be seen from the Fig.4, where the upper branches 
of hysteresis loops of the investigated material are displayed, the non-Masing behaviour is 
dependent on the amplitude of plastic strain ap. 

  
Fig. 4. Non-Masing’s Behaviour of ST52 steel and schematic representation of Masing’s 
Behaviour. 

A
xi

al
 s

tr
es

s 
[M

P
a]

 

Axial plastic strain 

www.intechopen.com



 
Phenomenological Modelling of Cyclic Plasticity 333 

2.4 Non-proportional hardening 

The Figure 5 illustrates the basic types of loading in the stress space. The tension-
compression and simple shear belongs to the category of proportional loading, because 
there is no change of principal stress directions. This group also includes multi-axialloading 
in which the stress tensor components change proportionally. Non-proportional loading can 
be therefore defined as a loading that does not meet the specified condition, and is generally 
characterized by the loading path in the form of curve (Fig. 5). 

 
Fig. 5. Loading paths for non-proportional and proportional loading. 

Conception of non-proportional hardening represents material hardening as a result of non-
proportional loading. Most often it is investigated under tension-compression/torsion 
loading. Generally, the non-proportional hardening depends on material and shape of 
loading path. Thereafter we can express stress amplitude 

 a()=(1+)ap , (1) 

where ap is the equivalent stress amplitude under proportional loading, whereas the 
influence of loading path shape in a cycle is involved in the non proportional parameter  
and the material parameter of additional hardening is define as 

 =an / ap - 1 (2) 

where the quantity an is the maximum value of von Mises equivalent stresses under non-
proportional deformation (circular path). The equivalent stress amplitude is the radius of 
the minimum circle that circumscribes the loading path in the deviatoric stress space, see 
Fig.6. 
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Fig. 6. Definition of equivalent stress amplitude under non-proportional loading. 

Non-proportional hardening of FCC alloys pertinents to the stacking fault energy. For strain 
controlled 90° out-of-phase loading (circular path) it was found out, that the material 
parameter of non proportional strain hardening is higher for materials with lower value of 
the stacking fault energy (Doquet & Clavel, 1996). 

2.5 Ratcheting 

In an uniaxial test under load controll with non-zero mean stress m the accumulation of 
axial plastic strain can occur cycle by cycle. This effect is called cyclic creep or ratcheting, see 
Fig.7. The uniaxial ratcheting is characterised by an open hysteresis loop and it is a result of 
different nonlinear behaviour of the material in tension and compression. The accumulation 
of plastic strain in initial cycles depends on the cyclic hardening/softening behaviour. 

 
Fig. 7. Scheme of uniaxial ratcheting and influence of hardening/softening behaviour. 

Generally, the ratcheting effect can be described as an accumulation of any component of 
strain tensor with increasing number of cycles. From the practical point of view the research 
of ratcheting, which occurs under multiaxial stress states, is also very important. There has 
been investigated mainly the multiaxial ratcheting under combined tension-
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compression/torsion loading or the biaxial ratcheting caused by internal/external pressure 
with simultaneous cyclic tension-compression, bending or torsion. The ratcheting strain 
corresponds to the stress component with non-zero mean stress. The typical example is thin-
walled tube subjected to internal (external) pressure and cyclic axial tension (Fig.8c,d). For 
pure symmetrical bending case (a) it was experimentally observed, that the cross-section 
becomes more and more oval with increasing number of cycles. This process is then 
strengthened, when the external pressure is applied too (b). 

 
Fig. 8. Ratcheting of a piping component due to a) pure bending, b) bending and external 
pressure, c) external pressure and push-pull and d) internal pressure and push-pull. 

As a next sample results of the fatigue test realised under tension – compression and torsion 
can serve (Fig.9). The test simulates ratcheting of shear strain, which occurs in surface layer 
subjected to rolling/sliding contact loading and was proposed by (McDowell, 1995). In the 
both axes force control was used. For measuring the axial and shear strain during the fatigue 
test two strain gauges rosette HBM RY3x3/120 were glued to the specimen. The pulsating 
torque leads to the accumulation of shear strain in the direction of applied torsional 
moment. The tested material R7T steel becomes almost elastic in initial cycles and then 
shows significant softening behaviour. After two hundred of loading cycles steady state is 
reached and the ratcheting rate is constant. 

 
Fig. 9. Ratcheting of shear strain in the McDowell´s tension/torsion test. 

A lot of rail and wheel steels show the decreasing ratcheting rate with the increasing 
number of cycles, which complicates accurate modelling of ratcheting effect. Ratcheting 
makes also life prediction of fatigue crack initiation difficult as well because the material 
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could fail due to the fatigue or to the accumulation of a critical unidirectional plastic strain 
(ratcheting failure). 

2.6 Other effects in cyclic plasticity 

From the theory of elasticity and strength it is well known that the yield locus of ductile 
materials can be described by an ellipse in the diagram shear stress - normal stress. 
However, through experiments carried out under uniaxial loading was found (Williams & 
Svensson, 1971), that if the specimen is loaded by torsion prior to tensile test, then the yield 
locus (yield surface) has deformed shape. The anisotropy is usually neglected in cyclic 
plasticity modelling. All of the reported effects of cyclic plasticity are dependent on 
temperature. With increasing temperature is also strengthened the influence of strain rate on 
the material response. 

3. Constitutive modelling 

Basically, cyclic plasticity models can be devided into these groups: 

Overlay models (Besseling, 1958) 
Single surface models (Armstrong&Frederick, 1966) 
Multisurface models (Mroz, 1967) 
Two-surface models (Dafalias&Popov, 1976) 
Endochronicmodels (Valanis, 1971) 
Models with yield surface distortion (Kurtyka, 1988) 

Due to its wide popularity and robustness we focus only to the group of models with a 
single yield surface based on various evolution equations for internal variables. 

3.1 Basics of incremental theory of plasticity 

The elastoplasticity theory is based on the observations found in the case of uniaxial loading 
(Fig.10). The rate-independent material’s behaviour model includes the additive rule, i.e. the 
total strain tensor 

 pe= +ε ε ε  (3) 

 
Fig. 10. Decomposition of total strain under uniaxial loading. 

www.intechopen.com



 
Phenomenological Modelling of Cyclic Plasticity 337 

is composed of the plastic strain tensor pε and the elastic strain tensor eε . The second 
consideration is that stresses and elastic strains are subjected to Hook's law 

  pe e e= : = : σ D ε D ε ε , (4) 

where eD is the elastic stiffness matrix and the symbol “:” is contraction, i.e. using Einstein 
summation convention dij=Bijklckl. 

In the uniaxial case, the development of irreversible deformation occurs due to crossing the 
yield limit σY. Under multiaxial stress state it is necessary to consider an appropriate yield 
condition. For metallic materials the von Mises condition is mostly used 

    3
f = : Y

2
0   s a s a , YY R   (5) 

where s is the deviatoric part of stress tensor , a is the deviatoric part of back-stress , 
which states the centre position for the yield surface with the initial size Y and R is the 
isotropic internal variable. The contraction operation “:” in (5) can be expressed again in 
terms of Einstein summation convention d=bijcij. Now it is necessary to answer the question: 
When happens a change of plastic strain increment? If the point representing the current 
stress state lies on the yield surface it can be supposed that this point do not leave the yield 
surface, the so called consistency condition f = 0  must be valid. In case of active loading 

 f f = 00, 
 and 

f
d: 0




σ
, (6) 

the plastic deformation development is directed by the associated plastic flow rule 

 p f3
d = d

2




ε
σ

, 
f 3

= =
2 Y

 


s a
n

σ
, (7) 

where the plastic multiplier d in (7) corresponds to the equivalent plastic strain increment 

 p pdp d d
2

:
3

 ε ε . (8) 

In this concept of single yield surface, the kinematic hardening rule 

  p pd = g , ,d ,dp, ,etc.a a ε ε n   (9) 

and the isotropic hardening rule 

  pdY = h R,dp, , , ,etc.σ a ε  (10) 

play an essential role for the robustness of stress-strain model response. When the both 
hardening rules are used we speak about mixed hardening. Transient effects from initial 
cycles (cyclical hardening/softening), non-proportional hardening, ratcheting and other 
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effects of cyclic plasticity can be described by a suitable superposition of kinematic and 
isotropic hardening rules. 

In the case of cyclic loading a kinematic hardening rule should always be included in the 
plasticity model, otherwise the Bauschinger’s effect cannot be correctly described. 

 
Fig. 11.Von Mises yield function with mixed hardening in the deviatoric plane. 

The kinematic hardening rule is important in terms of the needs of capturing the cyclical 
response of the material. Description of the classical kinematic hardening rules and the 
resulting cyclic plasticity models is contained in next four subsections. Their availability in 
selected commercial software based on finite element method is given in Table 1. 

 

Kinematic hardening Ansys 13 Abaqus MSC.Marc MSC. Nastran 

Bilinear 
x 

(Prager) 
x 

x 
(Ziegler) 

x 
(Ziegler) 

Multilinear 
x 

(Besseling) 
- - - 

Armstrong-Frederick x x x x 

Chaboche 
x 

(Mmax=5) 
x 

(Mmax=3) 
- - 

Table 1.Occurrence of cyclic plasticity models in some popular FE software. 

3.2 Bilinear and multilinear kinematic hardening models 

There are two bilinear kinematic hardening rules coded in the most popular FE software, 
suggested by Prager (1953) and Ziegler (1959). The models predict the same response for 
von Mises material (Ottosen&Ristinmaa, 2005) and for uniaxial loading their response is 
bilinear. The models show no ratcheting under uniaxial loading and tend to plastic 
shakedown for a biaxial history of loading. The nonlinearity in stress-strain behaviour can 
be introduced by a multisurface model, when each surface represents a constant work 
hardening modulus in the stress space (Mroz, 1967).  

Besseling in 1958 introduced a multilinear overlay model, which has a physical meaning 
and does not use any notion of surfaces. The Besseling model predicts plastic shakedown for 
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uniaxial loading independently of mean stress value. Unfortunately, the mean stress 
relaxation effect cannot be described too. 

3.3 Armstrong-Frederick kinematic hardening model 

The important work, leading to the introduction of nonlinearity in the kinematic hardening 
rule, was the research report of Armstrong and Frederick (1966). In their model the memory 
term is added to the Prager rule 

 pd = Cd dp
2
3

α ε α  (11) 

where C and  are material parameters. Their physical meaning will be explained for push-
pull loading. The quantity dp is an increment of accumulated plastic strain, which is 
expressed as follows 

 p pdp = d d
2

:
3
ε ε  (12) 

Considering initially isotropic homogenous material, Von-Misses condition can be again 
used as follows 

     Yf =
3

:
2

  s a s a  (13) 

where a is a deviator of backstress  and s is deviator of stress tensor . 

For the uniaxial loading case, the von Mises yield condition becomes to the simpler form 

 Yf = 0      (14) 

Similarly we can modify nonlinear kinematic hardening rule if we will consider only 
deviatoric part of the equation (11) taking into account plastic incompressibility. 

Then the nonlinear kinematic hardening rule leads to the differential equation 

 p pd Cd d      (15) 

Now, we can use a multiplier 1    to dispose of the absolute value  

  p p p p pd Cd d Cd d C d               (16) 

separate variables 

 p
d

d
C

0 0

 

 

 



   (17) 

and integrate to get the equation for backstress evolution 
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  p pC C
e 0

0
  

   
 

  
   

 
 (18) 

Therefore, the relation for stress is given by yield condition 

 Y=    (19) 

For tension 1  and considering zeros initial values of plastic strain and backstress this 
equation is given 

  p
Y

C
= e1

 


   (20) 

Now, we can investigate the limit values of the nonlinear function and its first derivation to 
get a concept about influence of parameters C and  on stress – strain response of the 
Armstrong-Frederick model 

 p

p

Ce = C
0

lim







 (21) 

  p

p
Y Y

C C
e =lim 1 


 

 



    (22) 

 
Fig. 12. Properties of the nonlinear kinematic hardening model of Armstrong/Frederick. 

Described nonlinear kinematic hardening model allows to correctly capture Bauschinger 
effect and even behavior by nonsymmetrical loading in tension-compression. The large 
advantage of Armstrong-Frederick model is its easy implementation and the mentioned 
nonlinear behavior of the model. On the other hand, the model can not descibe the 
hysteresis loop shape precisely. 

For the case of cyclic loading the parameters Y, C and  should be estimated from the cyclic 
strain curve. It is possible to determine the equation corresponding to the cyclic curve of 
Armstrong-Frederick model by application of equation (18) for the upper branch and the 
bottom branch of hysteresis loop. For tension 1   is valid and we have 
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  p apC C
= emax min

  
 

 
  

  
 

 (24) 

For the compression ( 1   ) similarly 

  p apC C
= emin max

  
 

 
 

   
 

 (25) 

After substitution of (24) to the equation (25) we get  

  a Y ap
C

= tanh  


  (26) 

where tanh(x) is the hyperbolic tangent function and a, ap are stress amplitude and plastic 
strain amplitude respectively. 

 
 

 
 

Fig. 13. Initial conditions for the backstress and plastic strain. 

For a proper ratcheting description, the condition of equality for computed and 
experimentally stated ratcheting strain rate for opened stabilized hysteresis loop (Fig.7) 
should be satisfied 

 pFEM pEXP=   (27) 

According to (Chaboche & Lemaitre, 1990), for Armstrong-Frederick kinematic hardening 
rule the plastic strain increment per cycle can be written as follows (with absence of 
isotropic hardening) 
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 

 

Y

pFEM

Y

C

=
C

2
2

min

2
2

max

1
ln

 





 


     
    
       

 (28) 

where p is measured between upper peaks of two hysteresis loops as can be seen in Fig.7. 

3.4 Chaboche kinematic hardening model 

Very important improvement was the proposal of nonlinear kinematic hardening model by 
Chaboche (1979), which eliminated Armstrong-Frederick model disadvantages by creating a 
backstress through superposition of M parts 

 
M

i

i

a = a( )

1
  (29) 

whereas for each part the evolution equation of Armstrong and Frederick is used 

 i i
i p ida = C d a dp( ) ( )2

3
   (30) 

where Ci and γi are material parameters. 

Due to the usage of Armstrong-Frederick evolution law we can directly write the expression 
for static strain curve 

 i p p
M

íi i
Y

i ii

C C
= e 0( )( )

0
1

      
 

 



 
   

 
  (31) 

and for cyclic strain curve 

  
M

i
a Y i ap

ii

C
=

1

tanh   


  (32) 

The quality of cyclic strain curve description is adequate in the case of Chaboche model with 
the three evolution parts. 

Thanks to the similar properties of functions tanh(x) and 1-exp(-x), including its derivatives, 
it is possible to use the same approach for parameter estimation from the static even cyclic 
strain curve. Parameters should be determined for example by a nonlinear least-squares 
method. It is useful to consider Prager’s rule for the last backstress part (γM= 0). The 
parameter influence ratcheting and mean stress relaxation effects. Therefore, we can use this 
approximation function for cyclic and static strain curves respectively 

  
M

i
a Y i ap M ap

ii

C
= C

1

1

tanh    





   (33) 
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  i p
M

i
a Y M p

ii

C
= e C

1

1

1
   








    (34) 

When the cyclic strain curve of the investigated material is not available, it is possible to use 
for the calibration of the model also large saturated hysteresis loop. Based on the 
relationship (31), considering tension ( 1  ) and these initial values (see Fig15) 

 i i
p ap

i

C
=( )

00 ,  


    (35) 

we can get for the upper branch of the hysteresis loop this expression 

  i p api
Y p

ii

C
= e C

2
( ( ))

3
1

1 2
    


  


    (36) 

In the Chaboche model the parameter γM influences ratcheting (provided that the last 
backstress part has the lowest value of the parameter γi) and is chosen to be small (up to 
γM=10). For the case of γM= 0 ratcheting cannot occur. However, after particular number of 
cycles the stabilized hysteresis loop will be formed (the Chaboche model tends to plastic 
shakedown) as it is clear from the graph at the Fig.16. For many materials such behavior does 
not correspond with reality and during numerical modeling, constant deformation increment 
can be achieved with aim of suitable choice of parameter γM . We can also provide the relation  

 p M
M

m p

C
= ,

2




 



  
 (37) 

published elsewhere (Chaboche and Nouailhas 1989).  

Thus, with suitable choice of γM we get very good model for uniaxial ratcheting prediction 
(ratcheting with steady state only). In case of non-proportional loading the Chaboche model 
with three backstresses (M=3) considered in Fig.14 and Fig.15 drastically over predicts 
ratcheting as has been shown by other researchers (Bari & Hassan, 2000). 

 
Fig. 14. Properties of constants of Chaboche nonlinear kinematic hardening model (case M=3). 
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Fig. 15. Scheme for use of the hysteresis loop to identify parameters of Chaboche model. 

 
Fig. 16. Influence of parameter γ2 on ratcheting response of the Chaboche model (M=2). 

3.5 Mixed hardening models 

Most of materials exhibit Masing and cyclic softening/hardening behaviour, which can be 
described by superposition of isotropic hardening to a kinematic hardening rule. In this case 
the size of yield surface Y is expressed with aim of initial value of Y and isotropic variable 
R, which is usually dependent on the accumulated plastic deformation. 

If we would like to describe cyclic softening/hardening, it is convenient to use simple 
evolutionary equation, leading to nonlinear isotropic hardening rule 

 dR = b R R dp( )   (38) 

where R, b are material parameters and dp is an increment of accumulated plastic strain. 
The value of constant b, which determines the rate of stabilization of the hysteresis loop in 
case of loading with constant strain amplitude (Fig.17), can be determined directly from 
following equation 
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 b pR = R e(1 ) 
   (39) 

which follows from integration of equation (39) under following assumption: Change of 
variable R from zero to R and p from zero to p. Other possibilities how to identify the 
constant b are briefly described in (Chaboche & Lemaitre, 1990). 

 
Fig. 17. Evolution of isotropic internal variable R for the nonlinear isotropic hardening rule. 

The material parameter R can be determined, for example, by comparison of static and 
cyclic strain curve of particular material.  

3.6 Other cyclic plasticity models 

After Chaboche (1979) there were designed many evolution equations for better ratcheting 
prediction in the category of nonlinear kinematic hardening rules, but mostly based on the 
Chaboche superposition of several backstress parts. Because of the large number of theories 
we choose for their presentation form of table, which contains links to the original 
publications (Table 2). Presented group of cyclic plasticity models of Chaboche type, which 
considers the backstress to be defined by M parts 

 
M

i

i

d d ( )

1

a a  (40) 

can be generalized considering the evolution equation in the form 

 pi i i
i id C d dp( ) ( ) ( )2

3
 a ε a  (41) 

where Ci, i are material parameters, dp is plastic strain increment and dp(i) is the increment 
of accumulated plastic strain causing dynamic recovery of (i). 

Authors do not guarantee completeness of the set of theories. There are also some new 
models and approaches. Very progressive are so called models with yield surface distortion, 
for example Vincent (2004), which are able to model the anisotropy induced by previous 
plastic deformation (see chapter 2.6). 
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Table 2. Overview of some kinematic hardening rules. 
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It is obvious that many theories differ very little. For correct description of ratcheting in 
proportional and non-proportional loading more and more authors introduced a non-
proportional parameter, which enables simultaneous correct description of uniaxial and 
multiaxial ratcheting (Chen & Jiao 2004; Chen, 2005; Halama, 2008). Significant 
improvements of prediction capability can be reached by using memory surfaces (Jiang & 
Sehitoglu, 1996 and Döring, 2003). Presented models should be compared in terms of 
nonlinearity, established for each backstress in the case of uniaxial loading. The Fig.18 
compares four basic hardening rules. 

Common values of parameters are considered for models Ohno-Wang-II and AbdelKarim-
Ohno in the Fig.18. Both models lead to the Ohno-Wang model I at a certain choice of 
parameters affecting ratcheting. In the case of the AbdelKarim-Ohno model this occurs 
when i = 0 for all i, see Fig.19. Ohno-Wang model II corresponds to the Ohno-Wang model 
I, if mi= ∞ for all i. Thus, the nonlinearity in the Fig.18 is weak for common parameters 
(Ohno-Wang II: mi>>1, AbdelKarim-Ohno: i<0.2) and we can therefore use the same 
procedure for estimation of the parameters Ci, i (i = 1 , ...,M) as in the case of multilinear 
Ohno-Wang model I. For determination of these material parameters we can use again 
either cyclic strain curve of the material (Ohno-Wang, 1993), (AbdelKarim-Ohno, 2000), or a 
stabilised hysteresis loop (Bari & Hassan, 2000). 

 
 
 
 
 

 
 

 
 

Fig. 18. Nonlinearity introduced in four basic cyclic plasticity models. 

www.intechopen.com



 
Numerical Modelling 348 

 
Fig. 19. Influence of ratcheting parameter on the response of AbdelKarim-Ohno model. 

As shown in Fig.19, appropriate choice of parameter gives desired ratcheting rate. 
Considering the only one parameter for ratcheting i = and its evolution by equation 

  d = ω dp     (42) 

transient effects in initial cycles can be described too. 

4. Ratcheting simulations for a wheel steel 

There was realized a set of low-cycle fatigue tests of specimen made from R7T wheel steel at 
the Czech Technical University in Prague. The specimens were subjected to tension-
compression and tension/torsion on the test machine MTS 858 MiniBionix. All tests were 
force controlled. More detailed description of experiments was reported elsewhere (Halama, 
2009). Four cases considered for simulations in this book are shown in Fig.20. 

 

 

Fig. 20. The scheme of four realized loading paths. 
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For a description of the stress strain behaviour the AbdelKarim-Ohno model and two 
classical models of cyclic plasticity were chosen - Armstrong-Frederick model and Chaboche 
model with two backstress parts (M=2). The AbdelKarim-Ohno model was implemented to 
the ANSYS program via user subroutine. Material parameters used in simulations are listed 
in the tables below, except elastic constants (Young modulus E=180000MPa and Poisson´s 
ratio =0.3). 
 

Plasticitymodel Material parameters 
Armstrong-

Frederick and 
Voce rule (AF) 

Y=500 MPa, C=108939, =2.5 
R=-250MPa, b=30 

Chabocheand 
Voce rule 
(CHAB) 

Y=500 MPa, C1=264156, 1=873, C2=20973, 2=1 
R=-320MPa, b=30 

AbdelKarim-
Ohno (AKO) 

Y σ = 200MPa 

1 6C = 3 0,130770,36290,32420,12940,18350MPa1060

1 6γ = 5 2020,980,520,255,3884,  

= 0. = 00 5, 0.5, .14    

Table 3. Material parameters of used cyclic plasticity models. 

Cyclic plasticity models were calibrated using saturated hysteresis loop from the test with 
strain range of 1.5% (Fig.21) and a uniaxial ratcheting test. The calibration procedure used 
for AbdelKarim-Ohno model was described in the paper Halama (2008). The results of 
ratcheting prediction gained from simulations of the low cycle fatigue test with nonzero 
mean stress (case D: 500 cycles with σm = 40MPa and σa = 500MPa) are shown for all three 
material models in Fig. 22. 

   
Fig. 21. Saturated uniaxial hysteresis loop and its prediction by AF and CHAB models. 
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Fig. 22. Comparison of uniaxial ratcheting predictions with experiment (case D). 

The results of multiaxial ratcheting predictions corresponding to simulations of the low 
cycle fatigue test performed under tension/torsion non-proportional (case A: 150 cycles 
with σa = 125MPa and a = 300MPa) and proportional loading (case C: 100 cycles with σa = 
225MPa and a = 65MPa) are displayed in Fig. 23. 

 
Fig. 23. Comparison of multiaxial ratcheting predictions with experiment (cases A and C). 
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The models CHAB and AF contain the nonlinear isotropic hardening rule (39), which 
enables to describe cyclic softening in initial cycles, see Fig.22. On the other hand, ratcheting 
prediction is better in the case of AbdelKarim-Ohno model. The same conclusion we have 
for simulations of the last loading case (case B: 500 cycles with σa = 490MPa and a = 
170MPa, 250 cycles with σa = 490MPa and a = 115MPa, 250 cycles with σa = 490MPa and a = 
215MPa) as can be seen at the Fig. 24.  

 
 
 

 
 
 

Fig. 24. Comparison of multiaxial ratcheting predictions with experiment (case B). 

5. Conclusion 

Background of the particular effects in cyclic plasticity of metals explained in the second 
section makes possible to understand well described incremental theory of plasticity and 
main features of cyclic plasticity models of Chaboche type. There have been shown 
interesting results of fatigue test simulations with emphasis on cyclic creep (ratcheting) 
prediction. It can be concluded from the results of simulations of the section 4 that used 
combined hardening model of Chaboche with two backstress parts can fairly well predicts 
the trend of accumulation of plastic deformation (ratcheting) for uniaxial and multiaxial 
loading cases, even under non-proportional loading, in comparison with the experimental 
observations of the R7T wheel steel. Indeed, the AbdelKarim-Ohno model gives better 
prediction of ratcheting for all cases than Armstrong-Frederick and Chaboche model. 
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