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1. Introduction

Magnetic fluids are stable colloidal suspensions of ferromagnetic nano-particles (of size 10-20

nm) in a nonmagnetic liquid carrier. An initially uniform particle distribution in the carrier

becomes spatially inhomogeneous in nonuniform magnetic fields. Motion of particles in

magnetic fluids under the action of magnetic fields is of particular interest for contemporary

mathematical and numerical modelling in ferrohydrodynamics.

The most theoretical models for the diffusion process in magnetic fluids assume no interaction

between particles (Bashtovoi et al., 2007; 2008; Lavrova et al., 2010; Polevikov & Tobiska, 2008;

2011), which is valid for dilute fluids only. This assumption allows to construct an explicit

dependence between equilibrium particle concentration and the magnetic field distribution,

simplifying significantly the modelling. In case of concentrated magnetic fluids another

theoretical model should be considered. Recently, a dynamic mass transfer equation for

describing diffusion of interacting ferromagnetic particles in magnetic fluids was derived

(Pshenichnikov et al., 2011). In this paper it is mentioned that

"...In the case of high particle concentrations, the magnetic and diffusion problems

are strictly interrelated, and the concentration profile depends markedly on steric,

magnetodipole, and hydrodynamic interparticle interactions, whose counting is a

problem of great concern..."

The present study is devoted to the classical problem of ferrohydrostatics on stability (known

as the normal field instability or the Rosensweig instability) of a horizontal semi-infinite layer

of a magnetic fluid under the influence of gravity and a uniform magnetic field normal to

the plane free surface of the layer (Rosensweig, 1998). A periodic peak-shaped structure is

formed on the fluid surface when the applied magnetic field exceeds a critical value. This

phenomenon was observed first experimentally (Cowley & Rosensweig, 1967).

A number of papers are devoted to numerical investigations of the Rosensweig instability.

The numerical results concern equilibrium states of the ferrofluid layer in (Aristidopoulou et

al., 1996; Bashtovoi et al., 2002; Boudouvis et al., 1987; Gollwitzer et al., 2007; 2009; Lange et

al., 2007; Lavrova et al., 2003; 2008; 2010) and analyze dynamical properties of the ferrofluid
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2 Will-be-set-by-IN-TECH

behavior in (Knieling et al., 2007; Matthies & Tobiska, 2005). A non-uniform equilibrium

distribution of particles in the ferrofluid layer is computed in (Lavrova et al., 2010) for the

first time.

In order to reach the equilibrium between concentration and the magnetic field, quite a long

time is needed. The concentration remains almost constant for much shorter time scales.

That is why, the validity of the results, mentioned in the previous paragraph, will not be

abolished by the preset contribution. The aging process of the Rosensweig instability was

experimentally studied over the long time (up to 50 days) in (Sudo et al., 2006). The effect of

evaporation and non-evaporation of magnetic fluid on the pattern aging were examined. It

was found that the interfacial spike pattern of magnetic fluids changes with time dramatically.

Namely, the cell pattern gradually bifurcates at the constant magnetic field, and the number

of spikes increases with time.

The particles are in Brownian motion inside the ferrofluid layer, when no magnetic field is

applied, and the particle concentration is constant over the fluid volume. This is correct

under an assumption that the gravity force has a negligible influence to the diffusion of

particle. When the applied field is switched on but the field intensity is too weak to perturb

the plane surface, then the magnetic field inside the layer remains constant and the particle

concentration is constant, as a consequence. The situation changes when the applied field

intensity is strong enough to perturb the free surface. A nonuniformity of the magnetic field

inside the fluid causes a redistribution of the particles. This is due to interactions between field

and particles and interparticle interactions. An interaction between particles and the magnetic

field of the fluid was taken into account for the modelling of the Rosensweig instability in

our previous research in (Lavrova et al., 2010). This interaction plays a dominant role in

dilute magnetic fluids. The main objective of the contribution is the extension to the case

of interacting particles, which should be taken into account for concentrated magnetic fluids.

Mathematical model of the coupled problem consists of the magnetostatic subproblem, the

concentration subproblem and the free-surface subproblem. The concentration subproblem is

based on a recently developed mass transfer equation for describing diffusion of interacting

ferromagnetic particles in magnetic fluids (Pshenichnikov et al., 2011). Three subproblems are

strictly interrelated to each other and should be solved simultaneously to resolve equilibrium

states of the system. An iterative decoupling strategy is applied for solving the coupled

system of equations. The finite-element method is used for discretization of the magnetostatic

subproblem in a fixed domain. The Newton method is applied to find an element-wise

distribution of the concentration at the finite-element mesh. The finite-difference approach

is used for the free-surface subproblem. Numerical results of three models (model 1 -

nonuniform particle distribution without particle interaction, model 2 - nonuniform particle

distribution with particle interaction, model 3 - uniform particle distribution) are compared.

The effect of particle interaction shows a considerable influence on behavior of the ferrofluid

layer in a uniform applied magnetic field.

2. Mathematical model

We consider a semi-infinite ferrofluid layer with a horizontal plane free surface bounded from

above by a nonmagnetic gas (air). The unperturbed free surface is defined by equation z = 0,
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Numerical Study of Diffusion of Interacting Particles in a Magnetic Fluid Layer 3

whereas the fluid corresponds to a region z < 0. The system is regarded under the action of

gravity g = (0, 0,−g) and a uniform magnetic field H0 = (0, 0, H0) normal to the plane free

surface of the layer. We consider a single peak in the surface pattern with a cell Ωcell and a

free surface Γ. The problem will be formulated in a cylinder Ωcell × (−∞,+∞), see Fig. 1 for
the case of a hexagonal cell.

Ωcell

✻

✲
�

�
�

�
�

�
��✠

❄ ✻g H0

y

z

x

Fig. 1. The computational domain.

The mathematical model for a non-uniform equilibrium distribution of ferromagnetic

particles in a magnetic fluid with a free surface leads to a coupled problem formulation

consisting of three subproblems. The first subproblem describes the magnetic field

structure inside the fluid and in the surrounding air by the Maxwell’s equations. The

second subproblem concerns the diffusion of particles in the bulk of the fluid as a

steady-state concentration problem. Finally, the third subproblem is given by the generalized

Young-Laplace equation for equilibrium free-surface shapes of the fluid-air interface.

The Maxwell’s equations inside the magnetic fluid and in the air are

∇× H = 0, ∇ · B = 0 in Ωcell × (−∞,+∞), (1)

see e.g. (Rosensweig, 1998). Here H denotes the magnetic field, B = µ0(H + M) the magnetic

induction, µ0 = 4π × 10−7H/m the permeability of vacuum. The magnetization vector M is

parallel to the field vector and follows a magnetization law M = M(H, C) dependent on the

field intensity H and a particle concentration C. An equilibrium magnetization of magnetic

fluids with account for interparticle interaction is derived in (Ivanov & Kuznetsova, 2001) in

the framework of the modified model of the effective field

M(H, C) = Ms
C

C0
L(γHe), He = H +

Ms

3

C

C0
L(γH), γ =

3χL

Ms
. (2)

185Numerical Study of Diffusion of Interacting Particles in a Magnetic Fluid Layer
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Here Ms is the saturation magnetization, C the volumetric concentration and C0 = 1
|Ω f |

∫

Ω f

Cdx

for the fluid domain Ω f with the volume |Ω f |. L(ξ) = coth (ξ)− 1/ξ is the Langevin function,

γ the Langevin parameter, χL the initial susceptibility of the Langevin magnetization, He the

effective field. The magnetization of air equals to zero. The magnetic field satisfies continuity

conditions at the interface Γ between ferrofluid and air, see (Rosensweig, 1998)

[H · τk] = 0, k = 1, 2 [B · n] = 0 on Γ. (3)

Here [·] denotes a jump over the interface, τk and n are tangential and normal vectors to the

interface. A symmetry condition is specified at the side of a cylinder domain

H · n = 0 on ∂Ωcell × (−∞,+∞). (4)

The uniform applied field H0 is perturbed only in a neighborhood of the interface Γ. That is

why we introduce asymptotic boundaries z = ±δ, far enough from the interface, and specify

there a uniform magnetic field

H = H0 for z = δ, H = H1
0 for z = −δ, (5)

where δ > 0. The intensity of the applied field H0 presents a control parameter of the model,

whereas the field H1
0 = (0, 0, H1

0) will be computed from the second transmission condition

(3), satisfied at the flat interface z = 0. The Maxwell’s equations (1) together with conditions
(3)-(5) present the first subproblem of the mathematical model.

The second subproblem describes a magnetophoresis process, i.e. the diffusion of

ferromagnetic particles in the magnetic fluid under the action of a nonuniform magnetic

field. A dynamic mass transfer equation for describing diffusion of interacting ferromagnetic

particles in magnetic fluids was derived in (Pshenichnikov et al., 2011)

∂C

∂t
= −∇ ·

[

D0K(C)

{

−
(

1 +
2C(4 − C)

(1 − C)4
− C

∂2(C2G(λ, C))

∂C2

)

∇C + CL(γHe)∇(γHe)

}]

in Ω f , t > 0. The equation is presented with an assumption that the gravity force has a

negligible influence to the diffusion of particles. The constant D0 denotes Einstein’s value

of the diffusion coefficient for dilute solutions,

K(C) = (1 − 6.55C)

is the relative mobility of particles in the magnetic fluid. A function

G(λ, C) =
4

3
λ2 (1 + 0.04λ2)

(1 + 0.308λ2C)

(1 + 1.28972C + 0.72543C2)

(1 + 0.83333λC)

specifies the contribution of a magnetodipole interaction to the free energy of the dipolar hard

sphere (Pshenichnikov et al., 2011). Here λ is the dipolar coupling constant or the aggregation

parameter, estimating the intensity of the magnetodipole interaction in comparison with

thermal energy. The modified effective field model, which is used to describe the equilibrium

magnetization (2), is applicable for λ ≤ 2 (Pshenichnikov & Lebedev, 2004). We take λ = 1 in
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our model and get

G(1, C) =
1.38667(1 + 1.28972C + 0.72543C2)

(1 + 0.308C)(1 + 0.83333C)
.

The static distribution of particles in the cavity is obtained by equating the full particle flux to

zero. According to (Pshenichnikov et al., 2011), it gives

ln C +
3 − C

(1 − C)3
− ∂(C2G(λ, C))

∂C
= ln

(

sinh (γHe)

γHe

)

+ cc. (6)

To fix the constant cc the condition of conservation for the concentration over the fluid domain
∫

Ω f

CdΩ = C0|Ω f | (7)

will be used. Let us substitute the function G(1, C) to equation (6), then

ln C + R(C) = ln

(

sinh (γHe)

γHe

)

+ cc, He = H +
χL

γ

C

C0
L(γH), (8)

where R(C) is a rational function of the concentration

R(C) =
7.838(1.517 + C)(4.844+ C)(2.258− 2.862C + C2)(0.509 − 0.222C + C2)(0.688 + 1.282C + C2)

(1− C)3(1.2+ C)2(3.247 + C)2
.

The second subproblem of the mathematical model is presented by equation (8) and condition

(7) to fix the constant cc.

Remark 2.1. Equation (8) can be reformulated as

CeR(C) = const
sinh (γHe)

γHe
, He = H +

χL

γ

C

C0
L(γH).

Such a representation is similar in form to the solution for the concentration in dilute approximation

(Polevikov & Tobiska, 2008)

C = const
sinh (γH)

γH
, const = C0|Ω f |/

∫

Ω f

sinh (γH)

γH
dΩ. (9)

Thus, for concentrated fluids the explicit dependence of C on H (9) is replaced by the implicit

dependence (8).

The third subproblem of the model defines a shape of the interface Γ between the magnetic

fluid and the air. Equilibrium shapes of a free magnetic-fluid surface are described by the

generalized Young-Laplace equation, which presents the force balance at the fluid-air interface

σK+ p0 = p +
µ0

2

(

M
Hn

H

)2

on Γ. (10)

187Numerical Study of Diffusion of Interacting Particles in a Magnetic Fluid Layer
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Here σ is the surface tension coefficient, K the sum of principal curvatures, p0 the pressure in

the air and p is the fluid pressure. The equation of hydrostatics for magnetic fluids is

∇p = −ρgez + µ0M∇H −∇
[

−µ0

∫ H

0
C

(

∂M

∂C

)

H

dH + µ0

∫ H

0
MdH

]

,

see e.g. in (Rosensweig, 1998), where ρ is the fluid density and ez = (0, 0, 1). This equation

allows us to express in explicit form the fluid pressure as

p = −ρgz + µ0

∫ H

0
C

(

∂M

∂C

)

H
dH + c f , (11)

where c f is an integration constant. The equation (10) for the fluid pressure (11) is

σK = −ρgz + f (C, H) + c f on Γ, (12)

where

f (C, H) = µ0

∫ H

0
C

(

∂M

∂C

)

H

dH +
µ0

2

(

M
Hn

H

)2

.

The constant c f will be determined by integrating equation (12) over the surface Γ, see

Section 3.3 for details.

A solution of the magnetostatic subproblem (1)-(5) depends on the particle concentration and

on the shape of the fluid-air interface. The concentration distribution is a solution of the

nonlinear equation (8) and depends on the magnetic field configuration inside the ferrofluid.

The fluid-air interface satisfies equation (12), which depends on the magnetic field and the

concentration at the free surface of the ferrofluid. Three subproblems are strictly interrelated

to each other and should be solved simultaneously to resolve equilibrium states of the system.

3. Numerical methods and tools

Experiments show that the surface pattern of the Rosensweig instability is presented by a

hexagonal or square array of spikes, see e.g. (Gollwitzer et al., 2006). For sake of simplicity,
we assume that the cell has a circular shape of radius a inscribed to a hexagonal cell of the

pattern, see Fig. 2. It allows us to study axisymmetric solutions of the presented model

in a two-dimensional geometry of cylindrical coordinates. Axisymmetric solutions on a

circular cell were compared with three-dimensional ones on a hexagonal cell in (Lavrova et

al., 2003). It was found that the profile shapes of both models nearly completely coincides.

The different geometry of the cell results in a 10 % smaller amplitude of an axisymmetric peak

in comparison with a three-dimensional solution.

3.1 Magnetostatic subproblem

Let us consider the magnetostatic subproblem (1)-(5) in a domain with the fixed interface

and assume that the spacial distribution of the particle concentration is given. We express

the magnetic field in terms of a scalar magnetic potential φ as H = ∇φ and reformulate the

magnetostatic subproblem (1)-(5). The first Maxwell’s equation (1) is exactly satisfied, whereas

the second one takes form of an elliptic partial differential equation with jumping coefficients,

188 Numerical Modelling
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a

λhex

Fig. 2. Top view of the hexagonal surface pattern with wavelength λhex.

due to different magnetization in the fluid and the air

−∇ · (µ(r, z, C, |∇φ|)∇φ) = 0, in Ωax, (13)

µ(r, z, C, |∇φ|) =

⎧

⎨

⎩

1 + 3χL

γ
C
C0

L
(

γ|∇φ|+χL
C

C0
L(γ|∇φ|)

)

|∇φ| in Ω1,

1 in Ω2.

Here Ωax := Ω1 ∪Ω2 is a meridional cross-section of the 3D-domain Ω, where Ω1 corresponds

to the fluid and Ω2 to the air. Differential operators are though in cylindrical coordinates with

an assumption of an axial symmetry for the potential. The magnetostatic problem is closed by

a set of conditions

[φ] = 0,

[

µ
∂φ

∂n

]

= 0 for (r, z) ∈ Γ, (14)

φ = φD for (r, z) ∈ ΓD, (15)

∂φ

∂n
= 0 for (r, z) ∈ ΓN . (16)

The boundary ΓD consists of the top and bottom boundaries of the rectangular domain Ωax =
(0, a)× (−δ, δ) and ΓN = ∂Ωax \ ΓD. We have from condition (5) that

φD(r, z) =

{

H0z for z = δ,

H1
0 z for z = −δ.

Remark 3.1. The constant H1
0 is defined from the second transmission condition (14), satisfied for the

undisturbed interface z = 0. The potential is given in this case as

φ = H0z for z > 0 and φ = H1
0 z for z < 0.

We get
[

µ
∂φ

∂z

]

= 0 ⇒ µ(C0, H1
0)H1

0 = H0 ⇒

189Numerical Study of Diffusion of Interacting Particles in a Magnetic Fluid Layer
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H1
0 +

3χL

γ
L(γH1

0 + χLL(γH1
0)) = H0. (17)

The nonlinear equation (17) is solved by the Newton method. Starting from the value H0, the method

converges for 3-5 iterations for the relative error 10−10.

Due to the problem reformulation in cylindrical coordinates and the assumption of axial

symmetry, a corresponding variational problem is formulated in weighted Sobolev spaces:

Find φ ∈ V(Ω) such that

∫

Ω
µ(r, z, C, |∇φ|)∇φ · ∇vrdrdz = 0 for any v ∈ VD(Ω), (18)

and φ − φ0 ∈ VD(Ω) for any φ0 ∈ V(Ω) such that φ0|ΓD
= φD .

V(Ω) = {v|
∫

Ω
v2rdrdz < ∞,

∫

Ω
|∇v|2rdrdz < ∞}, VD(Ω) = {v|v ∈ V(Ω), v|ΓD

= 0}.

A structured triangular mesh is used for discretization. A schematic representation of the

mesh is shown in Fig. 3. An algorithm of bilinear interpolation is applied for the mesh

construction. This algorithm defines every interior grid point (filled circular marker in Fig.

3) by interpolation of eight boundary points (empty circular markers)

ξ(s, t) = (1 − s)ξW + sξE + (1 − t)(ξS − (1 − s)ξSW − sξSE) + t(ξN − (1 − s)ξNW − sξNE),

where parameters s, t ∈ (0, 1) and indices represent the quarter directions of boundary points

(N - north, S - south, W - west, E - east), relative to the inner point x. To produce an

interface-fitted mesh, the algorithm is applied in Ω1 and Ω2 separately, based on the pointwise

representation of the interface, as a solution of the free-surface subproblem, and a uniform

distribution of grid points at the boundary sides of Ω1 and Ω2, see Fig. 3. A finite element

mesh is reconstructed every time, when the interface is changed. By construction all meshes

have the same topology. It allows to define an initial approximation of the potential at the new

mesh as a solution of the magnetostatic problem at the old mesh without any interpolation.

The variational problem (18) is discretized by continuous piecewise linear functions on

triangles for the given concentration C. Nonlinearities in the discrete equations are treated

by a fixed-point iteration

∫

Ωax

µ(r, z, C, |∇φk
h|)∇φk+1

h · ∇vhrdrdz = 0. (19)

One Gauss-Seidel step is applied to the resulting system of linear equations in each iteration.

The iterative process (19) continues until the relative a-posteriori error will be smaller than ǫp

(generally 10−5)

max
1≤i≤Np

∣

∣

∣φk+1
i − φk

i

∣

∣

∣

1
Np

∑
Np

i=1 |φk+1
i |

< ǫp.
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Here Np denotes the number of unknowns and φi = φh(ξi) is the nodal value of the potential

at the grid point ξi. The iterative process needs 5-10 iterations to converge independent of the

mesh size.

1

−1

0 

1 

Fig. 3. Schematic representation of the finite element mesh. Thick solid line denotes the
fluid-air interface. Bilinear interpolation is used for the mesh construction: inner node (filled
circular marker) is defined by eight boundary nodes (empty circular markers).

3.2 Concentration subproblem

Let us consider algebraic equation (8)

Φ(C, H) := ln C + R(C)− ln

(

sinh (γH + χL
C
C0

L(γH))

γH + χL
C
C0

L(γH)

)

= cc. (20)

and assume that a spacial configuration of the magnetic field H is given. The magnetic field is

computed from a solution of the magnetostatic problem (13)-(16) as Hh = |∇φh|. The function

Hh is a piecewise-constant approximation of the field H over the finite-element mesh and is

given by the values H1, . . . HM, where Hi corresponds to the cell Ti and M is a number of cells

in the fluid domain Ω1. For the given field values H1, . . . HM we have to find C1, . . . CM and

the constant cc satisfying (20)

Fi(Ci, cc) := Φ(Ci, Hi)− cc = 0, i = 1, . . . , M (21)

191Numerical Study of Diffusion of Interacting Particles in a Magnetic Fluid Layer
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and the integral condition (7)

FM+1(C1, . . . , CM) :=
M

∑
i=1

ωiCi − C0

(

M

∑
i=1

ωi

)

= 0, ωi = 2π
∫

Ti

rdrdz. (22)

Here ωi is the area of a circular element, obtained by rotating of the cell Ti. A system of M

nonlinear equations (21) and one linear equation (22)

F(x) = 0,

where F = (F1, . . . , FM+1)
T, x = (C1, . . . , CM, cc)T, will be solved by the Newton method

x
k+1 = x

k − (F′(xk))−1
F(xk) (23)

Here xk = (Ck
1, . . . , Ck

M, ck
c)

T and

F
′(x) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∂Φ
∂C (C1, H1) 0 0 · · · 0 −1

0 ∂Φ
∂C (C2, H2) 0 · · · 0 −1

· · ·

0 0 0 · · · ∂Φ
∂C (CM, HM) −1

ω1 ω2 ω3 · · · ωM 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Eliminating Ck+1
1 , . . . , Ck+1

M from the system (23) we get

ck+1
c =

M

∑
i=1

Φ(Ck
i , Hi)

∂Φ
∂Ci

(Ck
i , Hi)

/
M

∑
i=1

∂Φ

∂C
(Ck

i , Hi).

Finally we compute Ck+1
i from the i-th equation of the system (23) for the given ck+1

c

Ck+1
i = Ck

i −
Φ(Ck

i , Hi)− ck+1
c

∂Φ
∂C (Ck

i , Hi)
, i = 1, . . . , M.

The computations for Ck+1
1 , . . . , Ck+1

M can be realized in parallel.

The Newton method requires 3 − 5 iterations to converge for the relative a-posteriori error

|xk+1 − xk| to be smaller than ǫc (generally 10−9). We set C0
i = C0 at the initial Newton step.

An initial value c0
c is defined from the condition that far from the interface the concentration

and the magnetic field intensity are known and equal C0 and H1
0 , respectively. From equation

(20) we get

c0
c = ln C0 + R(C0)− ln

(

sinh (γH1
0 + χLL(γH1

0))

γH1
0 + χLL(γH1

0)

)

. (24)
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3.3 Free-surface subproblem

Let us write equation (12) for space variables dimensionless over a

σ
K
a

= −aρgz + µ0

∫ H

0
C

(

∂M

∂C

)

H

dH +
µ0

2

(

M(H, C)
Hn

H

)2

+ c f on Γ. (25)

We assume that the magnetic field H and the concentration C are given at the interface Γ.

The magnetic field is determined from the fluid side as H = |∇φ1| and Hn = ∇φ1 · n for the

normal vector n, external to the fluid domain Ω1. We introduce dimensionless parameters

λ = a
√

ρg/σ, Si = µ0M2
s /(2

√
ρgσ).

Equation (25) takes a new form

K = −λ2z + f (C, H) + c f on Γ, (26)

where

f (C, H) = λSi
2γ

3χL

∫ H

0
C

(

∂

∂C
[CL(γHe)]

)

H

dH + λSi

(

CL(γHe)
Hn

H

)2

(27)

and the effective field He = H + χL

γ
C
C0

L(γH). The unknown constant c f is different in

equations (25) and (26) and will be fixed later. The integrand in (27) is further transformed

f I(C, H) := C

(

∂

∂C
[CL(γHe)]

)

H

= C

(

L(γHe) +
C

C0
χLL(γH)L′(γHe)

)

= C

(

L(γHe) +
C

C0
χLL(γH)

[

1

(γHe)2
− 1

(sinh (γHe))2

])

.

We approximate the integral term in (27) by a composite trapezoidal rule on a uniform grid

∫ H

0
f I(C, H)dH ≈ h

(

1

2
( f I(C0, 0) + f I(Cn, H)) +

n−1

∑
i=1

f I(Ci, Hi)

)

. (28)

Here h = H/n, (n + 1) is the number of the grid points, Hi = ih and Ci denotes the

concentration, corresponding to the field Hi. f I(C0, 0) = 0, because L(0) = 0 and L′(0) = 1/3.

The final form of the function f (C, H), used in computations, is

f (C, H) ≈ λSi
2γ

3χL
h

(

1

2
f I(Cn, H) +

n−1

∑
i=1

f I(Ci, Hi)

)

+ λSi

(

CL(γHe)
Hn

H

)2

. (29)

To find concentration Ci, corresponding to the integration points Hi, we apply the Newton

method to equation (20) for the given field H = Hi and the given cc. The value of constant cc

is defined in the process of solving the concentration subproblem. For details of computations

193Numerical Study of Diffusion of Interacting Particles in a Magnetic Fluid Layer

www.intechopen.com



12 Will-be-set-by-IN-TECH

see Section 3.2. Test computations of the integral approximation (28) for n = 10 and n = 20

show changes in the fifth significant digit. We use n = 20 for our computations.

The free boundary Γ is represented by an arc-length parametrization

Γ = {(r, z) | r = r(s), z = z(s), s = [0, ℓ]},

where the parameter s is measured from the top of the peak (s = 0) to the peak foot (s = ℓ).

Following the approach in (Polevikov, 2004), we reformulate equation (26) as a system of

second-order ordinary differential equations

r̄′′ = −z̄′F, z̄′′ = r̄′F 0 < s̄ < 1;

F = − z̄′

r̄
+ λ2

ℓ
2z̄ − ℓ f (H) + c f . (30)

Here r̄(s̄) = r(s)/ℓ, z̄(s̄) = z(s)/ℓ and s̄ = s/ℓ are scaled versions of the space variables,

introduced to have a formulation at the fixed domain [0, 1] instead of the changing and a-priori

unknown domain [0, ℓ]. The boundary condition r(ℓ) = 1, transformed to r̄(1) = 1/ℓ̄ in new

variables, allows us to express the unknown parameter ℓ of the problem as

ℓ =
1

r̄(1)
.

The constant c f is determined by integrating equation (30) over s̄

∫ 1

0

(

r̄z̄′
)′

ds̄ =
∫ 1

0

(

λ2
ℓ

2 z̄ − ℓ f (H) + c f

)

r̄r̄′ds̄.

The left-hand side equals zero, because r̄(0) = 0 and z̄′(1) = 0. The right-hand side gives that

c f = 2ℓ3
∫ 1

0
f (H)r̄r̄′ds̄,

using the volume conservation condition

∫ 1

0
z̄r̄r̄′ds̄ = 0. (31)

Equations (30) are augmented by boundary conditions

r̄(0) = 0,

r̄′(1) = 1,

z̄′(0) = 0,

z̄(1) = ℓ2
∫ 1

0 r̄2z̄′ds̄.

(32)

The nonlocal boundary condition is due to the integration by parts of the volume conservation

condition (31).

An iterative finite-difference scheme of the second order approximation for the parametric

Young-Laplace equations was developed in (Polevikov, 2004). We apply the developed
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approach to equations (30) with boundary conditions (32)

1

τf

(

r̄k+1
ss,i − r̄k

ss,i

)

+ r̄k
ss,i + z̄k

◦
s,i

Fk
i = 0, i = 1, ..., N − 1

r̄k+1
0 = 0,

r̄k+1
N − r̄k+1

N−1

h
= 1;

1

τf

(

z̄k+1
ss,i − z̄k

ss,i

)

+ z̄k
ss,i − r̄k

◦
s,i

Fk
i = 0, i = 1, ..., N − 1

z̄k+1
1 − z̄k+1

0

h
=

h

2
Fk

0 , z̄k+1
N =

(

1

r̄k
N

)2 N

∑
i=1

⎡

⎣

(

z̄k
i − z̄k

i−1

)

(

r̄k
i−1 + r̄k

i

2

)2
⎤

;

Fk
i = −

z̄k
◦
s,i

r̄k
i

+ λ2

(

1

r̄k
N

)2

z̄k
i −

1

r̄k
N

f (Hk
i ) +

(

1

r̄k
N

)3 N

∑
i=1

[(

(

r̄k
i

)2
−

(

r̄k
i−1

)2
)

f (Hk
i )

]

.

Here {r̄i}N
i=0 and {z̄i}N

i=0 are grid-functions uniformly distributed over the free surface with a

step size h = 1/N. The difference quotients correspond to the central derivatives (r̄◦
s
, z̄◦

s
) and

the second derivatives (r̄ss, z̄ss). Nonlinearities of equations (30) are resolved by iterations,
resulting in a three-diagonal system for the unknown grid functions at the (k + 1)-th iteration.

A relaxation technique with a parameter τf is applied to improve numerical stability. We took

τf = 0.01 in computations.

3.4 Decoupling strategy

The model under study consists of the magnetostatic subproblem, the concentration

subproblem and the free-surface subproblem. The magnetostatic subproblem is described

by a nonlinear elliptic partial differential equation with jumping coefficients (13) for the

magnetostatic potential, augmented by transmission and Dirichlet-Neumann boundary

conditions (14)-(16). The concentration subproblem is presented by nonlinear algebraic

equation (20) for the concentration, augmented by integral condition (7). The free-surface

subproblem is described by a system of two nonlinear ordinary differential equations (30)

for the parametric representation of the free surface, augmented by integral and boundary

conditions (31)-(32).

We apply an iterative decoupling strategy for solving the coupled system of equations.

It consists of three steps at every iteration. The first step is a numerical solution of the

magnetostatic problem in a fixed domain and for a given distribution of the concentration. The

finite element method is applied for the discretization, see Section 3.1 for details. The second

step is a numerical solution of system of nonlinear equations (21)-(22) for the element-wise

concentration at the finite-element mesh for the given magnetic field distribution, as a solution

at the first step. The Newton method is applied for a solution of the system, see Section 3.2

for details. The third step is a numerical solution of the free-surface subproblem for the

given magnetic field from the first step and the given concentration from the second step

of the iterative procedure. The finite-difference method is applied for the discretization, see

Section 3.3 for details. A relaxation technique is applied to the free surface representation at
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every iteration

rn+1
i = rn

i + τ(rn′
i − rn

i ), zn+1
i = zn

i + τ(zn′
i − zn

i ), i = 0, M.

It allows to suppress a rapid change of free surface shapes during iterations. We take initially

τ = 0.1 and decrease this value to τ = 0.01 in the case of strong shape changes.

An initial surface configuration at the first iteration of the presented iterative algorithm is

defined as a small perturbation of the flat surface with an amplitude of around 1 % of the cell

radius. An initial concentration equals C0. The iterations are stopped when the change in the

surface shape is smaller than a prescribed threshold ǫ ( generally 10−7)

max
0≤i≤M

(∣

∣

∣
rn+1

i − rn
i

∣

∣

∣
,
∣

∣

∣
zn+1

i − zn
i

∣

∣

∣

)

< ǫ.

The iterative process is controlled by the threshold ǫ, whereas three subproblems are

controlled by own thresholds ǫp, ǫc and ǫ f .

All algorithms, discussed in Section 3, and the coupling of three subproblems were

implemented in Fortran with the help of the software tools, earlier developed for the

Rosensweig instability computations. Numerical results of the previous computations are

published in (Bashtovoi et al., 2002; Lavrova et al., 2008; 2010).

4. Results of computations

Numerical calculations were performed for the magnetic fluid EMG 901 (Ferrotec) with the

following characteristic properties: the initial susceptibility χ = 2.2, the density ρ = 1406

kg/m3, the surface tension coefficient σ = 0.025 kg/s2, the saturation magnetization Ms =
48 kA/m, the volumetric concentration, corresponding to the uniform particle distribution,

C0 = 0.1. The initial susceptibility of the Langevin magnetization χL is related to the initial

susceptibility of the effective-field magnetization (2) as

χ = χL(1 + χL/3),

see e.g. (Pshenichnikov et al., 1996). For the considered magnetic fluid we have that χ = 2.2

and χL ≈ 1.47489. The control parameter of the model is the applied field intensity H0.

Computations are performed at the computational domain Ωax = (0, a)× (−δ, δ) with δ = 5a.

Computations with different δ have shown that the error caused by replacing the unbounded

domain by a bounded one is less than 1%.

A linear stability analysis for the Rosensweig instability was carried out under the assumption

of a uniform particles distribution in a layer of infinite thickness (Rosensweig, 1998). The

stability theory predicts a critical value of the magnetic field intensity Hc, corresponding to

the onset of instability, as a solution of the nonlinear equation

M(Hc)
2 =

2
√

ρgσ

µ0

(

1 +

(

1 +
M(Hc)

Hc

)−1/2 (

1 +
∂M

∂H
(Hc)

)−1/2
)

.
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The intensity Hc corresponds to the fluid domain. The critical field intensity at the air domain

H∗ is found from the transmission condition [B · n] = 0, satisfied at the unperturbed interface

z = 0
(

1 +
M(Hc, C0)

Hc

)

Hc = H∗.

We get H∗ ≈ 9.11 kA/m for the considered ferrofluid. The stability theory predicts a critical

value of the pattern wavelength

λc = 2π/
√

ρg/σ.

We assume that the hexagonal pattern wavelength λhex, see Fig. 3, equals λc. Then for the
radius a of the circular cell we have

a = λhex/
√

3 = λc/
√

3 = 2π/
√

ρg/σ/
√

3,

whereas

λ = a
√

ρg/σ = 2π/
√

3.

We assume that the parameter λ is fixed for any applied field intensity.

Two meshes have been used for computations to analyze an influence of the discretization
refinement to the computational predictions. Table 1 shows the critical field, the maximum

value of the particle concentration over the fluid domain and z-coordinate of the equilibrium

free surface at the peak axis and the peak foot for the applied field H0 = 9.2 kA/m at

different meshes. The found difference in values allows us to conclude that computations at

the mesh with 160 × 1600 nodes are accurate enough. This mesh has been used to get results

in Fig. 4-Fig. 6.

Mesh H∗
2 , kA/m max (C)/C0 z(0)/a z(ℓ)/a

80 × 800 8.71 1.111383 1.186572 −0.258553

160 × 1600 8.65 1.115006 1.222114 -0.261704
% Difference 0.7 0.3 3 1.2

Table 1. Values of some control parameters and their difference at different meshes.

Results of two models, which account for a nonuniform particle distribution inside the

ferrofluid layer will be compared with the results of the model with a uniform particle

distribution. The first model assumes no interaction between particles and it was numerically

studied in (Lavrova et al., 2010). The second model accounts for interaction between particles

and is the subject of this contribution. The model with a uniform particle distribution is called

model 3 in what follows.

Computations for the first and the third models in (Lavrova et al., 2010) show that the onset

of the instability occurs at H∗
1 = 9.12 ± 0.01 kA/m and H∗

1 = H∗
3 . This value nearly coincides

with the result of the linear stability analysis H∗ ≈ 9.11 kA/m, which assumes a uniform

particle distribution. It means, that the concentration effect does not influence to the onset

of the instability in the frame of the model without particle interactions. Computations for

the second model, which takes into account particle interactions, show that the onset of the

instability occurs in a weaker field H∗
2 = 8.65 ± 0.01 kA/m. A concentration effect in this

case influences to the critical field. A possible reason for this effect is that the interparticle
interaction can intensify considerably the fluid mangetization and a small initial surface
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perturbation is developed to a surface pattern in a weaker field if to compare with the models

without particle interactions.

Fig. 4 shows equilibrium free-surface shapes for three models. A more elongated peak region

is formed for solutions with a nonuniform particle distribution. Namely, the peak is 20 %

higher for the model without particle interactions and 60 % higher for the model with particle

interactions in comparison with the uniform case. A 20 % difference of the first model is due to

the concentration effect, which intensifies a spacial nonuniformity of the fluid magnetization

in the peak region. A 60 % difference of the second model is influenced also by the fact that the

onset of the instability for the second model occurs at the weaker field H∗
2 < H∗

3 . A further

increase in the field strength results in the increasing peak amplitude, which can lead to a

sizable difference in the peak height if we compare results of the second and the third model at

the overcritical field H0 = 9.2 kA/m. Fig. 4 contains isolines of the equilibrium concentration

for the second model. The main inhomogeneity of the particle distribution occurs at the peak

region. The concentration takes the greatest value at the top of the peak and the smallest value

at the peak foot.

Fig. 4. Overcritical equilibrium free-surface shapes at the applied field H0 = 9.2 kA/m.
1 - nonuniform particle distribution without particle interaction, 2 - nonuniform particle
distribution with particle interaction, 3 - uniform particle distribution. Isolines of the
concentration corresponds to C/C0 = {0.995, 0.999, 1.001, 1.02, 1.05, 1.08, 1.1, 1.11}.

Fig. 5 shows the equilibrium distribution of the particle concentration over the peak axis for

three models. The concentration increases monotonically in z-direction, moving along the

peak axis, for the models with the nonuniform particle distribution and the concentration is

constant for the third model. The concentration takes a value at the peak top which is about

25 % greater than in the fluid bulk for the first model and about 11 % greater for the second

model. Taking into account the particle interaction, we get a smaller concentration at the peak
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but a more elongated shape. Fig. 5 shows that the concentration equals the volumetric value

C0 for z/a < −1 and the particle diffusion mechanism is present only near the free surface.

Fig. 5. Equilibrium distribution of the particle concentration over the peak axis at the applied
field H0 = 9.2 kA/m. 1 - nonuniform particle distribution without particle interaction, 2 -
nonuniform particle distribution with particle interaction, 3 - uniform particle distribution.

The distribution of a z-component of the magnetic field vector inside of the ferrofluid and

in the air is presented in Fig. 6 for three models. The magnetic field is uniform inside of

Fig. 6. Equilibrium distribution of the field intensity over the peak axis at the applied field
H0 = 9.2 kA/m. 1 - nonuniform particle distribution without particle interaction, 2 -
nonuniform particle distribution with particle interaction, 3 - uniform particle distribution.
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the ferrofluid far from the interface, Hz = H1
0 , and the particle diffusion mechanism is absent

there. The field distribution for three models coincides for z/a < −1. The intensity of the field

increases monotonically in z-direction, moving along the peak axis inside the ferrofluid, up

to the value close to the applied field intensity H0 at the interface. Crossing the interface, the
field intensity jumps to the value 3.17H0 for the first model, 2.79H0 for the second model and

2.7H0 for the third model. The intensity of the field decreases monotonically in z-direction,

moving along the peak axis inside the air, up to the value of the applied field intensity H0 far

from the interface. All considered models show that the field non-uniformity occurs at the

region −a < z < 2a and the field is nearly uniform outside of this region. It means that a

restriction of the unbounded domain by a bounded one with −5a < z < 5a will introduce an

insignificant error in computations.

5. Conclusions

The effect of particle interaction in ferrofluid has been taken into account in numerical

simulations of the Rosensweig instability for the first time. The mathematical model is
based on a recently developed mass transfer equation for describing diffusion of interacting

ferromagnetic particles in ferrofluids in (Pshenichnikov et al., 2011). The mathematical model

for the Rosensweig instability in homogeneous ferrofluids is augmented by the concentration

subproblem in the form of the nonlinear algebraic equation of the particle concentration

and the magnetic field intensity inside the ferrofluid. We suggest an approach for

numerical solution of the concentration subproblem and for the coupling of the concentration

subproblem to the magnetic field and free surface computations.

Based on comparison between three models (model 1 - nonuniform particle distribution

without particle interaction, model 2 - nonuniform particle distribution with particle

interaction, model 3 - uniform particle distribution), it has been shown that the effect of

particle interaction cannot be neglected or replaced by simpler models which try to capture

the diffusion of particles. It was found that the onset of the instability occurs in a weaker field

and the peak region is more elongated, if we take into account the particle interactions.

The effect of particle interaction on the pattern wavelength can not be numerically analyzed

in the frame of the presented mathematical model. The pattern wavelength is fixed by the

critical value obtained in the frame of the linear stability analysis. The experimental study of

the aging variation of the Rosensweig instability in (Sudo et al., 2006) shows, however, that

the pattern wavelength changes with time dramatically. Namely, the cell pattern gradually

bifurcates at the constant magnetic field, and the number of spikes increases with time. That is

why we plan for the future to consider a soliton-like surface configurations in the Rosensweig

instability (Richter & Barashenkov, 2005). The pattern wavelength is a variable of this problem

and the effect of particle interaction to the wavelength selection can be numerically analyzed.
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