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1. Introduction  

It is widely known that the scavenging process plays a very important role in the 
performance and efficiency of two-stroke engines. Briefly, scavenging is the process by 
which the fresh charge displaces the burnt gas from the cylinder. Due to the difficulties 
associated with the measurement techniques, CFD (Computational Fluid Dynamics) is a 
very helpful tool to analyze the flow pattern inside the cylinder. CFD simulations can 
provide more detailed information than experimental studies. For this reason, this chapter 
focuses on a numerical analysis to simulate the fluid flow and heat transfer inside the 
cylinder at the scavenging process. 

This chapter is a continuation and extension of previous works (Lamas-Galdo et al., 2011; 
Lamas & Rodriguez, 2012), in which CFD models were developed and validated with 
experimental results. The content is organized as follows. A brief description of two-stroke 
engines is given in Section 2. The mathematical model, i.e., the governing equations are 
presented in Section 3 and the numerical model is discussed in Section 4. After that, the 
results are shown in Section 5 and the conclusions of this chapter are discussed in Section 6. 

2. Introduction to the two-stroke engine  

Although the focus of this chapter is the numerical treatment of the scavenging process, it is 
important to introduce certain introductory aspects about the performance of two-stroke 
engines. This will facilitate the reader’s understanding of the chapter. 

2.1 Mechanical aspects  

A two-stroke engine is an internal combustion engine that completes the process cycle in 
one revolution of the crankshaft or two strokes of the piston: an up stroke and a down 
stroke. Both spark ignition and compression ignition engines exist today. Spark ignition 
engines are employed in light applications (chainsaws, motorcycles, outboard motors, etc) 
due to its low cost and simplicity. On the other hand, diesel compression ignition engines 
are mainly employed in large and weight applications, such as large industrial and marine 
engines, heavy machinery, locomotives, etc. Fig. 1 (a) shows a spark ignition engine 
installed on a motorbike and Fig. 1 (b) shows a large compression ignition engine, the MAN 
B&W 7S50MC, typically used in marine propulsion and industrial plants. 
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                                     (a)                                       (b) 

Fig. 1. (a) Spark ignition gasoline engine installed on a motorcycle. (b) Compression ignition 
diesel engine MAN B&W 7S50MC installed on a ship. 

There are several mechanical details which vary from one engine to another. For example, 
Fig. 2 (a) shows a cross section of the spark ignition engine shown in Fig. 1 (a). In this 
engine, the charge is introduced to the cylinder by ports. The opening and closing of the 
ports is controlled by the sides of the piston covering and uncovering them as it moves up 
and down in the cylinder. As can be seen in the bottom part of Fig. 2 (a), this engine has a 
crankcase. This is a separate charging cylinder which employs the volume below the piston 
as a charging pump. On the other hand, Fig. 2 (b) shows a cross section of the compression 
ignition engine illustrated on Fig. 1 (a). This engine has one exhaust valve and several intake 
ports. In this case, the external air is introduced directly in the cylinder instead of being 
pumped from the crankcase. 

  
(a) (b) 

Fig. 2. (a) Cross section of a spark ignition engine. (b) Cross section of a compression 
ignition engine, the MAN B&W 7S50MC. 
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2.2 The scavenging process 

Before discussing the scavenging process, it is useful to describe the operation cycle of the 

two-stroke engine with direct injection. For this purpose, an engine with scavenge and 

exhaust ports instead valves will be considered. At the beginning of the cycle, when fuel 

injection and ignition have just taken place, the piston is at the TDC (top dead center). The 

temperature and pressure rise and consequently the piston is driven down, Fig. 3 (a) (note 

that the arrows indicate the direction of the piston). Along the power stroke, the exhaust 

ports are uncovered (opened) and, consequently, the burnt gases begin to flow out, Fig. 3 

(b). The piston continues down. When the piston pasts over (and consequently opens) the 

scavenge ports, pressurized air enters and drives out the remaining exhaust gases, Fig. 3 (c). 

This process of introducing air and expelling burnt gases is called scavenging. The incoming 

air is used to clean out or scavenge the exhaust gases and then to fill or charge the space 

with fresh air. After reaching BDC (bottom dead center), the piston moves upward on its 

return stroke. The scavenge ports and then the exhaust ports are closed, Fig. 3 (d), and the 

air is then compressed as the piston moves to the top of its stroke. Soon before the piston 

reaches TDC, the injectors spray the fuel, the spark plug ignite the mixture and the cycle 

starts again.  

 

 

SCAVENGE PORT

EXHAUST PORT

CRANKSHAFT

CONNECTING

       ROD

FUEL INJECTOR

CYLINDER

PISTON

Gas

Air

 
        (a)              (b)             (c)              (d) 
 

Fig. 3. Basic engine operation. (a) Injection; (b) exhaust; (c) scavenge; (d) compression.  

A drawback which has a decisive influence, not only on consumption but also on power and 

pollution, is the process of displacing the burnt gases from the cylinder and replacing them 

by the fresh-air charge, known as scavenging. In ideal scavenging, the entering scavenge air 

acts as a wedge in pushing the burnt gases out of the cylinder without mixing with them. 

Unfortunately, the real scavenging process is characterized by two problems common to 

two-stroke engines in general: short-circuiting losses and mixing. Short-circuiting consists on 

expelling some of the fresh-air charge directly to the exhaust and mixing consists on the fact 
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that there is a small amount of residual gases which remain trapped without being expelled, 

being mixed with some of the new air charge.  

The main difficulty involved in designing an effective scavenging system is that there are too 

involving variables: piston chamber geometry, intake and exhaust ports design, opening and 

closing timings, compression ratio, fuel composition, inlet and exhaust pressures, etc, being 

necessary a detailed study to embrace all this factors. For years, the study of the fluid flow 

inside engines has been mainly supported by experimental tests such as PIV (Particle Image 

Velocity), LDA (Laser Doppler Anemometry), ICCD cameras, etc. However, these 

experimental tests are very laborious and expensive. As an alternative solution to experimental 

techniques, CFD has recently become a useful tool to study the fluid flow inside engines. In the 

field of engines, CFD is especially useful to design complex components such as combustion 

chambers, manifolds, injectors and other parameters. The first numerical simulations of 

engines appeared in the eighties (Sher, 1980; Carpenter & Ramos, 1986; Sweeny et al., 1985; 

Ahmadi-Befrui et al., 1989) but, unfortunately, these first numerical studies only provided, 

with poor accuracy, information about the general configuration of the flow field inside the 

cylinder. Besides, at that time it was very difficult to carry out a three-dimensional analysis. 

After these first numerical studies, a lot of works appeared in the nineties and in recent years. 

The number of CFD codes has also increased noticeably, appearing studies using KIVA 

(Epstein et al., 1991; Amsden et al., 1992), STAR-CD (Raghunathan & Kenny, 1997; Yu et al. 

1997; Zahn et al., 2000; Hariharan et al., 2009), FIRE (Hori et al., 1995; Laimböck et al., 1998) 

Fluent (Pitta & Kuderu, 2008; Lamas-Galdo et al., 2011), CFX (Albanesi et al., 2009), etc. 

3. Mathematical model 

Once the basic performance of two-stroke engines was described, the methodology to 
simulate the scavenging process will be treated in this section.  

3.1 Governing equations 

The governing equations of the flow inside the cylinder are the Navier-Stokes ones. The 

energy equation is also needed to compute the thermal problem. Finally, as there are two 

components (air and burnt gases), one more equation must be added to characterize the 

propagating interface. These equations are briefly described in what follows. 

In Cartesian tensor form, the continuity equation is given by:  

   0i
i

u
t x

  
 

 
   (1)  

where ρ is the density and u the velocity. It is very common to consider the flows as ideal 
gasses, so the density can be calculated as follows: 

 
p

RT
    (2)  

where p is the pressure, T the temperature and R the ideal gas constant. The momentum 

conservation equation is given by: 
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   (3)  

where τij is the stress tensor. If the fluid is treated as Newtonian, the stress tensor 
components are given by: 

 
2

3
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   (4) 

As only the scavenging process and not the combustion is treated on this chapter, only two 
components need to be computed: burnt gas and unburnt gas (air). In order to characterize 
the propagating interface, the following equation is solved: 

 ( ) 0
( )

Y V
air

air

Y

t



  







  (5)  

where Yair is the mass fraction of the air. The mass fraction of the burnt gases, Ygas , is given 
by the restriction that the total mass fraction must sum to unity: 

 1Y Ygas air    (6)  

3.2 Turbulence 

Today's standard in engine simulation are Reynolds Averaged Navier-Stokes (RANS) 

methods. Another approach are Large Eddy Simulation (LES) techniques. LES and RANS 

techniques differ in the way they address the present impossibility to resolve all the scales 

present in engine flows. RANS simulations are based on a statistical averaging to solve only 

the mean flow. This implies that modelling concerns the whole spectrum of scales. In LES, a 

spatial or temporal filtering is used to represent the large turbulent scales of the flow, which 

are directly resolved, while the small scales are modeled. In LES, modeling thus concerns a 

much smaller part of the spectrum, which leads to an improvement of predictivity as 

compared to RANS. LES inherently allows to address large scale unsteady phenomena, and 

thus has a good potential to predict engine unsteadiness. The problem is that LES would 

lead to a CPU time that is way beyond reach of present supercomputers. Therefore, the use 

o LES is not very common.  

In the field of RANS methods, the two-equation model standard k-ε is the most used to 

simulate engines. The RNG k-ε model is also widely employed, specially in the cases of 

swirling flows.  

The momentum conservation equation for a turbulent flow is given by: 

  ' '( ) ( ) ( )
ij

i i j i j
j i j j

p
u u u u u

t x x x x


  

  
     

    
  (7)  

A common method to model the Reynolds stresses, ' '
i ju u , is the Boussinesq hypothesis to 

relate the Reynolds stresses to the mean velocity gradients: 
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  ' ' 2

3
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i j t t ij

j i k

uu u
u u k

x x x
    

    
           

 (8) 

where ├ij is the Kronecker delta (├ij=1 if i=j and ├ij=0 if i≠j), which is included to make the 

formula applicable to the normal Reynolds stresses for which i=j (Versteeg and 

Malalasekera, 2007) and μt is the turbulent viscosity. The k-ε model includes two differential 

equations, corresponding to the turbulent kinetic energy (k), and its dissipation rate (┝), 
given by Ecs. (9) and (10) respectively. 

  ( ) ( )i k t k b M
i j j

k
k ku G G Y

t x x x
    

    
      

     
  (9)  

   
2

1 3 2( ) ( ) ti k b
i j j

u C G G G C
t x x x k k   

      
 
 
 
 

       
   

  (10)  

In the above equations, Gk represents the generation of turbulence kinetic energy due to the 

mean velocity gradients; Gb is the generation of turbulence kinetic energy due to buoyancy; 

YM represents the contribution of the fluctuating dilatation in compressible turbulence to the 

overall dissipation rate. Cμ, C1┝, C2┝, C3┝, σk and σ┝ are constants and the terms αk and α┝ 
represent the inverse effective Prandtl numbers for k and ┝ respectively. These quantities 

were obtained by a RNG modified method which accounts for the effects of swirl or 

rotation. Details of the procedure are given elsewhere, (Fluent Inc., 2006).  

The turbulent viscosity, μt, is computed by combining k and ┝ as follows: 

  
2

t

k
C 


   (11)  

Concerning the heat transfer problem, turbulent heat transport can be modeled using the 

concept of Reynolds’ analogy to turbulent momentum transfer. The energy equation is thus 

given by the following: 

   ( ) ( )
Pr

p t
i t i ij

i j j

C T
E u E p k u

t x x x


  

     
             

 (12)  

where E is the total energy. 

4. Numerical procedure 

In this section, the generation of the mesh and other numerical details will be described. 

Particularly, this section focuses on the engine studied in Lamas-Galdo et al. (2011), which is 

shown in Fig. 1 (a) and Fig. 2 (a). This is a single cylinder two-stroke engine. The geometry 

and distribution diagram are shown in Fig. 4, and other technical specifications are 

summarized in Table 1.  
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         MAIN
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(a) (b) 

Fig. 4. Cylinder geometry and distribution diagram. (a) Lateral view; (b) Plant view. Lamas-
Galdo et al. (2011). 

Parameter Value 

Type of engine Two-stroke, Otto 

Displacement (cm3) 127.3 

Compression rate 9.86:1 

Bore (mm) 53.8 

Stroke (mm) 56 

Connecting rod length (mm) 110 

Scavenging system Loop scavenge 

Fuel system Direct injection 

Power (W) 7500 

Speed (rpm) 6000 

Table 1. Technical specifications. 

At maximum continuum rating, the in-cylinder, exhaust and intake pressures were 
measured experimentally. Piezoresistive sensors were employed to measure the exhaust and 
intake pressures, while a piezoelectric sensor was employed to measure the in-cylinder 
pressure. These sensors were connected to its corresponding charge amplifier and data 
acquisition system. The data were analyzed using the software LabVIEW SignalExpress LE. 
The in-cylinder pressure is shown in Fig. 5 and the intake and exhaust pressures are shown 
in Fig. 6. Note that, in this work, the crank angles were chosen with reference to TDC. 
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Concerning the temperatures, unfortunately, the in-cylinder temperatures can not be 

measured experimentally because a temperature sensor is not fast enough to accurate 

capture the in-cylinder temperature along the whole cycle.  
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Fig. 5. Evolution of the in-cylinder pressure. 
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Fig. 6. Evolution of the exhaust and intake pressures. 

4.1 Mesh generation  

The principle of operation of CFD codes is subdividing the domain into a number of 

smaller, non-overlapping sub-domains. The result is a grid (or mesh) of cells (or elements). 

In this work, a grid generation program, Gambit 2.4.6, was used to generate the mesh. In 

order to implement the movement of the piston, a moving mesh must be used. Figure 7 

shows the mesh at several crankshaft angles. The computational domain includes the 

scavenge ports, exhaust port, cylinder and cylinder head.  
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(a) (b) 

 
(c) (d) 

Fig. 7. Computational mesh. (a) 92º crank angle; (b) 190º; (c) 215º; (d) 270º crank angle. 
Lamas-Galdo et al. (2011). 

Hexahedral elements provide better accuracy and stability, so a structured hexahedral mesh 
was adopted. The numerical algorithm implemented automatically updates the mesh after 
each time step relative to the piston motion using a meshing tool called “dynamic layering”, 
which consists on adding or removing layers of cells adjacent to a moving boundary based 
on the height of the layer adjacent to the moving surface. The procedure is shown in Fig. 8.  

CYLINDER

PORT PORT

CYLINDER CYLINDER

PORT

 

Fig. 8. Layering procedure. 
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Sometimes it is not possible to employ hexahedral elements in the totality of the control 
volume. For example, the engine studied in Lamas & Rodríguez (2012), Fig. 1 (b) and Fig. 2 
(b), has an exhaust valve in every cylinder. Due to the complex geometry of the valve and 
duct, tetrahedral elements were employed in that region. Besides, it was necessary to refine 
the region closed to the valve in order to capture the complex characteristics of the flow. The 
result is shown in Fig. 9.  

 

                                                    

 

(a)                     (b)  (c) 
 

Fig. 9. (a) Tri-dimensional mesh, 180º crankshaft angle. (b) Cross-section mesh, 180º 
crankshaft angle; (c) Cross-section mesh, 270º crankshaft angle. Lamas & Rodríguez (2012). 
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It is very important to include the ports and ducts in the computational grid because they 
notably influence the movement of gases inside the cylinder and therefore the characteristics 
of the scavenging. For example, in the engine of Fig. 1 (b) and Fig. 2 (b), the intake ports and 
ducts are inclinated respect to the cylinder axis. Consequently, a swirling motion is 
promoted by the tangential velocities around the cilinder axis. This phenomena is shown in 
Fig. 10, which represents the velocity field in a tri-dimensional view, Fig. 10 (a), and in a 
transversal section at the base of the cylinder, Fig. 10 (b). 

  

(a) (b) 

Fig. 10. Velocity field [m/s] for 150º crankshaft angle. (a) Tri-dimensional view. (b) 
Transversal section A-A, at the base of the cylinder. Lamas & Rodríguez (2012). 

Obviously, not all the engines are so sensible to the inlet ports and ducts geometry, but it is 
recommended to include them in the mesh instead a surface in which a boundary condition 
is imposed.  

4.2 Boundary and initial conditions 

All CFD models require initial and boundary conditions. Concerning the pressures, the 
experimentally values mentioned in the beginning of section 4 were employed as initial and 
boundary conditions. 

As the in-cylinder temperature can not be measured experimentally, the initial temperature 
must be estimated from an adaptation of the ideal Otto cycle, Fig. 11 (a) and 11 (b). Details of 
the procedure can be found in most undergraduate textbooks on internal combustion 
engines or thermodynamics, so they are not repeated here. As can be seen in Fig. 6 (b), the 
temperature at 90º crankshaft angle is 1027 K.  
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Fig. 11. (a) In-cylinder pressure experimentally measured and obtained from the ideal Otto 

cycle. (b) In-cylinder temperature obtained from the ideal Otto cycle. 

4.3 Resolution of the equations 

In this case, the software ANSYS Fluent 6.3 was employed. This is based on the finite 

volume method. Concerning the time discretization, an implicit method was chosen, with a 

constant timestep equivalent to 0.1º crankshaft angle. An explicit method could also have 

been chosen, but implicit methods are unconditionally stables and allow greater time steps. 

Concerning the pressure-velocity coupling, the PISO algorithm was employed because it is 

more recommended for transient calculations than the SIMPLE algorithm (Versteeg, 1995). 

A second order scheme was chosen for discretization of the continuity, momentum, energy 

and mass fraction equations. 

Both the grid and time step sensibility were studied and it was verified that the size of the 

computational mesh and time increment are adequate to obtain results that are insensitive to 

further refinement of numerical parameters. In order to ensure this grid independence, 

several calculations with different mesh sizes and time step sizes were compared. 
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5. Results  

5.1 Pressure field and validation of the code 

In order to ensure that the CFD model is accurate enough, numerical results were compared 

to experimental ones. Particularly, the in-cylinder gauge pressure was validated. For the 

interval of time studied, from 90º to 270º crankshaft angles, the numerical and experimental 

results are shown in Fig. 12. Note that an acceptable concordance is obtained between CFD 

and experimental results.  

 
 
 
 
 

 
 
 
 

Fig. 12. In-cylinder pressure numerically and experimentally obtained. 

Figure 13 shows the gauge pressure field at several crank angles. As can be seen, the 

initial in-cylinder pressure, Fig. 13 (a), is 4.26 bar. As mentioned before, the intake and 

exhaust pressures are variable, imposed as boundary conditions at the intake and exhaust 

ports. At the beginning of the simulation, the pressure descends drastically due to the 

expansion of the piston (note that the arrows indicate the direction of the piston). When 

the ports are opened, Fig. 13 (b) and (c), the in-cylinder pressure is slightly superior to the 

exhaust pressure and slightly inferior to the intake pressure, therefore burnt gasses are 

expelled through the exhaust port and fresh air enters through the scavenge ports. Finally, 

when all ports are closed, Fig. 13 (d), the piston is ascending and the gasses are 

compressed, Fig. 13 (d).  
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              (a)             (b)  (c)  (d) 

Fig. 13. Pressure field [bar]. (a) 92º crank angle; (b) 190º crank angle; (c) 215º crank angle; (d) 

270º crank angle. Lamas-Galdo et al. (2011). 

5.2 Mass fraction field 

The mass fraction field is shown in Fig. 14. Four positions were represented, 92.5º, 190º, 215º 

and 270º crank angles. Initially, the cylinder is full of burned gases (blue color), Fig. 14 (a). 

When the scavenging process begins, the fresh air charge (red color) throws away the 

burned gases out the cylinder, Fig. 14 (b) and (c). At the end of the process, Fig. 14 (d), the 

cylinder is full of fresh air charge.  

  

              (a)             (b)  (c)  (d) 

Fig. 14. Mass fraction field [-]. (a) 92º crank angle; (b) 190º crank angle; (c) 215º crank angle; 

(d) 270º crank angle. Lamas-Galdo et al. (2011). 

A very important advantage of CFD codes over experimental setups is that it is very easy to 

compute the portion of burnt gases which could not be expelled. In this work, it was 

quantified by means of the scavenging efficiency. This indicates the mass of delivered air 

that was trapped by comparison with the total mass of air and fresh charge that was 

retained at exhaust closure, Ec. (13), and its value was 82.5 for the parameters studied.  

 
mass of delivered air retained

mass of mixture in the cylinder

    (13)  
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The mass fraction field of air of the engine described in Fig. 1 (b) and Fig. 2 (b) is shown in 

Fig. 15. As can be seen, fresh air (red color) enters through the inlet ports situated at the 

bottom part of the cylinder and burnt gases (blue color) are expelled through the exhaust 

valve situated at the top part of the cylinder. 

  

 90º  130º  150º  180º  210º  230º  270º 

Fig. 15. Mass fraction field of air for several crankshaft positions. Lamas & Rodríguez (2012). 

5.3 Velocity field 

Fig. 16 shows the velocity field at 92.5º and 190ºcrankshaft angles. It is represented in a cross 
plane containing the auxiliary transfer port and the exhaust port. As the intake and exhaust 
ports are opened, fresh charge flows to the cylinder through the scavenge ports and exhaust 
gasses are expelled thought the exhaust port.  

  

(a)                (b) 

Fig. 16. Velocity field (m/s). (a) 92º crankshaft angle; (b) 190º crankshaft angle. 
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5.4 Temperature field  

The temperature field at various crank angles is given in Fig 17. As mentioned above, the 
initial temperature, obtained from the ideal thermodynamic Otto cycle, was imposed as 1027 
K, Fig. 17 (a). At the beginning of the simulation, the in-cylinder temperature descends due 
to the expansion of the piston. When the ports are opened, Fig. 17 (b) and (c), the 
temperature descends again because fresh air at 300 K enters through the scavenge ports 
and hot exhaust gases are expelled. At the end of the simulation all the ports are closed and 
the piston is rising. The compression of the piston makes the temperature increase. Finally, 
the in-cylinder average temperature at the end of the simulation, Fig. 17 (d), is 677 K.  

 

              (a)             (b)  (c)  (d) 

Fig. 17. Temperature field. (a) 92.5º crank angle; (b) 190º crank angle; (c) 215º crank angle; (d) 
270º crank angle. 

The in-cylinder average temperature and heat transfer from 90º to 270º crankshaft angles is 
shown in Fig. 18. 
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Fig. 18. In-cylinder average temperatura and heat transfer. 
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6. Conclusions  

In the present chapter, a CFD analysis was carried out to study the scavenging process of 
two-stroke engines. The results were satisfactory compared to experimental data. In general, 
this study shows that CFD predictions yield reasonably accurate results that allow 
improving the knowledge of the fluid flow characteristics.  

This model is very useful to design the scavenging system of new two-stroke engines. The 
pressure field is useful for identifying areas where the gas flow is inefficient and should be 
corrected. The velocity field is useful for locating areas with too high, too low or inadequate 
orientation velocities. Finally, the mass fraction field is useful for checking the filling of fresh 
gases into the cylinder and detecting problems of short circuiting and gas drag.  

Finally, it is very important to mention the disadvantages of CFD. First of all, a 3D CFD 
model is very tedious due to the large computational resources. Besides, the moving mesh 
required to simulate the movement of the piston is too computationally expensive to solve. 
Other disadvantage is that it must not be applied blindly as it has the capability to produce 
non-physical results due to erroneous modeling. The process of verification and validation 
of a CFD model is necessary to ensure the numerical model accurately captures the physical 
phenomena present. By comparing numerically obtained results with experimental results, 
confidence in the numerical model is achieved. Once thoroughly validated, a numerical 
model may be used to accurately predict the effect of design changes and experimentally 
unobservable phenomena.  
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