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1. Introduction 

Neisseria gonorrhoeae, the gonococcus, is a gram-negative diplococcus which causes the 
sexually transmitted disease gonorrhea (Figure 1). The contagious nature of gonococcal 
infection remains a major global health problem and represents 88 million new cases every 
year (WHO, 2011). N. gonorrhoeae is transmitted by human to human contact and is highly 
adapted to the genital tract, surviving poorly outside the human body. However, 
gonococcus develops resistance to antimicrobials, antigenic variability and mechanisms of 
immune evasion by which it evades host defenses, thus persisting and often causing 
undetected asymptomatic infection (Tapsall, 2001).  

 

Fig. 1. Neisseria gonorrhoeae. (A) Colonies on agar, (B) Gram-staining, (C) Transmission 
electron microscopy, (D) Confocal microscopy of the bacteria (in green).  
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The symptoms of gonorrhoea are similar to those caused by other agents, most notably 
Chlamydia trachomatis. N. gonorrhoeae causes infections mainly of the urethra in men and the 
endocervix in women, although it may also infect extragenital mucosal sites, including the 
oropharynx and anorectum. Ocular infections also occur, and in neonates could cause 
blindness (Tapsall, 2001). Genital infection in men usually causes urethritis and epididimitis 
with purulent urethral exudates (Apicella et al., 1996), however an important proportion of 
infected men never develop symptoms and more than half of infected women develop an 
asymptomatic silent infection (Farley et al., 2003; Handsfield et al., 1974; John and Donald, 
1978). Genital tract gonorrhea gives rise to well recognized complications including upper 
reproductive tract infections in women, such as pelvic inflammatory disease (PID), a 
condition that affects between 10% and 20% of infected women in the third world. PID 
encompasses a range of inflammatory conditions of the upper reproductive tract and has 
several potential sequelae including infertility, ectopic pregnancy, among others (Hoyme, 
1990; Tapsall, 2001).  

The purulent exudates produced by infected men and the cervical secretions of women with 
gonorrhoeae contain bacteria attached to and within polymorphonuclear leukocytes (PMNs) 
(Apicella et al., 1996; Ovcinnikov and Delektorskij, 1971), which are the primary innate 
immune responders to bacterial and fungal infection and are capable of phagocytosing and 
killing a variety of microorganisms (Borregaard, 2010). Yet, in spite of the numerous PMNs 
at the site of gonorrheal infection, viable gonococci can be cultured from the exudates of 
Infected individuals suggesting that the PMNS driven innate immune response to N. 
gonorrhoeae are ineffective at clearing a gonorrheal infection (Johnson and Criss, 2011). 
Considering further that the humoral immune response against N. gonorrhoeae is extremely 
low in serum and in secretions of the human (male and female) during infection (Hedges et 
al., 1999; Hedges et al., 1998), the persistence of gonococcus can be explained by the 
presence of an ineffective immune response which facilitates the long-term colonization of 
hosts, creating enhanced opportunity for dissemination and transmission of gonorrhea.  

The aim of this chapter is to review advances in our understanding of the immunity against 
N. gonorrhoeae and those mechanisms of evasion that seem to be responsible for the 
restricted immune response frequently observed.  

2. Gonococcal membrane proteins and early steps of infection 

Infection of genital epithelial cells by N. gonorrhoeae is a multi-step process, consisting of 
adherence, invasion, intracellular survival and exocytosis. These events are initiated and 
mediated by multiple interactions between gonococcal surface molecules and epithelial 
cells. These interactions activate signalling cascades in host cells and trigger the 
reorganization of the actin cytoskeleton, which is required for the entry of the bacteria 
into the cells. Pilus retraction from adherent gonococci on the epithelial cell surface 
activates calcium flux (Ayala et al., 2005), the PI3K/Akt pathway (Lee et al., 2005) and the 
MAP kinase ERK pathway (Howie et al., 2008). The interaction of opacity protein (Opa) 
with heparin sulfate proteoglycans (HSPG) activates phosphatidylcholine-specific 
phospholipase C (PLC) and the acid sphingomyelinase (Grassme et al., 1997). Opa also 
can trigger integrin-mediated protein kinase C (PKC) activation through binding to the 
serum-derived extracellular matrix proteins, fibronectin and vitronectin (Dehio et al., 
1998a; Dehio et al., 1998b; Dehio et al., 1998c).  
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2.1 Type IV pili  

Although there are many potential cell surface proteins of N. gonorrhoeae having a role in 

cell-host interaction, attention of most studies has focused on a few of them. This is the 

case of the gonococcal type IV pili which are composed of a major structural subunit, the 

pilin or PilE protein, assembled into helical pilus fibers (Parge et al., 1995). In vitro studies 

indicate that antigenic variation of this protein can affect pilus-mediated adherence to 

human cells (Jonsson et al., 1994; Long et al., 1998; Rudel et al., 1992). The binding of  N. 

gonorrhoeae pili to host cells is thought to involve the complement regulatory protein 

CD46 (membrane cofactor receptor) (Kallstrom et al., 2001). In fact, the association of pili 

with CD46 in cervical carcinoma cells results in a cytoplasmic calcium flux derived from 

intracellular calcium stores (Kallstrom et al., 1998). However, not all studies support this 

role for CD46. Accordingly, no binding of piliated gonococci was observed on CD46-

transfected cells and furthermore, specific down-regulation of CD46 expression in human 

epithelial cell lines did not alter the binding of piliated gonococci (Kirchner et al., 2005; 

Kirchner and Meyer, 2005; Tobiason and Seifert, 2001). Thus the topic remains 

controvertial. There are other potential receptors for pili attachment, i.e., integrins 

containing a domain known as I-domain. Edwards et al. demonstrated that pili bind to I-

domain-containing integrins on primary cell cultures derived from cervical and male 

urethral epithelia (Edwards and Apicella, 2005; Edwards et al., 2002). In this regard, the 

complement receptor 3 (CR3; integrin ┙M┚2 or CD11b/CD18) serves as the key receptor 

mediating gonococcal adherence to human cervical epithelia, in vivo, as well as ex vivo 

(Figure 2) (Edwards et al., 2001).  

 
 

Fig. 2. Adhesion and internalization of N. gonorrhoeae in the host cell. 
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Pilus engagement has also been demonstrated to play a role in host cell cytoskeletal 
rearrangements (Edwards et al., 2000; Grassme et al., 1996; Griffiss et al., 1999; Merz et al., 
1999; Merz and So, 1997). Membrane ruffles are induced in response to gonococci; epithelial 
cell invasion occur primarily in an actin-dependent manner, but it does not appear to 
require de novo protein synthesis by either the bacterium or the host cervical cell, eliciting 
substantial rearrangements of filamentous actin in the host cell cortex directly beneath sites 
of bacterial contact (Merz et al., 1999). Engagement of CR3 on primary cervical epithelial 
cells results in vinculin- and ezrin-enriched focal complex formation before membrane ruffle 
formation, bacteria reside within macropinosomes, and an accumulation of actin-associated 
protein occur in response to gonococcal infection (Edwards et al., 2000). Finally a signal 
transduction cascade that is dependent upon the activation of phosphatidylinositol 3-kinase 
or MAP kinases and Rho GTPases is activated (Edwards et al., 2001). 

2.2 Opacity-associated (Opa) adhesin proteins  

Opacity-associated adhesion proteins located in the gonococcal outer membrane facilitate 
the interaction of bacteria with a number of host cell types, including epithelial cells on 
mucosal surfaces and various immune cells, indicating a direct effect on the immune 
response. Receptor tropism of Opa proteins can be broadly divided into two categories, 
those that bind to members of the carcinoembryonic antigen cell adhesion molecule 
(CEACAM) family (Figure 2) and those that bind to HSPGs (Bos et al., 1997; Chen et al., 
1995; Chen and Gotschlich, 1996; Chen et al., 1997; Gray-Owen et al., 1997a; Gray-Owen et 
al., 1997b; Popp et al., 1999; van Putten and Paul, 1995; Virji et al., 1999; Virji et al., 1996a; 
Virji et al., 1996b). These categories are represented by Opa50, i.e., Opa proteins that 
recognize HSPG, and Opa52, i.e., Opa proteins that recognize members of CEACAM 
familiy. Vitronectin and fibronectin function as required bridging molecules between the 
gonococcus and its target HSPG receptor(s) (Duensing and Putten, 1998; Duensing and van 
Putten, 1997; Gomez-Duarte et al., 1997; van Putten et al., 1998). Association with an integrin 
coreceptor (vß3 or vß5 for vitronectin-mediated adherence or vß1 for fibronectin-mediated 
adherence) triggers a signaling cascade within the target cell that is dependent upon the 
activation of PKC (Dehio et al., 1998c). 

The binding sites of Opa proteins reside on the amino-terminal domains of the CEACAM 
family, which are largely conserved and therefore allow one or more Opa proteins to target 
distinct CEACAMs (Chen and Gotschlich, 1996; Muenzner et al., 2000; Virji et al., 1996b). As 
CEACAMs may contain immunoreceptor tyrosine-based inhibitory motifs (ITIMs) or 
immunoreceptor tyrosine-based activation motifs (ITAMs) (Hammarstrom, 1999), the 
consequences of downstream signaling following bacterial ligation depend on the receptor 
and target cell involved. From studies so far, it can be concluded that Opa–CEACAM 
interactions result in cellular invasion (Muenzner et al., 2000; Virji et al., 1999). The 
CEACAM receptor-mediated phagocytosis of Opa(52)-expressing N. gonorrhoeae results in a 
rapid activation of the acid sphingomyelinase. Furthermore, the CEACAM receptor-initiated 
stimulation activates a cascade via Src-like protein tyrosine kinases, Rac1 and PAK to Jun-N-
terminal kinases (Hauck et al., 2000; Hauck et al., 1998). 

The gonococcal opacity proteins are a well-studied example of phase-variable surface 
structures. Gonococcal strains express several antigenical distinct Opa proteins that are 
encoded by separate chromosomal alleles (Bhat et al., 1991; Connell et al., 1990; Dempsey et 
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al., 1991). Each opa gene undergoes phase variation via frameshift mutations that cause 
changes in pentameric repeats in the opa structural gene (Murphy et al., 1989). Bacteria that 
express no Opa proteins, bacteria that express one Opa protein, and bacteria that express 
multiple Opa proteins simultaneously result from these reversible mutations. This is one of 
the earliest described mechanisms of immune evasion found in gonococcus.  

2.3 Porin, the outer membrane protein channel  

Porin, is membrane channel through which small molecules traverse the gonococcal outer 

membrane, is thought to play multiple roles in potentiating disease caused by N. 

gonorrhoeae. Porin molecules trigger different responses within host cells depending upon 

the particular porin and the host cell type. A feature of gonococcal porin is its ability to 

translocate into eukaryotic cell membranes (Lynch et al., 1984; Weel and van Putten, 1991), 

where it acts as voltage-gated channel that is modulated by host cell ATP and GTP (Rudel et 

al., 1996). It has also been demonstrated that N. gonorrhoeae infection of epithelial cells 

results in selective porin transport to the mitochondria (Muller et al., 2000; Muller et al., 

2002). Within the cell mitochondrial membrane, porin initiates apoptosis by inducing a 

calcium influx and, consequently, calpain and caspase activity within these cells (Muller et 

al., 1999). In contrast to the porin-induced apoptosis observed in HeLa cells, gonococcal 

infection of primary human male urethral epithelial cells results in antiapoptotic events 

(Binnicker et al., 2003; Binnicker et al., 2004). Finally, porin also acts as an actin-nucleating 

protein in epithelial cells (Wen et al., 2000) facilitating the cytoskeletal rearrangements 

required for actin-mediated entry of the gonococcus into its target host cell.  

2.4 Lipooligosaccharide (LOS)  

Lipooligosaccharide is a major antigenic and immunogenic component of pathogenic 

Neisseria species. LOS produced by these bacteria consists of an oligosaccharide (OS) moiety 

and lipid A, and structural variation of the OS leads to LOS heterogeneity (Preston et al., 

1996). Studies using primary male urethral epithelial cells demonstrated an association 

between the urethral epithelium and the gonococcus through the interaction of the 

asialoglycoprotein receptor (ASGP-R) and gonococcal LOS (Harvey et al., 2001). In primary 

cell culture, engagement of the ASGP-R by the gonococcus results in pedestal formation 

beneath the bacterium (Harvey et al., 1997). Pedestal formation is also observed in 

microscopic analysis of exudates collected from men with naturally acquired gonococcal 

urethritis (Apicella et al., 1996; Harvey et al., 1997). Evidence suggests that endocytosis 

occurs primarily by actin-dependent (Giardina et al., 1998) and clathrin-dependent 

processes (Harvey et al., 1997). 

3. Immune response against N. gonorrhoeae 

The immunity against bacterial infections is achieved by many levels of defense that are 
triggered depending on the type, number and virulence of the bacteria that enter to the 
body (Figure 3). If the infection is mild, the tissue phagocytes are able to kill the bacteria in 
the phagolysosomes by reactive oxygen and nitrogen intermediates and proteolytic 
enzymes. In addition, these cells are able to secrete pro-inflammatory cytokines such as 
interleukin (IL)-1, IL-6, IL-8 and Tumoral Necrosis Factor (TNF) which initiates 
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inflammatory response. On the other hand, antigen processing and presentation, which is a 
crucial biological process for the initiation of adaptative immune response, might initiate 
antigen-specific immune response and a long lasting memory. Dendritic cells (DCs) are a 
subgroup of high-power antigen presenting cells (APC) with a unique ability to attract and 
interact with naive T cells to induce a primary immune response (Sabatos et al., 2008; 
Verhagen et al., 2008). Immature DCs (iDCs) reside in most peripheral tissues where they act 
as sentinels for incoming pathogens (Rowell and Wilson, 2009). After exposure to pro-
inflammatory cytokines and microbial products, iDCs undergo a process termed 
maturation, which involve up-regulation of MHC molecules, co-stimulatory molecules, 
secretion of pro-inflammatory cytokines and migration to draining lymph node where 
mature DCs activate T cells (Xu et al., 2007). Following antigen stimulation by DCs, T cells 
begin an expansion process, as a result of extensive division. Under a control of DCs, helper 
T cells (Th) acquire the ability to respond to infection through the production of powerful 
cytokines like interferon gamma (IFN-┛), which is able to activate macrophages resisting 
infections by facultative and obligate intracellular microbes (Th1 cells) (Napolitani et al., 
2005), or IL-17, which mobilize phagocytes at body surfaces to resist extracellular bacteria 
(Th17 cells) (LeibundGut-Landmann et al., 2007). Th17 cells represent a distinct lineage that 
originates mainly in the presence of TGF-┚1 and IL-6 and need the presence of IL-23 for their 
expansion and/or maintenance (Annunziato et al., 2007). IL-23 is secreted by macrophages 
and DCs in response to microbial products and inflammatory cytokines (Langrish et al., 
2004). Once differentiated, Th17 cells are able to secrete preferentially IL-17A, IL-17F and IL-
22, a particular set of cytokines not secreted by the other Th cells (Ouyang et al., 2008). IL-17 
plays a particularly significant role in regulating neutrophils (PMNn) recruitment and 
granulopoiesis via the production of IL-8 and MIP-2 (CXCL2) (Laan et al., 1999). In early 
stages of infections, interactions between N. gonorrhoeae and epithelial mucosa trigger 
immune response with release of IL-1, IL-6, IL-8 and TNF which serve to recruit and activate 
PMNn to the site of infection and promoting their bactericidal activity limiting bacterial 
penetration into submucosal tissues (Fisette et al., 2003; Maisey et al., 2003; McGee et al., 
1999). In men, PMNs appear in urethral swabs and urine several days after infection and 
immediately prior to the onset of symptoms (Cohen and Cannon, 1999). In women with 
gonorrhea, the cervical secretions also contain PMNn (Evans, 1977)  and bacteria are 
attached to and within PMNn (Johnson and Criss, 2011). In spite of the numerous PMNn at 
the site of gonorrheal infection, viable gonococci can be cultured from the exudates of 
infected individuals (Wiesner and Thompson, 1980). When bacteria crosses the layer of 
epithelial cells, obtaining access to submucosa, they have the first encounter with 
macrophages and DCs (Rarick et al., 2006). DCs interaction with N. gonorrhoeae surface 
factors like Pili and Opa is mediated by members of the CD66 family, CD46 and CR3. 
However, C-type lectins (macrophage galactose-type lectin -MLG- and DC-SIGN) constitute 
the main DCs expressed receptor for N. gonorrhoeae (Astier et al., 2010).  

Most studies that have investigated antigonococcal immune responses have focused 
predominantly on humoral responses (Table 1). The hallmark of humoral immune response 
against N. gonorrhoeae is the extremely low levels of anti-gonococcal antibodies found in 
serum and secretions of the human (male and female) during infection (Hedges et al., 1999; 
Hedges et al., 1998), indicating that humoral immunity against gonococcus is highly limited 
(Hedges et al., 1999; Song et al., 2008). Antigenic heterogeneity is a major consideration for 
humoral immunity in gonococcal infection studies. Meanwhile Pili, protein I (PI), protein II 
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(PII), H.8, IgAl protease and LOS are quantitatively the most important antigens in 
generating antibody responses in gonococcal infection. It is clear that patients make 
antibodies against the pili of the infecting gonococcal strain. In women, pili appeared to be 
the predominant antigen in the immune response unlike men, that have higher levels of 
antibodies to other antigens than pili (Brooks and Lammel, 1989). Thus, antibodies 
generated are directed against other major membrane molecules, such as Opa proteins and 
Porin protein  (Brooks and Lammel, 1989; Hedges et al., 1999; Hedges et al., 1998; Plummer 
et al., 1993; Plummer et al., 1994; Zheng, 1997). Although some of these have bactericidal 
activity, they are not protective and seem to be blocked by immunoglobulins against the 
outer membrane protein 3 (RmP). In fact, women with these antibodies were at increased 
risk to gonococcal infection (Plummer et al., 1993). The absence of induction of humoral 
response results on limited or no protection against re-infection with N. gonorrhoeae despite 
the generation of serum antibody responses against antigens produced by several prototype 
gonococcal vaccines (Boslego et al., 1991; McChesney et al., 1982; Tramont et al., 1981).  

 

Fig. 3. Protective immune responses against intracellular bacteria. 
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Antigen Effects on immune response 
References 
 

N. gonorrhoeae IgG>IgM and sIgA>IgA 
(Tapchaisri and 
Sirisinha, 1976) 

Outer membrane protein I IgA>IgG 
(Jeurissen et al., 
1987) 

Outer membrane protein I IgA>IgG (Kohl et al., 1992) 

Porin 
Up-regulated B7-2 expression of B 
lymphocytes  

(Wetzler et al., 
1996) 

Heat labile  and fixed N. 
gonorrhoeae 

IgG>IgA>IgM serum (Cohen, 1967) 

Pili and outer membrane 
protein II 

IgG serum 
(Lammel et al., 
1985) 

Outer membrane protein II IgA serum 
(Lammel et al., 
1985) 

Outer membrane protein I 
and II and pili 

IgG and IgA vaginal fluid 
(Lammel et al., 
1985) 

LPS IgG>IgA in serum (Ison et al., 1986) 

Outer membrane  
protein III 

IgG in serum (Rice et al., 1986) 

N. gonorrhoeae MS11 
Slight increase of IgG and IgA in 
serum 

(Hedges et al., 
1999) 

N. gonorrhoeae mice 
infection 

Increased of neutrophils and 
macrophage in site of infection 

(Song et al., 2008) 

N. gonorrhoeae mice 
infection 

IgG>IgA>IgM in vaginal fluid (Song et al., 2008) 

Whole-protein extractes of 
N. gonorrhoeae P9-17 

Low titers of IgG in serum (Imarai et al., 2008) 

N. gonorrhoeae 
Th17 profile immune response and 
increased IL-17 

(Feinen et al., 2010) 

IgA1 protease 
Th1 pro-inflammatory profile with 
increased IFN┛ and TNF┙ 

(Tsirpouchtsidis et 
al., 2002) 

IgA1 protease IL-1┚, IL-6, TNF┙ and IL-8 
(Lorenzen et al., 
1999) 

Porin 
Th2 pro-inflammatory profile with 
increased of IL-4  

(Simpson et al., 
1999) 

Porin 
B lymphocytes activation and up-
regulation of CD40 

(Snapper et al., 
1997) 

Pili 
Activation and proliferation of 
CD4+T Lymphocyte  

(Plant and Jonsson, 
2006) 

Opa 
Arrest of activation and proliferation 
of CD4+ T lymphocytes binding 
CEACAM1 

(Boulton and Gray-
Owen, 2002) 

 

Table 1. Anti-gonococcus immune responses. 
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Similarly, in the murine model of infection, no antibody induced response has been detected. 
In Balb/c mice, N. gonorrhoeae is able to reach the upper genital organs and to invade uterine 
tissue, as it occurs in humans (Imarai et al., 2008; Jerse, 1999). Interestingly, studies in this 
model revealed several features of infection that mimic a good spectrum of the characteristics 
of the human disease. Some of them seem highly valuable, (i) the bacteria introduced in the 
vagina not only invade and colonize the lower genital tract, but also spread to the upper 
organs (uterus and oviducts) (Inaba et al., 1992), (ii) infection occurs with no signs of the 
disease, just as it occurs in a high percentage of women during natural infection (Farley et al., 
2003; Inaba et al., 1992) and (iii) the bacteria remains alive within the internal compartments of 
the infected cells, invading uterine tissues up to 22 days post inoculation (Imarai et al., 2008). 

On the other hand, CD4+ T cell responses also occur with gonoccocal antigens. Antigenic 
stimulation with Porin induces an increase in the percentage of IL-4 producing CD4+ T cells, 
but no production of other cytokines such as IL-2, IL-10, IFN-┛, or TNF occurs, indicating 
that infected individuals produce a Th2 response against Porin (Simpson et al., 1999). 

Moreover, gonococcal pili interaction with CD4+ T cells induces the activation and 
proliferation of lymphocytes and stimulates the secretion of IL-10 (Plant and Jonsson, 2006). 
In contrast, Opa proteins mediate binding to CEACAM-1 expressed by CD4+ T cells and 
suppress activation and proliferation of naive lymphocytes (Boulton and Gray-Owen, 2002; 
Lee et al., 2008). Rarick et al. showed a differential activation of peripheral blood 
mononuclear cells by N. gonorrhoeae that includes the early induction (96 hours) of IL-2, IL-
12 and IFN-┛ (Th1 cytokines), IL-4 (Th2 cytokine), IL-10 (immunosuppressive cytokine) and 
MCP-1, MCP-2 (chemotactic cytokines). The cytokine response observed in this study 
indicate that distinct gonococcal components produce antagonistic signaling and cytokines 
suggesting that N. gonorrhoeae infection cannot be initially categorized as Th1 or Th2 
response (Rarick et al., 2006). Recent studies in the murine model of gonococcal genital tract 
infection showed that Th17 cells are involved in the immune response to N. gonorrhoeae. This 
response leads to IL-17 dependent secretion of IL-6, LIX and MIP2┙ and subsequent 
recruitment of PMNn, which is delayed in the presence of IL-17A blocking antibodies or 
deletion of IL-17RA prolonging infection (Feinen et al., 2010).  

Overall, most known gonococcal antigens are able to induce humoral and cellular immune 

responses in the human, but a protective immune response has not been identified. Data 

suggest that the bacteria have mechanisms to evade destruction by PMNn, antibodies and T 

cells.  

4. Mechanisms of immune evasion by Neisseria gonorrhoeae 

Several studies suggest the promotion of direct inhibitory mechanisms by gonococcus to 
escape the immune response. Data indicate that bacteria induces transient reduction of 
CD4+ and CD8+T cells during acute gonococcal infection in HIV-1-positive woman, with 
increase in plasma HIV-1 RNA copy number and plasma concentration of IL-4, IL-6, IL-10 
and TNF-┙ soluble receptor (Anzala et al., 2000). Gonococcal infection also correlates with 
suppression of activation and proliferation of CD4+ T lymphocytes (Boulton and Gray-
Owen, 2002). In this respect, inhibitory effect is mediated by the ligation of gonococcus 
membrane component Opa52 present in blebs of outer membrane (OMV) to CEACAM1 
(also known as CD66a or BGP) on lymphocyte (Lee et al., 2007). The interaction triggers the 
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phosphorilation of the ITIM impeding the normal expression of early activation marker 
CD69 and the subsequent proliferation of T cells. This strategy represents an effective means 
by which to create a “zone of immunosuppression” surrounding the infected site (Lee et al., 
2008). Opa-CEACAM1-induced immunosuppression might also control the development of 
a humoral response, decreasing the T cell help for B cell activation or targeting the 
CEACAM1-expressing B cells causing cell death (Pantelic et al., 2005) and subsequent 
inhibition of antibody production.  

On the other hand, piliated gonococci enhances T-cell activation and proliferation, 
regardless of whether this is mediated by the pilus itself or is due to the act of binding to a 
pilus receptor such as CD46 or integrins. Upon pili-CD46 ligation, the IL-10-secreting type 1 
regulatory T (Tr1) cells are elicited (Plant and Jonsson, 2006). Tr1 cells are able to suppress 
the activation of bystander T cells via induction of IL-10 (Jonuleit et al., 2001). In addition, 
IL-10 suppresses the production of pro-inflammatory cytokines thereby inhibiting the ability 
of APC to induce differentiation of Th1 cells, just the type of response associated to 
protection against intracellular pathogens such as gonococcus (McGuirk et al., 2002). 

In regard to the role of regulatory T (Treg) cells, we showed that in Balb/c, the mouse model 
of gonococcus infections, N. gonorrhoeae induces transforming growth factor ┚1 (TGF-┚1)+ 
CD4+ T cells in the mucosal lymph nodes, including a subset of CD25+Foxp3+ Tregs, 
indicating that type of response may avoid the host mechanisms of protection (Imarai et al., 
2008). Mature CD4+ CD25- T cells can be converted in Treg cells in peripheral tissues under 
immunosuppressive conditions, such as exposure to IL-10 or TGF-┚1 made by antigen 
presenting cells (Sakaguchi, 2004). Treg cells inhibit the function of effectors T cells through 
the secretion of suppressive cytokines IL-10 and TGF-┚1, or by a cell contact-dependent 
mechanism via CTLA4 or GITR molecules (Bending et al., 2009; O'Connor et al., 2008; 
Sakaguchi, 2004). Considering that, the source of TGF-┚1 could be stromal and epithelial 
cells of reproductive organs (Nocera and Chu, 1995; Srivastava et al., 1996; Taylor et al., 
2000), which are target of gonococcus infection, it is possible that the cytokine milieu found 
in reproductive tract subsidized the inductions of Tregs by N.gonorrhoeae. In fact, we must 
consider that the genital tract is an immune-privileged site with expression of regulatory 
cytokines which might induce a tolerogenic response against gonococcus (Nocera and Chu, 
1995; Srivastava et al., 1996; Taylor et al., 2000). For instance, epithelia and stromal cells of 
the reproductive organs of the mouse and human, express high levels of TGF-┚1 and other 
molecules involved in conditioning immune privilege sites (Chegini et al., 1994; Grant and 
Wira, 2003; Jin et al., 1992; Wada et al., 1996). Moreover, antigen presenting cells such as 
macrophages and DCs, regularly present in the reproductive tissues might also contribute to 
regulatory response, since they could promote T regulatory cells differentiation trough 
production of IL-10 and TGF-┚1 after infection (Givan et al., 1997; Stagg et al., 1998).  

The effects of interaction of different stable gonoccocal LOS phenotypes with human DCs 

were evaluated (van Vliet et al., 2009). Interestingly, this study revealed that LOS variants 

result in alterations of cytokine secretion profiles of DCs and in the induction of distinct 

adaptive CD4+ T helper responses. Gonococcus significantly increased IL-10 production, as 

well as pro-inflammatory cytokines, such as TNF-┙, IL-6, IL-8 and IL-12. However, only IL-

10 production was modulated by LOS variation. Supporting the anti-inflammatory or 

regulatory effects of gonococcus on APCs, recently we found that the bacterium was unable 

to induce significant up-regulation of cell surface co-stimulatory molecule CD86 in 
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macrophages, as well in DCs (unpublished data). This suggests that, although N. gonorrhoeae 

is actually phagocytosed by macrophages and DCs, the bacteria can deteriorate antigen 

presenting function. Moreover, gonococcus was unable to induce up-regulation of MHC 

class II in macrophages, this molecule is involved in antigen processing and presentation, 

therefore this implies that macrophages do not have a proper antigen presenting function. 

In addition, gonococcus induced IL-10 and TGF-┚1 in dendritic cells reaching an anti-

inflammatory or regulatory response.  

Altogether, studies so far show that N. gonorrhoeae might control immune response by 

inducing (1) suppression of activation and proliferation of CD4+ T lymphocytes, (2) 

secretion of tolerogenic-type cytokines, (3) inhibitory T cells (Tr1 and Tregs), and (4) by 

deteriorating antigen presenting function. This wide variety of immune evasion mechanism 

may explain the frequent appearance of persistent and asymptomatic infection (Figure 4). 

 

Fig. 4. N. gonorrhoeae interferes with immune responses. 

5. Conclusion 

Neisseria gonorrhoeae infects the reproductive tract of the human causing gonorrhea. 

Mechanisms of infection involved the early attachment of gonococcal membrane 

components, such as Pili, Opa, Porin and LOS, to cell host receptors. Frequently, the bacteria 

develop persistence and asymptomatic disease, which seem to be associated to the 

gonoccoccus ability to evade immune response. Several lines of research revealed that N. 
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gonorrhoeae is able to subvert polymorphonuclear cell phagocytic destruction, induces a 

weak humoral immune response, decreases antigen presenting properties of macrophages 

and dendritic cells, inhibits T cell proliferation and induces anti-inflammatory cytokines and 

T inhibitory cells. On the whole, this seems to be a complex network of immune evasion 

mechanisms responsible for the restricted immune response frequently observed during 

gonococcal infection.  
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