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Oxidative Stress in Human Health and Disease 
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University of Botswana School of Medicine,  
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1. Introduction 

Oxidative stress arises when the antioxidant capacity of cells to scavenge the excess 

production of reactive oxygen species(ROS) falls short. It may also be due to changes in the 

redox status of the cell. In health, pro-oxidants engage in useful signaling pathways that are 

important for growth and cellular health. Overstimulation of signaling pathways leads to 

sustained pro-oxidant production in the form of ROS that disrupt cellular structures and 

impair function leading to disease. Normally, antioxidants counteract the activity of pro-

oxidants to retain cellular homeostasis and therefore a state of health.  

In this review the cellular sources of reactive oxygen species (ROS) will be discussed in 

addition to its effect on macromolecular structures, cellular function and health. The ROS 

referred to in the text are:superoxide, hydrogen peroxide, hydroxyl radicals; reactive 

nitrogen species (RNS) nitric oxide and peroxynitrite.  

The primary source of ROS is molecular oxygen (O2). In aerobic cells during electron 

transport  about 10% of reducing equivalents from NADH leaks to produce superoxide 

(O2 ͞  ·) and hydrogen peroxide (H2O2). These diffuse out of mitochondria and form the 

starting materials for subsequent generation of ROS through a serial one electron acceptor 

process. RNS (NO) also fuel ROS generation through a similar interaction with 

cytochrome c oxidase to give rise to O2 ͞  ·/H2O2 or react with O2 ͞  ·to generate peroxynitrite 

(ONOO-). 

The oxidative stress effect on health is discussed from the point of view of 

infectious/communicable diseases, non-infectious/non communicable diseases, genetic 

diseases and oxidant stress factors (mutation/hemolysis).  

The respective infectious/communicable and non communicable diseases that are discussed 

are malaria, HIV/AIDS, and diabetes, obesity, sickle cell disease and ageing. Except for 

ageing, the biology of the diseases is  briefly outlined and host immunological responses to 

the disease state that augments ROS generation and its effects are discussed.  

The review ends with a brief on oxidative stress and ageing and a summary of how 

oxidative stress is at the core of the physiological processes that maintain a healthy body 

and longevity. 
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2. ROS activity in normal cell function 

The designation ‘reactive oxygen species’ refers to the unpaired electrons on an oxygen 
atom, molecule or ion that confers reactivity to the species (1, 2). By this definition oxygen 
molecule is the weakest radical as the ground state has two unpaired electrons (1) 
although it is unreactive. Multicellular organisms maintain a network of signals to ensure 
growth, defense and repair. These signals begin outside of the cell, with ligand receptor 
interaction, followed by conformational changes in the receptor that enables it to be 
activated through phosphorylation by kinases and inhibition of phosphatases (3, 4). The 
signal is then carried by second messengers for transduction into the cell nucleus (5, 6). 
Transcription factors constitute the terminal signal receivers to initiate gene expression 
critical for normal cell function. ROS act as second messengers in signal transduction in 
normal housekeeping cell functions (7, 8). ROS signaling can also be through regulation of 
ion channels, in particular potassium and calcium ion channels to modulate nerve 
conduction and apoptosis (9). 

In normal cell function ROS is generated constitutively by non-phagocytic cells and in 
response to injury, trauma or infection by phagocytic cells (10, 11). A common functional 
attribute of the two sources of ROS is  that moderate amounts is largely associated with 
signaling activity while increasing amounts is important in cellular defense and or repair 
(12). Moderate amounts of ROS are generated through electron transport, vascular smooth 
muscle cell (VSMC) and endothelial cell (EC) activities (13). Other cellular sources of ROS 
that may be limited by the changes in cellular metabolic activity include lipoxygenases, 
cyclooxygenase, cytochrome P450 enzyme activities and lipid peroxidation (7). 

2.1 ROS generation in non phagocytic conditions 

Non phagocytic generation of superoxide occurs constitutively and intracellularly in 
fibrobrast , smooth muscle cells (14), renal mesanglial cells (15), hematopoietic stem cells, 
neurons, hepatocytes, vascular endothelium and for the cellular organelles mitochondria, 
peroxisomes and the cytochrome P450 system. When generated, ROS participate in the 
maintenance of baseline signal transduction needed for normal cell function in the 
absence of activation (16-18). The non phagocytic oxidases (NOX) are transmembrane 
proteins that transport electrons across cell membranes to reduce oxygen to superoxide. 
To date six human isoforms have been isolated (Nox 1, 3, 4, 5, and Duox 1 and 2) (19, 20). 
They utilize a system that is dependent on NADPH, although, NADH can also be used as 
substrate (21). As a result they are referred to as NAD(P)H oxidases (12, 22). A large 
component of the non-phagocytic ROS is from mitochondria during electron transport 
under normal physiological conditions (23). The primary ROS is superoxide generated 
from reduction of oxygen. It has a short half-life and so its availability is limited, making 
it a poor signaling molecule (24). In low pH environments as in phagosomes however, the 
reactivity of superoxide is enhanced by conversion to hydrogen peroxide (25). Unlike 
superoxide, hydrogen peroxide which is generated from superoxide dismutation (26), is 
stable and can selectively diffuse through membrane pores to stimulate distant targets, 
including downstream kinases (27, 28). It also activates the antioxidant function of p53 
which potentiates the activity of glutathione peroxidase to convert it to water (29). A 
summary of ROS generation in the mitochondria in normal physiology and some effects 
attributed to ROS is presented in Figure 1. 
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Fig. 1. Mitochondrial ROS generation sites by partial reduction of oxygen through a series of 
one electron acceptance and a role in oxidative stress effects. 

2.2 ROS generation in the electron transport chain 

At the end of the electron transport chain, molecular oxygen receives 4 electrons and is 

reduced to water providing energy for ATP synthesis. When oxygen is incompletely 

oxidized through the sequential acceptance of one electron, it gives rise to oxygen radicals 

that are more reactive than the molecule. These are in order of one electron acceptance, O2 ͞  ·, 
H2O2 and OH˙ (30, 31). Acquisition of an electron by molecular oxygen generates O2͞  · as the 

primary ROS. The sites in the electron transport chain known to significantly contribute to 

ROS are complex I and III. Complex I ROS production is mediated by NADH coenzyme Q 

reductase while in complex III ROS production is through the binding of NO to ubiquinol 

cytochrome c oxidase to produce O2͞͞  · and H2O2 (31-33). Mitochondrial nitric oxide synthase 

produces NO, the primary RNS which reacts with O2͞  · to give peroxynitrite. Therefore NO 

production is central to the generation of O2 ͞  · and H2O2 in the electron transport chain (34, 

35). Mitochondria also functions as an oxygen sensor under hypoxia to produce hydrogen 

peroxide which stabilizes hypoxia inducible factor (HIF) to modulate its effect on hypoxia 

(36-38). HIF is degraded by the hydroxylation of prolyl residues and requires iron as an 

obligatory cofactor, so when ROS oxidizes iron, it is unavailable for hydroxylation thereby 

retaining cellular response to hypoxia (38). In normal cellular metabolism, low to moderate 

ROS/RNS are generated as part of the signaling pathways, cellular response to growth and 

in innate and adaptive immune response against danger signals (39). 
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2.3 ROS generation in VSMC and EC 

ROS generation in non-phagocytic cells other than mitochondria, is through the activity of 

non-phagocytic NAD(P)H oxidase (Nox) following ligand binding to the cognate receptor 

(cytokines, growth factor and G-protein coupled receptor agonists, e.g. angiotensin II) (40, 

41). Of particular note is the binding of vascular endothelial growth factor (VEGF), platelet 

derived growth factor  and epidermal growth factor (EGF) to their cognate receptors that 

lead to receptor dimerization, auto-phosphorylation and signaling to activate redox 

sensitive transcription factors (eg. NF-кB) responsible for the expression of target genes (40).  

2.4 Functional significance of ROS/RNS generation 

ROS generated by non-phagocytic cells channel signals to induce cell migration, 

proliferation and vessel wall formation (42). This activity is particularly important for 

angiogenesis and in ischemia/reperfusion response (27). In order to sustain signal 

transduction, ROS generated from ligand receptor interactions can oxidize cysteine residues 

in phosphatases to inhibit their function and sustain signal transduction to the nucleus (43, 

44). Within the endothelial cell (EC), hydrogen peroxide or angiotensin II (Ang II) 

stimulation of ROS production activates eNOS to produce NO which facilitates cell 

migration and proliferation (2, 45, 46).  

2.5 ROS and danger sensing 

The cells of the innate immune system sense danger by recognizing highly conserved 

pathogen associated molecular patterns (PAMP) present on all the major pathogens; 

bacteria, parasites, viruses and yeast, or danger associated molecular patterns (DAMP) 

through germ line encoded pattern recognition receptors (PRR) (47-50). While PAMP 

enables ROS generation in response to an infection, DAMP enables cellular response to 

danger (damage, stress) in the absence of an infection (51-53). These molecules that signal 

cell damage or stress include ATP, nucleotides and uric acid (54). Through ligand receptor 

interactions and phagocytosis, ROS signaling molecules (hydrogen peroxide and 

superoxide) are generated intracellularly to promote signaling cascades on one hand and/or 

activate inflammasome (55). The inflammasome is a descriptive term for cytosolic pattern 

recognition receptors belonging to members of the caspase-1 activating platform, nucleotide 

oligomerization domain (NOD) like receptor family (NLR) or AIM2 DNA binding proteins 

(56, 57). The proteins activate the expression of pro-inflammatory cytokines (IL-1 and IL-

18) necessary to amplify ROS generation against pathogen elimination or containment 

through pyroptosis (57, 58). ROS can be generated extracellularly when a ligand binds to a 

receptor. This source of phagocytic ROS is through NADPH oxidase, largely in neutrophils 

engaged in phagocytosis, when activated by PAMP. Activated neutrophils undergo a burst 

of ROS production to eliminate the offending organism (59). 

3. ROS in oxidative stress 

Oxidative stress arises when the activity of oxidant species (ROS) overwhelms the cells 

capacity to counteract with antioxidants (60-65). In oxidative stress, excess ROS (O2͞  ·, H2O2, 

OH·) are involved in three main activities: 
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a. Causing damage to cellular macromolecules (DNA, proteins and membrane lipids) due 
to their chemical reactivity,   

b. Causing changes in membrane potential, which in the inner mitochondrial membrane 
directly causes  mitochondrial permeability transition (MTP) and 

c.  Acting as a sink for cellular antioxidants.  

Whereas superoxide and hydrogen peroxide target Fe-S clusters and cysteine residues 
respectively, hydroxyl radical appears to be indiscriminate on targets, including oxidation of 
thiol groups in membrane proteins, making it the most damaging oxygen species (66-68). 

a. ROS effect on macromolecules 

DNA damage 

The type of DNA damage attributed to ROS species may fall into several forms: single and 
double strand breaks; (69), sister chromatid exchange, DNA-DNA and DNA protein cross 
links and base modifications (71). Single strand breaks may be due to oxidation of 
phosphodiester bonds by direct abstraction of hydrogen by OH· from the deoxyribose-
phosphodiester backbone giving rise to abnormal 3’ and 5’ ends which are not recognized 
by DNA polymerases (72). The bases may undergo hydroxylation or part of the ring may 
open up particularly for pyrimidine bases (73). Hydroxyl radicals also interact with DNA 
bases to form adducts. For instance reaction with guanine generates 8-oxo-7,8-dihydro-2’-
deoxyguanosine (8-oxodG) adducts (74). Peroxynitrites generated from the reaction between 
NO and superoxide also react with guanine to form adducts (8-nitodG) (66, 71, 75, 76). The 
formation of DNA adducts can lead to loss of the bases giving rise to apurinic or 
apyrimidinic (AP) sites (77, 78). These adducts also contribute to accelerated telomere 
shortening, which regulates senescence. They can also lead to G→T transversion and 
microsatellite instability, a recipe for cell transformation (79). ROS attacks DNA to form 
hydroperoxides and peroxides (80-82). Lipid peroxidation by ROS is mediated through the 
Fenton reaction (Fe2+ + H2O2 = Fe3+ + OH·) to produce lipid hydroperoxides (LOOH) and 4-
hydroxynonenal (4-HNE) (1, 67, 83). These reactive metabolites impair membrane function 
and lead to changes in Ca2+ flux (84). They also serve as signaling molecules for activating 
or inhibiting apoptosis through the activity of serine/threonine kinase Akt in the PI3K/Akt 
pathway (85). Lipid peroxides are the major end products for stress induced oxidative 
damage that mediate apoptosis (86). 

Protein damage 

Oxidative ROS damage of proteins can lead to disruption of several vital cellular activities 
such as replication, transcription, and protein synthesis (78, 87, 88). The breakdown of 
amino acids occurs largely through the reactivity of hydroxyl radicals. Hydroxyl radical is 
generated by Fenton Chemistry through superoxide in the Haber-Weiss reaction (O2·¯ + 
H2O2 O2 + ·OH + OH¯) (88). It attacks amino acids abstracting hydrogen atom from the 
alpha carbon to generate the alkyl radical as the primary radical (89). This then undergoes a 
series of reactions to generate alkyl peroxide and alkoxyl radicals. These radicals not only 
disrupt the protein backbone but also engage in peptide bond cleavages to disrupt protein 
function (90). ROS can also oxidize almost all amino acid side chains, in particular sulphur 
containing amino acids, cysteine and methionine (1, 91). Other well-known targets are 
glutamyl and prolyl side chains to induce peptide bond cleavage. RNS also contribute to 
amino acid oxidation (nitration of tyrosine residues, nitrosation of cysteine sulfhydryl 
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groups and oxidation of methionine) through the activity of peroxynitrite generated from a 
reaction between NO and superoxide (87). Oxidized amino acids have a higher tendency to 
cross link which affects folding and function. A major physiological impact of protein 
oxidation is accelerated ageing (92-94). This is attributed to increased degradation of 
oxidized proteins, limiting function (83, 87, 91, 95).  

b. ROS and changes in mitochondrial membrane potential 

Oxidation of mitochondrial membrane sulfhydryl groups is associated with membrane 
permeability transitional states (65). Mitochondrial membrane permeability transition (MPT) 
occurs when the inner membrane becomes non selectively permeable leading to 
accumulation of Ca2+, loss of matrix components, impairment in mitochondrial function, 
excessive fluid accumulation and outer membrane burst (64, 96, 97). This leads to loss of 
cytochrome c and a drive towards apoptosis (96, 97). Currently, it has been shown that 
changes in mitochondrial redox status due to oxidation of NAD(P)H by ROS serves as the 
starting point for MPT (64, 98). NAD(P)H is critical for maintaining mitochondrial redox 
status through reduction of oxidized  glutathione (GSSH) and thioredoxin (TSSH) necessary 
for reducing thiol groups in the inner membrane (27, 99, 100). Oxidized thiol groups in 
membrane proteins, cross link and aggregate to form the non selective permeability pores 
that disrupt mitochondrial function (101). 

4. ROS in infectious diseases 

4.1 Oxidative stress in malaria 

Malaria is caused by parasites belonging to the genus Plasmodium. In humans four major 
species are responsible for the disease: P. falciparum, P. vivax, P. ovale, and P. malariae (102). 
Recently, P. knowlesi has been shown to be a major cause of malaria in parts of South East Asia 
(Borneo) (103, 104).The parasites are obligate and belong to the Phylum Apicomplexa (105). P. 
falciparum accounts for most severe malaria globally (106). The major vector for parasite 
transmission is the female anopheline mosquito (107). During a blood meal, sporozoites are 
inoculated under the skin and travel through the blood stream, liver sinusoids to settle in a 
hepatocyte after traversing several (108-111). This journey usually takes approximately 1 hour 
(112). Each sporozoite in a parasitophorous vacuole in the liver divides to generate between 
10,000 to 30,000 merozoites (110). In P. ovale, P. malariae, and P. vivax some sporozoites turn to 
hypnozoites which can remain dormant for months or several years and then get reactivated 
(113, 114). Merozoite maturation occurs within two weeks in a process called tissue shizogony. 
The merozoites invade RBCs and develop into ring forms, trophozoites and blood schizonts 
which repeat the cycle of RBC invasion leading to significant hemolysis. The cycle repeats 
every 48 hours for P. falciparum, P. ovale, and P vivax called tertian malaria and every 72 hours 
for P. malariae called quartan malaria. Each RBC can harbor up to 20 trophozoites. Following a 
cycle of blood schizogony some merozoites develop into gametocytes which are the sexual 
forms. These are taken up in a next meal to undergo sexual reproduction and eventually 
generate sporozoites ready for inoculation(115) . 

4.2 Generation of ROS in plasmodium infection 

When Plasmodium species infects an individual, the clinical presentation may be described 
as uncomplicated (asymptomatic or mild) or complicated (severe). In uncomplicated 
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malaria host exposure to the parasite is significant enough to generate protective immunity 
such that the parasite burden is limited (116). This is usually seen in endemic areas (116, 
117). In contrast, in low endemicity and low parasite exposure, because of lack or low host 
immune response, infection can lead to severe disease. It has been shown that whether an 
infection is uncomplicated or severe, there is a higher generation of ROS that is host and 
parasite derived (118). Host derived ROS generation arises from interaction of parasite 
ligands with host receptors during sporozoite invasion leading to phagocytosis and 
activation of NADPH dependent oxidases for ROS release (119). In addition 
polymorphonuclear neutrophil attraction to the site of infection and activation is associated 
with significant release of ROS as a defense mechanism for parasite clearance (120-122). This 
mechanism also occurs during blood schizogony to inhibit merozoite invasion of RBCs. 
During the period of blood schizogony, significant quantities of heme are released into 
circulation that overwhelms the scavenging activity of hemopexin, so that free heme is 
available to induce further neutrophil migration and catalyze its activation (123). Free heme 
also binds to and oxidizes lipoproteins in membranes increasing RBC breakdown (124, 125). 
Malaria parasites release a large quantity of ROS in the infected RBC in the process of 
converting heme to hemozoin for heme detoxification (126). It has been shown that 
hemozoin (Pf, Hz) mediates peroxidation of unsaturated fatty acids and contributes to the 
production of 4-hydroxynonenal (HNE) which reacts with proteins to form adducts 
disrupting their function (127). The impact of disrupted protein function is down regulation 
of receptors required for gene expression and cell division. This is suggested to be a factor in 
decreased erythropoiesis and malaria induced anemia. An additional source of ROS recently 
identified is from infected rbc membrane microparticles which enable activation of 
macrophages and increase ROS generation. 

4.3 Oxidative stress in HIV infection 

The classical pathway of HIV infection is through binding of the envelope glycoprotein to 
CD4+ cells mediated by the coreceptors CXCR4 and CCR5 chemokine receptors (128) .HIV-1 
isolates that replicate primarily in activated CD4 T-lymphocytes in vitro are said to be T-
tropic whereas isolates replicating in primary macrophages are M-tropic (129). Dual tropism 
is shown by isolates with the ability to infect both cells efficiently. CXCR4 and CCR5 act as 
coreceptors for T-tropic and M-tropic isolates respectively (129-131). CCR5 target cells 
appear to be important in the early phase of transmission switching to CXCR4 as the disease 
progresses (129, 132). For the most part however both receptors are expressed on known 
target cells (CD4+ T cells, monocyte/macrophages, dendritic cells, Langerhans cells and 
rectal and vagina mucosa) (133). Recently it has been shown that HIV-1 can be transmitted 
into cells directly by a tunneling mechanism independent of receptor functions (134). HIV-1 
has been divided into nine subtypes called clade A-D, F-H, J and K based on variation in the 
viral envelope. Clade B is predominant in Europe, the Americas and Australia, while the 
rest are found in Africa and Asia (135). 

A common comorbidity in HIV infection is dementia, which is a combination of behavioral, 
cognitive, and motor dysfunction following HIV infection (134, 136). It is estimated that in 
adults below the age of 40, HIV accounts for the most cause of dementia (137, 138). Data 
accumulated to date shows that oxidative stress is an underlying cause of HIV associated 
dementia (HAD) (139). Brain polyunsaturated fatty acids readily undergo peroxidation by 
free radicals to generate the 4-HNE which breaks bonds in cysteine, histidine and lysine 

www.intechopen.com



 
Insight and Control of Infectious Disease in Global Scenario 

 

104 

residues to disrupt protein function (140). 4-HNE also disrupts mitochondrial function to 
generate ROS aggravating oxidative stress in the process (141). Lipid peroxidation and 
protein oxidation also contribute to the generation of carbonyl groups, which characterize 
HIV dementia (142, 143). Some of the proteins that are affected due to lipid peroxidation 
include ATPases and glucose transporters. HIV regulatory protein Tat and structural 
protein gp120 are known to exert neurotoxicity by increasing ROS generation and lipid 
peroxidation (140). HIV gp41 is documented to induce iNOS expression and NO generation 
to react with superoxide forming peroxynitrite. Peroxynitrites cause nitration of tyrosine 
residues to disrupt protein function while its decomposition gives rise to hydroxyl radicals, 
a highly potent lipid peroxidizing agent (138). Over production of NO has been suggested to 
also increase HIV-1 replication. HIV-1 infection not only causes an increase in ROS 
generation but also leads to depletion of protective antioxidants in particular, glutathione 
(138, 144). Thus HIV disease is characterized by chronic oxidative stress which drives 
disease pathogenesis. 

5. ROS in non communicable diseases 

5.1 ROS in type 2 diabetes 

Diabetes is a metabolic disease caused by derangement in carbohydrate and lipid 

metabolism due to defects in insulin secretion, action or both (145). Two major forms are 

defined, type 1 and 2. Type 1 is due to an absolute deficiency in insulin secretion attributed 

to autoimmune destruction of the ǃ cells of the Islet and genetic factors (145, 146). Type 2 is a 

combination of insulin resistance and inadequate compensatory insulin secretory response. 

It is now confirmed that diabetes is an inflammatory disease with elevated plasma 

concentrations of IL-6, CRP, orosomucoid and sialic acid (146-148).  

5.2 ROS in pancreatic β cell damage 

In type 1 diabetes ǃ cell damage partly initiates from cellular response to the danger signal, 
dsRNA which leads to overexpression of Toll like receptors (TLR3, 4). The TLR then 
activates redox sensitive transcriptions factors including NF-kB (149).The major source of 
ROS in pancreatic ǃ cells is from mitochondria and activity of non phagocytic NADPH 
oxidase (98, 150, 151). When ROS generation is high, the ǃ cell which is known to have lower 
levels of antioxidants (catalase, glutathione peroxidase and superoxide dismutase) 
compared to other cell types is damaged leading to decreased insulin secretion. It is also 
reported that autoimmune activities fuel an inflammatory phenotype to damage ǃ cells. In 
insulin sensitive tissues glucose is transported intracellularly by specific membrane 
transporters (GLUT). Once inside the cell glucose is phosphorylated by glucokinase and 
goes through the glycolytic pathway (152, 153). Increased glycolytic activity feeds into 
higher ATP production, closure of K+ channels and increased intracellular Ca2+ which can 
stimulate ROS generation by mitochondria (153). The increased Ca2+ flux can also promote 
NADPH oxidase activity to produce more ROS (154). As previously noted, low levels of 
ROS generated by glucose metabolism, is important for glucose stimulated insulin secretion 
while higher levels damage ǃ cells of the Islets and induce insulin resistance through 
activation of redox sensitive intracellular signaling pathways (6). Changes in glucose and 
lipid metabolism contribute to ROS generation through the formation of diacylglycerol 
(DAG), advanced glycation end products (AGE), increased polyol formation and increased 
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hexosamine pathway flux (155, 156). The polyol pathway involves the conversion of glucose 
to sorbitol when hyperglycemia persists. Metabolism of sorbitol generates fructose in a 
dehydrogenation reaction so that the NADH/NAD+ ratio increase favoring DAG synthesis. 
DAG potently stimulates protein kinase C, for activating non phagocytic NADPH oxidases 
(157). In addition increase in mitochondrial NADH/NAD ratio increases the proton 
gradient and probability of electron donation to molecular oxygen to generate superoxide 

(156). The  cell is insulin independent for glucose uptake so under elevated plasma glucose, 
the cells fail to down regulate glucose entry by insulin resistance. Free available reducing 
sugars (eg.glucose), can react with free amino groups to form a Schiffs base which 
rearranges into an Amadori glycation product (158-160). When accumulated in proteins, 
these AGEs modify protein function and or contribute to generation of ROS thereby 
damaging the cell (151). Another mechanism is the hexosamine pathway flux which 
functions under normal metabolism but is increased under hyperglycemia. In this process 
glucose metabolism in glycolysis is channeled into glucosamine phosphate from fructose 6-
phosphate. The end product of the pathway is UDP-N-acetylglucosamine, which acts as a 
substrate for glycosylation of intracellular proteins, including transcription factors (161). 
Therefore, the expression of several genes including insulin is affected. 

5.3 ROS and insulin resistance 

In general insulin resistance leads to a sustained inflammatory state (162). Overt insulin 

resistance occurs from an initial impairment in insulin mediated glucose up take (IGT) (146, 

163, 164). If this state is sustained, the impaired insulin response becomes blunted to 

constitute resistance (146, 164-166). In the end the blunted response leads to overt type 2 

diabetes as glucose uptake is severely compromised leading to derangement in lipid 

metabolism (167, 168). Target tissues (muscle and adipose tissues) may fail to respond to 

insulin because of the diminished secretion or decreased sensitivity. Hyperglycemia, raised 

serum free fatty acids (FFA) and increased inflammatory phenotype indicated by high 

TNFǂ, CRP, IL-6 and IL-1 ((165, 167, 169)  predominate in insulin resistance. High FFAs 

repress translocation of GLUT4 transporters to the plasma membrane and resistance to 

insulin mediated glucose uptake in muscle and adipose tissues, particularly (167). High FFA 

gives rise to elevated fatty acid metabolites; DAG, ceramides and fatty acyl CoA which 

activate protein kinase C resulting in activation of serine/threonine cascades (170). In 

skeletal muscle and adipose tissue the insulin receptor is phosphorylated at tyrosine sites 

upon binding by insulin (171, 172). The receptor in turn causes phosphorylation of 

substrates: insulin receptor substrate 1 and 2 (IRS1 and IRS2), which activates PI3-kinase, 

Akt/protein kinase B to recruit GLUT4 to the plasma membrane for glucose uptake ((167, 

173). Elevated lipid metabolites scuttle this mechanism, and instead cause phosphorylation 

of serine sites on insulin receptor substrates, which inhibit their activation of phosphatidyl-

inositol 3-kinase (PI3-kinase) and induce failure of transport of GLUT4 to the cell membrane 

(150, 171, 174). Also these metabolites decrease downstream signaling activities whereby 

insulin receptor substrates are activated for insulin secretion and response. ROS can also 

mediate these responses by inhibiting insulin receptor substrates 1 and 2 (IRS-1, and IRS-2) 

tyrosine auto-phosphorylation, while increasing phosphorylation of serine sites (173-175). 

Inhibition of tyrosine phosphorylation limits gene expression, cell growth and 

differentiation of the Islets.  
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5.4 ROS in obesity 

Obesity is defined as a body mass index greater than or equal to 30 kg/m2 (176). It is 
established to be a state of chronic low grade inflammatory disease (meta-inflammation) 
grouped together with insulin resistance, type 2 diabetes, cardiovascular disease and fatty 
liver disease as the metabolic syndrome (167). Excess calories stored in adipose tissue, 
causes it to expand, accompanied by infiltration of macrophages (176-179). The 
macrophages drive production of pro-inflammatory cytokines (TNFǂ, IL-6. iNOS, TGF-ǃ, 
MCP-1) through toll like receptor 4 (TLR4) and so present the inflammatory phenotype (176, 
180). In addition, increasing adiposity is associated with changes in the expression of 
adipokines (leptin, adiponectin, IL-6, resistin and TNF-ǂ) which regulate energy intake and 
insulin sensitivity (176). With the exception of adiponectin, the expression of all the 
adipokines is increased with increasing fat mass (166, 178, 181). Adiponectin promotes 
insulin sensitivity by reducing fat and glucose storage. In Obese individuals, insulin 
resistance is characterized by upregulation of TNF-ǂ by resident macrophages, a mechanism 
that is similar to that seen in type 2 diabetes (177). The location of the increased fat mass is 
known to affect the degree of inflammation. While visceral adipocity exacerbates, lower 
body fat mass has limited effect (177, 182). Enhanced DAG synthesis also affects 
downstream signaling pathways required to synthesize protein for Islet cell differentiation. 
As result islet cell differentiation is limited; this in turn affects insulin secretion and 
regulation of metabolic pathways (173).  

5.5 ROS in sickle cell disease 

Sickle cell disease arises from a mutation in the beta globin gene with substitution of 
glutamate for lysine at the 6th codon of ǃ-globin to give hemoglobin S (HbS) variant (183-
185). A homozygous HbSS is referred to as sickle cell anemia, while a heterozygous globin 
mutant with HbS constitutes sickle cell disease (186). The abnormal Hb has defining 
characteristics: it undergoes polymerization under low oxygen tension, precipitates when 
polymerized leading to generation of ROS which oxidizes the rbc membrane and makes it 
fragile and brittle (187). In sickle cell disease, the vascular endothelium becomes 
dysfunctional and shows increased inflammatory state, adhesiveness, and activation, 
concomitant with decreased NO bioavailability (188, 189). The disease makes subjects 
amenable to ischemic stroke, ischemia reperfusion injury, chronic renal disease, pulmonary 
hypertension, priapism, fetal wastage and growth retardation (190). 

The propensity towards sickling is greatly enhanced if the transit time of rbc in the 
capillaries is increased. In the inflammatory state such delays become common place leading 
to severer hemolytic episodes and ‘crisis’. Sickle cell anemia has high hemolytic episodes. 
The average life span of a normal rbc of 120 reduces to 14 days in sickle cell disease (190). 
The enhanced hemolysis contributes significantly to instigate a proinflammatory phenotype 
as free heme and hemoglobin are strong oxidants (191). Heme can donate electrons or Fe to 
membrane lipids through the fenton reaction to generate ROS that contributes to membrane 
damage and sustained hemolysis(188). Under sustained hemolytic conditions, the cellular 
mechanisms for scavenging hemoglobin and heme are overwhelmed (haptoglobin and 
hemopexin respectively) so that free heme and Hb are present intravascularly to initiate 
inflammation (192, 193). Extravascular hemolysis arising from ineffective scavenging of rbcs 
worn out or damaged, and ineffective erythropoiesis also contribute to heme and Hb leak 
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into circulation. So in essence, sickle cell anemia is a typical systemic proinflammatory 
disease with sustained ROS production. Typical sources of ROS include activated NADPH 
oxidases from activated monocytes and endothelium, increased Xanthine oxidase 
expression and diminished NO availability (194, 195, 196). Activated endothelium increase 
expression of adhesion molecules for binding leukocytes and rbcs which contribute to 
hemostasis, rbc lysis and increased inflammatory phenotype (194). 

5.6 ROS and endothelial dysfunction 

The endothelium is the organ situated at the interface between the wall of the blood vessel 

and blood stream, functioning as a sensor for modulating vasomotor function, hemostasis 

and inflammation (197). Endothelial dysfunction refers to impairment of these functions 

associated with vascular remodeling and vascular growth, but more commonly to 

impairment of endothelium dependent vasodilation due to depletion of NO in the vessel 

wall (198). The factors released by the endothelium may lead to vasodilation or constriction. 

Some of these factors are NO, prostacycling, C-type natriuretic peptide, and endothelium 

derived hyper polarizing factors which act as vasodilators. ROS along with Ang II, 

endothelin 1 (ET-1) and thromboxane A2, act as vasoconstrictors and up regulate adhesion 

molecules, intercellular adhesion molecule (ICAM-I), vascular cell adhesion molecule 

(VCAM-I) and E-selectin (197). The major sources of ROS in the endothelium are 

mitochondria, lipoxygenases, cyclooxygenases, cytoP450s, xanthine oxidases and NADPH 

oxidases (2, 14, 198, 199). 

5.7 NO depletion and endothelium 

In endothelial dysfunction NO synthesis is reduced. This affects vasodilation, 
inflammation and hemostasis. NO synthesis is by eNOS using L-arginine as substrate in 
the endothelium. Suggested mechanism for reduced NO synthesis is substrate 
unavailability, reduced eNOS synthase activity and quenching of NO when synthesized 
(200-204). ROS constitutes a major quencher of NO bioavailability. Reaction of NO with 
superoxide generates peroxynitrite which in turn reacts with proteins, lipids, and eNOS 
cofactor tetrahydrobiopterin (BH4). By oxidizing BH4 to generate BH2, eNOS synthase 
activity is uncoupled, so that instead of producing NO, more ROS is generated from 
increased reductase activity of eNOS (199, 205). ROS up regulates the expression of 
adhesion molecules, ICAM-1, VCAM-1 and chemoattractant molecules (MCP-1) for 
neutrophil and macrophage attraction and activation (206, 207). eNOS synthase may also 
be competitively inhibited by asymmetric dimethylarginine (ADMA). It has been shown 
that increased ADMA concentration correlates with high blood pressure (BP) as renal 
plasma flow is impaired while flow resistance is increased leading to high BP (208, 209). 
As protein degradation increases in the cell, ADMA concentration also rises and is 
excreted in the kidneys or degraded to citrulline by the enzyme dimethylarginine 
dimethylaminohydrolase (DDAH) (208, 210, 211). As DDAH concentration increases in 
the cell, ADMA levels correspondingly decrease, associated with increased eNOS 
activation and reduced BP (211). Recently, the degree of endothelial dysfunction has been 
shown to inversely correlate with amount of endothelial progenitor cells in circulation. 
Endothelial progenitor cells have the capacity to develop into endothelial cells and are 
used to repair endothelial lesions (212, 213). 
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5.8 ROS in ageing   

The free radical theory of ageing postulates that accumulated cellular damage by ROS over 
a period of time is associated with shortened life span (214). This includes effect on telomere 
shortening, dementia, accumulation of glycation end products and changes in signaling 
pathways that affect cellular function. A rise in the intracellular ROS generation as outlined 
previously damages cells, macromolecules and affects signaling pathways (1, 39, 214). These 
cumulatively drive cellular ageing. 

6. Summary 

Cumulative evidence shows that ROS is like a ‘double edged sword’ that on one side 
enables normal physiological cellular functions to be sustained and provides defense against 
invading organisms. However when in excess shown as oxidative stress, it plays a 
destructive role leading to cellular damage, senescence or death. These life attributes make 
ROS an essential investigative target in the biochemistry and physiology of health and 
pathological mechanisms of disease.  
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