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1. Introduction 

The crystallization of small molecules proceeds by nucleation and growth mechanisms. In 

polymers, the basic morphology of the crystals is spherulite lamellar crystal bundles which 

results from the growth of a nucleus center followed by branching to form radial structural 

equivalence. According to reported observations (Reiter & Strobl 2007), the long-chain 

fractions in spherulites enriched in early-formed thick crystals are called dominant lamellae 

and the short-chain fractions enriched in later-formed thin crystals are called subsidiary 

lamellae. 

Polypropylene (PP) is an attractive thermoplastic polymer with exceptional properties such 

as high isotacticity, high cost-performance ratio, low processing temperature, excellent 

chemical and moisture resistance, low density and good ductility (Somnuk et al. 2007 ; 

Zhang et al. 2002). However, it has some inferior mechanical properties such as low impact 

resistance and low stiffness, both of which can be improved upon by using additives such as 

tougheners and the application of nucleating agents (Zhang et al. 2002).  

The application of nucleating agents results in the shortening of injection molding cycle 

and, consequently, in the reduction of manufacturing costs. Also, optical and mechanical 

properties of polymers can be improved by the generation of small spherulites. As a 

common industrial practice, polymers are often mixed with other materials to improve 

properties such as strength and biodegradability or to save the starting materials (Mucha 

& Krolikowski 2003). 

As a coupling agent used for in situ or reactive compatibilization, maleic anhydride-grafted 

polypropylene (MAPP) has the same molecular structure as polypropylene while the maleic 

anhydride group is attached to the backbone. In a study by Seo et al. (2000), it was reported 

that the mechanism of crystallization in isotactic polypropylene (iPP) could be different 

from that of MAPP due to their different nucleation mechanisms originating from the 

differences in their characteristics and the number of heterogeneous nuclei. Also, the 

diffusional activation energy and crystallization half-time were found to be smaller for 

MAPP than for iPP under isothermal conditions. The rate of crystallization was decreased 
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by increasing temperature under isothermal conditions for both materials, however, it was 

much more noticeable for iPP. The application of MAPP in iPP affected its crystallization 

during the cooling process because of the increase in the number of effective nuclei. 

In this paper, non-isothermal crystallization melt behaviour and thermal properties of PP 

composite materials with different formulations were studied with respect to the effects of 

chemical modification, the use of compatibilizer, and fiber loading. For this purpose, 

different theories and models were used to analyze the data obtained in this investigation. 

2. Materials and methods 

2.1 Materials 

A compression-grade PP (PRO-FAX) with density of 0.904 g cm-3, melt flow index of 0.65 g/10 

min at 230°C, and low melt flow index (MFI = 0.65 g/10 min at 230°C) was obtained from 

Ashland Specialty Chemical Company (Vancouver, BC, Canada), while maleic anhydride-

grafted polypropylene (MAPP) (MFI = 115 g/10 min at 190°C; maleic acid content of 

approximately 0.6%) was obtained from Aldrich Chemical Company (Toronto, ON, Canada). 

Flax fiber which was already retted with a density of 1.52 g cm-3 was obtained from Biofiber 

Ltd., Canora, SK, Canada. For mercerization, the fiber was first washed with a 2% 

commercially available detergent solution (Ultra liquid Tide containing cationic and non-ionic 

biodegradable detergents) and then washed with distilled water to eliminate extractives, 

especially waxy materials. After drying at 60°C for 24 h, it was pretreated with a 5% sodium 

hydroxide (NaOH) solution for 3 h and thoroughly washed with distilled water and dried 

again in an oven (Despatch Oven Co., Minneapolis, MN, USA). Fiber analysis for 

measurement of the components was performed based on the measurement of neutral 

detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) using a fiber 

analyzer (ANKOM Technology, Fairport, NY, USA) to determine cellulose, hemicellulose, 

lignin and ash percentages. 

2.2 Fabrication of composites 

Pretreated and untreated flax fibers were each milled in a grinder (Retsch GmbH 5657 

HAAN, West Germany) through a 2-mm opening to be used in composite formulations as 

shown in Table 1. PP and MAPP were dried in the oven at 60°C for 15 h and at 120°C for 15 

h, respectively, before use. Materials based on the formulation and after initial mixing were 

extruded in a single-screw extruder (Akron Inc., Batavia, OH, USA) at temperatures up to 

190°C with a screw speed of 45 rpm and the extrudates were pelletized to be used for 

compression molding in a hot press (J.B. Miller Machinery & Supply Co., Toronto, ON, 

Canada) under a pressure of 3.5 MPa at 190°C for 7 min to prepare plates with a thickness of 

about 3.2 mm. Differential scanning calorimetry (DSC) measurements were carried out from 

small pieces cut from moulded composites.  

2.3 Thermal conductivity and density measurements 

A thermal conductivity analyzer (FOX 200, Saugus, MA, USA) was used to determine the 

steady-state effective thermal conductivity of the molded polymer and composites at 25°C 
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in accordance with ASTM C518. 2002. Each run took 0.5 h, but the first 5 min was used to 

bring the samples to the steady-state condition. The density of the test materials was 

measured by using a gas (nitrogen)-operated pycnometer (Quantachrome Corp., Boynton 

Beach, FL, USA) to measure the volume of the samples and their mass was determined 

using a Galaxy 160D weighing scale (OHAUS Scale Corporation, Florham Park, NJ, USA).  

2.4 Differential scanning calorimetry 

DSC (TA Instruments, New Castle, DE, USA) measurements were performed in a TA 

Instrument model 2000 DSC equipped with a cooling system to assess crystallization 

properties of the materials. Samples were heated from 40°C to 200°C at a heating rate of 

10°C/min and held for 5 min to erase the thermal history of the polymer. Then, the samples 

were cooled down at the desired rate (5, 10, 15 and 20°C/min) to analyze and investigate the 

crystallization kinetics. The degree of crystallinity (Xc) in biocomposites corrected for 

biofibers was determined by integration of the generated DSC exotherms. The crystallinity 

of PP or the matrix in the composites was calculated using equation (1).  

 
0

% 100c
c

c

H
X

H


 


 (1) 

Where ∆Hºc is the heat of crystallinity of 100% crystalline PP assumed to be 146.5 J/g 

(Lonkar, et al. 2009) and ∆Hc is taken as the enthalpy of crystallization corrected for biofiber 

in the composites assuming that the contribution of this fraction is ignored. 

 

Fiber PP/MAPP/Fiber Formulation (%) 

- PP 100/0/0 

Untreated fiber 

C1 
C2 
C3 
C4 

85/0/15 
80/5/15 
70/0/30 
65/5/30 

Alkaline treated fiber 

C5 
C6 
C7 
C8 

85/0/15 
80/5/15 
70/0/30 
65/5/30 

Table 1. Components of the composites based on polypropylene and flax fiber. 

3. Results and discussion 

Chemical analysis of the (retted) flax fiber before pretreatment showed that the mass 

fractions of cellulose, hemicellulose and lignin were 80.9%, 7.9% and 1.4%, respectively. 

These changed to 85%, 6.2% and 1.2%, respectively, after mercerization. 

3.1 Thermal conductivity 

The thermal conductivity values determined at 25C for the slab-shaped test materials are 

given in Table 2. It can be seen that thermal conductivity decreased in all composites 
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compared to the unreinforced plain PP which means that flax fiber can increase the thermal 

insulation property of polymers. The reduction in thermal conductivity is due to the 

inherent low thermal conductivity of cellulosic materials in comparison to the unreinforced 

plain polymer. A close observation shows that the thermal conductivity of the composites 

C6 and C8 (those containing treated fiber, plain PP and MAPP) was slightly higher than 

similar composites reinforced with untreated fiber (i.e., C2 and C4). This is probably due to 

the ability of MAPP to improve cross links between the fiber and matrix as reported by Kim 

et al. (2006). 

 

Fiber Material 
Density 
(g cm-3) 

Thermal conductivity 
(W/m°C) 

- PP 0.901 0.152 

Untreated fiber 

C1 
C2 
C3 
C4 

0.956 
0.957 
1.006 
1.013 

0.133 

0.133 

0.126 
0.126 

Alkaline treated fiber 

C5 
C6 
C7 
C8 

0.964 
0.963 
1.021 
1.022 

0.135 

0.137 

0.130 

0.133 

Table 2. Density and thermal conductivity of PP (polypropylene) and composites(C1 to C8 
as indicated by Table 1). 

3.2 Crystallization behavior  

Figure 1 shows the DSC exotherms obtained for samples cooled from the melt at different 
cooling rates (5 to 20ºC/min). The crystallization temperature (Tc) and crystallinity (Xc%) of 
the test materials are presented in Table 3.  

The effect of cooling rate on the shape and relative position of the peak temperature (i.e., 
crystallization temperature, Tc) of the exotherms can be readily discerned from Figure 1 and 
Table 3. All the curves shifted to lower temperatures as heating rate increased. It can be 
observed that the higher the cooling rate, the lower the crystallization temperature and 
degree of crystallinity. The data indicate that the average shift in crystallization temperature 

for composites is approximately 6C as the cooling rate increased from 5 to 20C/min. For 
pure PP, it is about 4ºC. The crystallinity of both pure PP and composites decreased with the 
cooling rate apparently because the low cooling rates provide higher fluidity and diffusivity 
for the polymer matrix molecules, thereby improving secondary crystallization and 
inducing more crystallinity at high temperatures than at high cooling rates. Furthermore, 
the results also indicate that the addition of fiber increased crystallinity of the test materials. 
This is attributed to the nucleation effect of the fibers which provide nucleation sites and 
facilitate crystallization of the polymer as well as transcrystallinity (Somnuk et al. 2007). It 
can also be discerned from Table 3 that the contribution of biofiber in the composites not 
only increased crystallinity of the material, but also increased crystallization temperature at 
the same cooling rate (Table 3).  
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Fig. 1. Non-isothermal crystallization thermograms of PP (polypropylene), C6 
(PP/MAPP/Fiber: 80/5/15) and C8 (PP/MAPP/Fiber: 65/5/30) at different cooling rates.  
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Formulation 5 ºC/min 10 ºC/min 15 ºC/min 20 ºC/min 
Tc

(ºC)
Xc(%) Tc

(ºC)
Xc(%) Tc

(ºC)
Xc(%) Tc 

(ºC) 
Xc(%) 

PP 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 

115.3
123.4 
125.1 
124.8 
126.1 
122.6 
125.3 
124.5 
126.3 

59.5
63.1 
62.3 
66.4 
63.2 
62.1 
61.4 
65.2 
62.8 

113.4
120.1 
122.3 
121.7 
123.1 
119.2 
122.0 
121.0 
123.3 

59.1
62.9 
62.5 
65.9 
62.0 
61.9 
60.3 
64.2 
61.8 

112.2
118.3 
120.5 
120.0 
121.4 
117.3 
120.4 
119.3 
121.5 

59.6
62.1 
61.0 
65.2 
61.0 
60.5 
60.1 
64.0 
60.9 

111.1 
116.9 
119.3 
118.7 
120.1 
115.9 
119.1 
118.1 
120.3 

58.2 
61.2 
61.0 
65.1 
60.0 
60.2 
60.0 
63.1 
60.5 

PP: polypropylene; C1 to C8: composites; Tc: crystallization temperature; Xc: crystallinity.  

Table 3. Crystallization temperature and crystallinity of PP and biocomposites at different 
cooling rates (5, 10, 15 and 20 ºC/min). 

The use of the compatibilizer seems to have reduced the level of crystallinity in the 
composites for the same levels of fiber loading, while it resulted in a marginal increase in the 
crystallization temperature. For instance, at the cooling rate of 5ºC/min, the crystallization 
temperature increased from 124.5ºC to 126.3ºC, while the crystallinity decreased from 65.2% 
to 62.8% for C7 and C8, respectively; and this could be attributed to the application of 
MAPP in C8. In the same vein, chemical pretreatment seems to marginally reduce the 
degree of crystallinity for all composites irrespective of their fiber content in comparison 
with composites reinforced with the untreated fiber with or without the compatibilizer. 
Therefore, among all formulations, the highest value of crystallinity was obtained for 
composite sample C3 at the cooling rate of 5ºC/min. 

Fiber mercerization also slightly caused the reduction of crystallization temperature at the 
constant level of fiber loading as well as constant cooling rate only for samples without MAPP, 
but it almost did not have any influence on crystallization temperature with the presence of 
MAPP. For example, at the cooling rate of 10ºC/min, crystallization temperature changed 
from 120.1ºC for C1 to 119.2ºC for C5 and this is only because of the chemical modification. 

The values of onset temperature (T0), end temperature of crystallization exotherm (Te), peak 
time (tc) and half crystallization time (t0.5) determined for all samples at different cooling 
rates are summarized in Table 4. It can be seen that these four parameters decreased with 
increasing cooling rate. The application of MAPP in the composites reduced the half-time of 
crystallization for composites reinforced with pretreated and untreated biofiber. For 
example, t0.5 decreased from 55 to 48 s for C7 and C8 at 5ºC/min, respectively. However, the 
magnitude of reduction in half-time due to the compatibilizer was less at high cooling rates. 
Also, a comparison of the data in Table 4 indicates that chemical pretreatment of the fiber 
increased the magnitude of t0.5 in the biocomposites at the same level of fiber content and 
cooling rate. This result is consistent with those reported by Garbarczyk et al. (2000) who 
observed that PP crystallized faster when reinforced with untreated natural fiber than with 
chemically modified fibers. Furthermore, a close look at the data shows that lowest value of 
half crystallization time occurred in pure PP for all cooling rates. Although its crystallinity is 
lower at all cooling rates, it is observed that non-isothermal crystallization occurred faster in 
PP than in the biocomposites. 
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Formu- 
lation 

5 ºC/min 10 ºC/min 15 ºC/min 20 ºC/min 

T0 

(ºC) 
Te 

(ºC)
tc 

(s)
t0.5 

(s)
T0 

(ºC)
Te 

(ºC)
tc 

(s)
t0.5 

(s)
T0 

(ºC)
Te 

(ºC)
tc 

(s)
t0.5 

(s)
T0 

(ºC)
Te 

(ºC) 
tc 

(s) 
t0.5 

(s) 

PP 
C1 
C2 
C3 
C4 
C5 
C6 
C7 
C8 

116.9 
128.0 
128.8 
128.6 
130.1 
127.4 
129.2 
128.9 
130.4 

103.3
111.4
112.5
112.8
109.7
110.2
111.8
111.1
112.8

29
59
50
50
53
61
52
57
53

26
55
46
49
48
57
48
55
48

114.9
125.2
125.9
125.9
127.3
124.4
126.1
125.9
127.6

101.9
104.2
106.1
107.8
110.2
104.9
108.3
109.5
123.3

17
34
26
29
29
34
29
32
30

16
31
25
28
26
32
27
31
28

113.7
123.5
124.2
124.3
125.7
122.7
124.4
124.3
126.0

98.5
103.3
106.1
105.9
107.8
104.7
106.4
105.9
109.0

13
25
19
21
20
25
20
23
21

13
23
18
20
19
23
19
22
19

112.7
122.3
122.9
123.2
124.4
121.5
123.1
123.2
124.8

97.8 
102.1 
104.7 
103.1 
104.5 
102.1 
103.8 
103.5 
105.2 

10 
19 
14 
17 
16 
20 
16 
18 
17 

10 
18 
14 
16 
15 
19 
15 
17 
16 

PP: polypropylene; C1 to C8: composites; T0: onset temperature, Te: end temperature of crystallization, tc: 
peak time and t0.5: half crystallization time. 

Table 4. Crystallization parameters obtained from DSC exotherms. 

3.3 Modeling of crystallization 

The relative degree of crystallinity (Xt) was calculated from the relationship in equation (2) as: 

 0

0

( )

/ )

T

cT
t T

cT

dH dT dT
X

dH dT dT






 (2) 

where dH denotes the enthalpy of crystallization measured during the time interval dt and 

T is the end temperature of crystallization. Figure 2 shows typical plots of relative 

crystallinty vs. temperature obtained for representative samples of the tested materials (PP, 

C6 and C8). Similar plots were obtained for all samples tested in this study. It can be seen 

that the shape of the curves is sigmoidal. It can be observed from these plots that, for the 

cooling rates studied, PP crystallized at lower temperatures than the composite materials. 

The activation energy for crystallization (∆E) was determined for pure PP and the 
biocomposite samples using the Kissinger model (1957) shown in equation (3). 

 
2(ln( ))

(1 )
c

c

d TE

R d T


  (3) 

where R is the universal gas constant (kJ/mol.K) and φ is the cooling rate. The values of 

activation energy for PP and its composites were determined from the slope of the linear 

plots shown in Figures 3 and 4. It can be seen from Table 4 that the addition of biofiber 

markedly reduced the activation energy for crystallization in pure PP. The low activation 

energy for crystallization obtained for the composites is consistent with their high 

crystallinity reported in Table 3, which could be attributed to the fact that biofibers, being 

high energy sites, lowered the activation energy for nucleation as similarly reported by Page 

& Gopakumar (2006). A close inspection of the data in Table 4 for the composites shows that 

at each level of fiber content, the application of MAPP increased their activation energy. For 

instance, it was increased from 287 to 306 kJ/mol for C7 and C8, respectively. 
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The Avrami model given in equation (4) is used extensively to evaluate the isothermal 
kinetics of polymer crystallization: 

  n
t1 –  X  exp kt   (4) 

where Xt is the relative crystallinity at time t and constant temperature; k is the 
crystallization rate constant containing the nucleation and growth rates and is temperature 
dependent; and n is the Avrami index or exponent which depends on the type of nucleation 
and growth process. Ozawa (1971) extended the Avrami model to non-isothermal processes 
by assuming that they are the result of infinitely small changes in the isothermal 
crystallization steps and obtained: 

  m
t1 –  X  exp x /   (5) 

where m is the Ozawa exponent which is dependent on the nucleation density and the 
spherulitic radial growth rate and x is a function of the overall crystallization rate. 

The linearized form of equation (5) is given as: 

  tln ln 1 X   ln x –  m ln      (6) 

Hence, a plot of ln[−ln(1 − Xt)] vs. ln(t) has a slope of m and a y-intercept of ln(x). 

By combining the Avrami and Ozawa models, Liu et al. (1997) introduced another 
crystallization kinetic model: 

  ln  lnF T  –  a lnt   (7) 

where F(T) = [x/k]1/m refers to the crystallization kinetic parameter and a is the ratio of the 
exponents in Avrami and Ozawa models : a = n/m 

Typical results of kinetic analysis of the DSC data using the Ozawa model are shown in 
Figure 5 for PP, C6 and C8, while Table 5 summarizes the results for all formulations.  

As shown, the maximum value of x for pure PP is much higher than the values obtained for 
composites indicating that PP crystallized faster than the matrix in the composites. Amongst 
the composites, it can be observed in Table 5 that the value of x was affected by fiber content 
or by compatibilizer for a given fiber content. The parameter m decreased with decreasing 
temperature for all test materials. Its value ranged from 0.6 to 5.0 for PP and from 1 to 4.2 for 
the composites. The more limited range of m values obtained for the composites indicates 
that the crystal growth rate of spherulites was higher in PP than in the composites. This 
agrees with the result reported by Somnuk et al. (2007) for PP and natural fiber-based 
composites such that the spherulitic growth rate was higher in neat PP than composites. 
However, in their study, composites exhibited a higher rate of crystallization compared to 
neat PP which is different from the result in this study. The F(T) values obtained from the 
Liu et al. (1997) model increased systematically with the relative crystallinity of pure PP and 
composites as shown in Table 6. Also, at a given relative crystallinity, the values of F(T) are 
lower for PP than for the composites at most levels of Xt which indicates that crystallization 
was faster in pure pp compared to the composites. Furthermore, the application of MAPP in 
the composites resulted in low values of F(T) or higher crystallization rates. 
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Fig. 2. Relative crystallinity of PP (polypropylene), C6 (PP/MAPP/Fiber: 80/5/15) and C8 
(PP/MAPP/Fiber: 65/5/30) at different cooling rates.  
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Fig. 3. Kissinger plots of crystallization activation energies of PP (419 kJ/mol) and non-
compatibilized formulations: C1 (292 kJ/mol ), C2 (314 kJ/mol), C3 (297 kJ/mol) and C4 
(310 kJ/mol). PP: polypropylene ; C1, C2, C3 and C4: composites formulations.  
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Fig. 4. Kissinger plots of crystallization activation energies of PP (419 kJ/mol) and 
compatibilized formulations: C5 (272 kJ/mol), C6 (297 kJ/mol), C7 (287 kJ/mol) and C8 (306 
kJ/mol). PP: polypropylene ; C5, C6, C7 and C8: composites formulations. 
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Fig. 5. Ozawa plots for non-isothermal melt crystallization of polypropylene (PP) and 
composites : C6 (PP/MAPP/Fiber: 80/5/15) and C8 (PP/MAPP/Fiber: 65/5/30). 
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C6 
 
 
 
 

C7 
 
 
 
 

C8 

108
110 
112 
114 
116 
118 
120 
122 
124 
126 
118 
120 
122 
124 
126 
118 
120 
122 
124 
126 
118 
120 
122 
124 
126 
118 
120 
122 
124 
126 
118 
120 
122 
124 
126 
118 
120 
122 
124 
126 
118 
120 
122 
124 
126 

0.6
0.7 
1.9 
4.1 
5.0 
1.4 
2.0 
2.5 
2.9 
3.4 
0.8 
1.3 
2.2 
2.9 
3.3 
1.0 
1.5 
2.3 
3.0 
3.6 
0.7 
1.0 
1.8 
2.5 
3.1 
1.8 
2.3 
2.8 
3.3 
4.2 
0.8 
1.3 
2.3 
2.9 
3.3 
1.1 
1.7 
2.3 
2.7 
3.0 
0.7 
1.0 
1.7 
2.4 
2.9 

14.9
10.0 
99.5 

1998.2 
1212.0 

40.4 
81.5 
99.5 
73.4 
49.4 
16.4 
33.1 
109.9 
164.0 
99.5 
22.2 
40.4 
99.5 
148.4 
121.5 
14.9 
22.2 
66.7 
148.4 
134.3 
66.7 
109.9 
109.9 
81.5 
109.9 
16.4 
36.6 
121.5 
200.3 
109.9 
27.1 
44.7 
90.0 
81.5 
36.6 
14.9 
22.2 
60.3 
134.3 
109.9 

0.92 
0.83 
0.84 
0.96 
0.99 
0.97 
0.99 
0.99 
1.00 
1.00 
0.96 
0.94 
0.96 
1.00 
1.00 
0.98 
0.97 
0.98 
1.00 
0.99 
0.92 
0.93 
0.96 
0.99 
1.00 
0.99 
0.99 
1.00 
1.00 
0.99 
0.94 
0.95 
0.98 
1.00 
1.00 
0.97 
0.98 
0.99 
1.00 
1.00 
0.93 
0.94 
0.96 
0.99 
1.00 

PP: polypropylene; C1 to C8: composites; m and x: Ozawa constants, and R2: coefficient of 
determination. 

Table 5. Kinetic parameters obtained for PP and the composites, T: temperature; using the 
Ozawa model. 
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Material xt(%) F(T) B R2 

PP 

 

 

 

C1 

 

 

 

C2 

 

 

 

C3 

 

 

 

C4 

 

 

 

C5 

 

 

 

C6 

 

 

 

C7 

 

 

 

C8 

20 

40 

60 

80 

20 

40 

60 

80 

20 

40 

60 

80 

20 

40 

60 

80 

20 

40 

60 

80 

20 

40 

60 

80 

20 

40 

60 

80 

20 

40 

60 

80 

20 

40 

60 

80 

6.7 

7.4 

8.2 

9.0 

7.4 

10.0 

11.0 

13.5 

6.7 

9.0 

10.0 

11.0 

6.1 

8.2 

9.0 

11.0 

6.7 

9.0 

10.0 

11.0 

8.2 

10.0 

11.0 

13.5 

8.2 

10.0 

11.0 

12.2 

7.4 

10.0 

11.0 

13.5 

6.7 

8.2 

10.0 

12.2 

1.0 

1.0 

1.0 

1.1 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.1 

1.3 

1.3 

1.3 

1.3 

1.1 

1.1 

1.1 

1.1 

1.1 

1.2 

1.2 

1.2 

1.1 

1.1 

1.1 

1.1 

1.3 

1.3 

1.3 

1.3 

1.3 

1.3 

1.3 

1.3 

0.99 

0.99 

0.99 

0.99 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.99 

0.99 

1.00 

1.00 

0.99 

1.00 

1.00 

1.00 

0.95 

0.97 

0.97 

0.98 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

1.00 

0.99 

1.00 

1.00 

1.00 

 

Table 6. Kinetic parameters obtained for PP (polypropylene) and its composites (C1 to C8) 
using the model of Liu et al. (1997). 
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Fig. 6. Non-isothermal crystallization plots based on Liu et al. (1997) model. PP: 
polypropylene; C6 (PP/MAPP/Fiber: 80/5/15) and C8: (PP/MAPP/Fiber: 65/5/30). 
composites. 
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4. Conclusions 

From the experimental results, the following conclusions can be drawn: 

1. The thermal conductivity and non-isothermal crystallization kinetics of biofiber-
reinforced PP composites were influenced by fiber content and chemical modifications 
of the biofiber.  

2. The addition of fiber reduced the thermal conductivity of pure PP.  
3. The biocomposites exhibited higher crystallinity, crystallization temperature, half-time 

but lower crystallization rate than pure PP,.  
4. Composites fabricated with chemically-modified fibers exhibited lower degree of 

crystallinity than those reinforced with untreated fibers.  
5. The addition of MAPP into the composites accelerated the crystallization process but 

had a negative impact on the degree of crystallinity.  
6. The important process parameter of cooling rate also was strongly effective on the 

behaviour of crystallization in that involving higher cooling rate resulted to lower 
degree of crystallinity and lower crystallization temperature, but accelerated 
crystallization process. Activation energy of crystallization determined using Kissinger 
model for composites (around 300 kJ/mol) was much lower than that of PP (419 
kJ/mol) in this study which is consistent with the degrees of crystallinity.  

7. Analyzing the data using Ozawa and Liu et al. models resulted to a good linearity and 
conclusion. 
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